
2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 1

7.a Multicore systems:
initial reckoning

Where we travel to the world of multicore
processors and see that everything has changed.
To make sense of that, we first look at the
processor level and see what has happened in it
(and still is), and then begin to reflect on what
the scheduling problem becomes when
parallelism enters the picture

A reconnaissance taxonomy /1

 Distributed systems are loosely coupled
 They do not share memory: maintaining global status is too costly
 Scheduling decisions are strictly per-processor

 Multiprocessors (nowadays multi-core) are tightly coupled
 They share memory: keeping tab of global status and workload

information on all CPUs is straightforward
 This circumstance enables several variants of scheduling

 Multiprocessors are either homogeneous (aka symmetric) or
heterogeneous
 The former make for a much simpler (new) problem
 But in fact heterogeneous multiprocessors are the new normality

 Multiprocessors bring parallelism to the fore

2019/2020 UniPD – T. Vardanega Real-Time Systems 354 of 538

Understanding multicore hardware

2019/2020 UniPD – T. Vardanega Real-Time Systems 355 of 538

Instruction
cache

Data
cache

Caches

Courtesy of

Cache coherence /1

 Now that cores have their own private L1 cache …

 … when jobs share data across cores, R/W
operations on the same memory location may see
different copies of it in their respective L1 cache

2019/2020 UniPD – T. Vardanega Real-Time Systems 356 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 2

Cache coherence /2

 Woeful temptations …
 Do without caches

 Nay, that would bog performance
 Sharing L1 across cores

 Nay, parallelism would smash locality
 Use write-through caches

 Nay, local reads would lose remote writes
 The remedy requires that

 Every read must see the effect of every write
 Either every write updates every L1 (aka write update)
 Or every write invalidates all L1 copies of the same ref (aka write invalidate)

 All reads must see the same order of writes
 Write requests propagation on the bus tells the order (aka snooping)

2019/2020 UniPD – T. Vardanega Real-Time Systems 357 of 538

Hardware interference /1

 Parallel execution on a multicore processor causes
opportunities of contention for the hardware
resources shared among the cores
 This phenomenon did not occur on single-CPU systems

 That type of contention increases the WCET of
running jobs by causing them to hold the CPU without
progressing (!)
 In single-CPU processors, a job may be held from

running while being ready, but is king when it runs

2019/2020 UniPD – T. Vardanega Real-Time Systems 358 of 538

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of even the
simplest of (single-path)
programs running alone on a
CPU does not stay the same
when other programs run on
other CPUs

 The extent of slow-down is
proportional to the amount
of work that the program
does off-core

 The WCET no longer is a
composable value!

2019/2020 UniPD – T. Vardanega Real-Time Systems 359 of 538

Courtesy of

A reconnaissance taxonomy /2

 What scheduling choices do multiprocessors enable?
 Global vs. partitioned, or alternatives between them

 With global scheduling, a job can run on any CPU and can move across
them freely during an execution

 Partitioned scheduling translates into a task-to-CPU static assignment
problem, followed by single-CPU scheduling

 The good-old world of optimality falls apart
 EDF is no longer optimal and not always better than FPS

 Global scheduling is not always better than partitioned
scheduling
 Counterintuitive: having multiple assignment choices does not

beat having just one: this suggests that greed does not pay off!

2019/2020 UniPD – T. Vardanega Real-Time Systems 360 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 3

A reconnaissance taxonomy /3

2019/2020 UniPD – T. Vardanega Real-Time Systems 361 of 538

Global Partitioned

Clustered Hybrid (semi-partitioned)

Intermission: what the
heck is going on?

Let us listen to the words of a language
designer, who explains what is changing in the
hardware space and what that implies for the
software. We will return to this line of argument
in the last lecture of this course

Parallel Lang Support 363

What’s the matter with the processor HW?

• Major, unstoppable shift to multicore, manycore,
heterogeneous (e.g. GPGPU) processors, cloud
computing

• Associated challenge
– It is already hard to write safe, correct sequential programs for

single-processors
– Will programming for multicores exceed our abilities?

• Very opportune goal: provide programming language
support to make it easy and natural to write safe
(including predictable), correct parallel programs
– Perhaps even easier than it is to write safe, correct sequential

programs in many existing languages

• Is that possible?

Parallel Lang Support 364

Why are they all moving to multi/manycore?

• Power, power, power
– Speeding clock rates above 3 GHz increased power density

beyond what the chips (and customer pocketbooks) can bear
– More and more computing is moving to battery-operated mobile

platforms where low power is king

• With multi/manycore, the theoretical computing
performance-per-watt (PPW) can be increased by
adding cores, perhaps slowing clock rate a bit
– With single-core processor technology, PPW began to decrease

with increasing clock rates, due to increased power dissipation
(aka source-to-drain leakage)

• Clock rate doubling (which was one ramification
of Moore’s law) came to a screeching halt by the
year 2005

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 4

Parallel Lang Support 365

The right turn in processor performance

Courtesy of
IEEE Computer,
January 2011,
page 33

Parallel Lang Support 366

What are the implications of this right turn?

• Clock rate
– Clock rates that were doubling about every 2 years, stalled at

about 3 GHz by 2005
– Had they continued doubling, we would now be buying laptops

with clocks at about 50 GHz

• Cores/chip
– Scaling to smaller features has continued
– Now using added chip real estate for additional CPU “cores”
– The number of cores/chip has started doubling since 2005
– After that (15 years), mainstream commercial x86 chips came at

20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+

• Almost back on Moore’s Law exponential rocket
– But only if considering cores/chip x performance/core

Parallel Lang Support 367

What else is happening to the HW?

• HW is getting more complicated
• Not just a handful of really fast processors
• Today’s fastest computers have

– A giant network of nodes
– Each node is itself a heterogeneous conglomeration

– Multiple cores
– Vector units
– GPUs or other accelerators

• Our challenge is to figure how to program these beasts
– Ideally we want our programs to scale without rewriting, from one

core up to a giant server farm or supercomputer
– Our basic approach is to eliminate barriers to parallelization, and

remove the sequential bias of our programming languages

Parallel Lang Support 368

Concurrency vs. Parallelism

Concurrency

• Concurrent programming allows
the programmer to simplify the
application architecture by using
multiple logical threads of control
to reflect the natural patterns of
collaboration in the problem
domain
• Heavier-weight constructs can be

acceptable as they used rarely

Parallelism

• Parallel programming allows the
programmer to divide-and-
conquer the problem space, using
multiple threads to work in
parallel on independent parts of it
• Constructs should be light-weight

syntactically and at run time as
they are used very frequently

Collaboration Independence

We are heading toward parallelism within concurrency

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 5

Parallel Lang Support 369

Parallelism within concurrency (example)

Client First-level
dispatcher

Second-level
mapped and
reducer [1]

Service
worker 1

instance 1.1

Service
worker 1

instance 1.n

Second-level
mapper and
reducer [m]

Service
worker m

instance m.1

Service
worker m

instance m.n

Parallel unit

Concurrent unit

Concurrent aggregate

All falls apart

 In the multiprocessor world, low-utilization task sets may be
deemed unfeasible
 Long known as “ the Dhall’s effect ” [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential complexity
 The known sufficient tests with polynomial complexity are pessimistic

 Single-processor optimality criteria do not apply anymore
 Global scheduling is not always better than partitioned
 Rate- or deadline-monotonic priority assignments are not optimal

for global scheduling
 The same priority level may have different effect on different cores

 We know of no optimal priority assignment with polynomial
complexity

2019/2020 UniPD – T. Vardanega Real-Time Systems 370 of 538

Dhall’s effect /1

 Under global scheduling, G-EDF and G-FPS would run
𝒂 and 𝒃 first on either of the 𝑚 ൌ 2 processors respectively

 But this would not leave sufficient time for 𝒄 to complete
 7 time units would be available on each processor, but 8 on neither

 Deadline miss even if the total system is underutilized (!)

Task 𝑻 𝑫 𝑪 𝑼
𝒂 10 10 5 0.5

𝒃 10 10 5 0.5

𝒄 12 12 8 0.67

𝒎 ൌ 2

𝑈 ൌ 1.67 ൏ 𝑚

2019/2020 UniPD – T. Vardanega Real-Time Systems 371 of 538

𝑆 ൌ 𝜏ଵ ൌ 3,4 , 𝜏ଶ ൌ 3,4 , 𝜏ଷ ൌ 5,10 ,𝐻ௌ ൌ 20

𝑈௦ ൌ
3
4

3
4

5
10 ൌ 2.0 → 𝒎 ൌ 2

 At 𝑡 ൌ 15, the remaining CPU time is 𝑇ோ ൌ 𝑚 ൈ 𝐻ௌ െ 𝑡 ൌ 𝟏𝟎
 Yet, the time needed is 𝑇ே ൌ 𝑒ଵ 𝑒ଶ 𝑒ଷ ൌ 𝟏𝟏

G-LLF fails too …

2019/2020 UniPD – T. Vardanega Real-Time Systems 372 of 538

𝜏ଷ

𝜏ଶ

𝜏ଵ

𝜏ଶ

𝜏ଵ

𝜏ଶ𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଵ𝜏ଵ

3 4 7 8

𝐿ଵ ൌ 1

𝐿ଶ ൌ 1

𝐿ଷ ൌ 5 2

1

1

6 10

0 1

0

1 0

0

9 12

5 3

1

1

0

15

One CPU is idle

𝟎 : zero laxity

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 6

Theorem (stating the obvious)
When the total utilization of a periodic task set is equal to
the number of processors, and all tasks have the same
initial release time (𝑡 ൌ 0), then no feasible schedule can
allow any processor to remain idle for any length of time

Why does this happen?

 In the LLF example, at time 𝑡 ൌ 3 and then at 𝑡 ൌ 15, one
CPU is left idle for 1 time unit

 That waste will be missed out sorely at time 𝑡 ൌ 18, when
all three tasks will have laxity 𝐿 ൌ 0 but only two CPUs are
available to them

 A “proper” scheduling algorithm should have noticed this
problem already at 𝑡 ൌ 3 !

 At this sight, this would seem to suggest that greed is good …

2019/2020 UniPD – T. Vardanega Real-Time Systems 373 of 538

Dhall’s effect /2

 Partitioned scheduling does not work well either
 After 𝒅 and 𝒆 are assigned to a CPU, 𝒇 has no place to run

 To find room for execution, 𝒇 would have to migrate from one CPU to
the other

 And 𝒅 and 𝒆 should also be willing to yield for 𝒇 to complete in time

Task 𝑻 𝑫 𝑪 𝑼
𝒅 10 10 9 0.9

𝒆 10 10 9 0.9

𝒇 10 10 2 0.2

𝒎 ൌ 2

𝑈 ൌ 𝑚

2019/2020 UniPD – T. Vardanega Real-Time Systems 374 of 538

The oddity of software interference /1

 What does the (SW) interference 𝐼 suffered by task 𝜏
in its busy period become on a multiprocessor?
 For partitioned scheduling, it reduces to the single-processor

case, so it poses no problem
 For global scheduling on an 𝑚-processor system, instead,

interference occurs only when k 𝑚 tasks are ready
simultaneously

 Multiprocessor interference for 𝜏 can be computed as
the sum of all time intervals when 𝑚 higher-priority
tasks execute in parallel on all 𝑚 processors
 Not the easiest of things to determine …

2019/2020 UniPD – T. Vardanega Real-Time Systems 375 of 538

The oddity of software interference /2

 A very pessimistic bound for G-scheduling
considers all higher-priority tasks to interfere always

𝑅௫ ൌ 𝐶
ଵ

∑ ሺ ோೖ

ೌೣ

்ೕ
𝐶 𝐶𝑗ሻఛೕ∈ሺሻ

 This naïve bound however is extremely pessimistic
 It can be improved, and has been, but for great

computational complexity, still without becoming exact

2019/2020 UniPD – T. Vardanega Real-Time Systems 376 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 7

Global scheduling anomalies

 In single-processor scheduling, the deadline-miss ratio
often depends on system load
 Ergo, increasing tasks’ period should decrease utilization and

thus decrease the deadline-miss ratio too
 Multiprocessor anomaly 1

 A decrease in processor demand from ℎ𝑝 tasks can increase the
interference on 𝑙𝑝 tasks by changing the time windows in
which those tasks execute

 Multiprocessor anomaly 2
 A decrease in one task’s own processor demand may increase the

interference that it suffers

2019/2020 UniPD – T. Vardanega Real-Time Systems 377 of 538

Credits to to B. Andersson and J. Jonsson
Proc. of RTSS WiP Session, 2000, pp. 53–56

Anomaly 1: decrease in ℎ𝑝 utilization

Task 𝑻 𝑫 𝑪 𝑼
𝒂 3 3 2 0.67
𝒃 4 4 2 0.50
𝒄 12 12 8 0.67

𝑚 ൌ 2 processors, ∑ 𝑈 ൌ 1.83 ൏ 𝑚,
𝜏 is saturated as 𝐶 𝐼 ൌ 𝐷
Any increase in 𝐼 for the same 𝐶 would
render 𝜏 unfeasible

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

2019/2020 UniPD – T. Vardanega Real-Time Systems 378 of 538

Anomaly 1: continued

 With 𝑇ᇲ ൌ 4 𝑇 ൌ 3, 𝑈 ൌ 1.67 decreases
 But in this way 𝐼ᇲ ൌ 6 𝐼 ൌ 4, increases, and causes
𝜏 to miss its deadline (!)

P1

P2

a a a

b b bc c

8

4 8

c

4

2019/2020 UniPD – T. Vardanega Real-Time Systems 379 of 538

Anomaly 2: decrease in own demand

Task 𝑻 𝑫 𝑪 𝑼
𝒂 4 4 2 0.5
𝒃 5 5 3 0.6
𝒄 10 10 7 0.7

𝑚 ൌ 2 processors and 𝑈 ൌ 1.8
𝜏 with 𝐼 ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2019/2020 UniPD – T. Vardanega Real-Time Systems 380 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 8

Anomaly 2: continued

 With 𝑇ᇲ ൌ 11 𝑇 ൌ 10, 𝑈 ൌ 1.74 decreases
 But then 𝐼ᇲ ൌ 5 𝐼 ൌ 3, increases, for 𝜏 ’s 2nd job

 Which also shows that the critical-instant hypothesis no
longer holds!

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

2019/2020 UniPD – T. Vardanega Real-Time Systems 381 of 538

The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and
implement

 They work very well on single-core processors, where
the urgency of a job collapses into a single value, which can be
used to schedule jobs greedily

 Greedy algorithms fail on multiprocessors, instead,
where computation and parallelism are distinct dimensions

 Optimality in multicore scheduling needs to use
different principles altogether

2019/2020 UniPD – T. Vardanega Real-Time Systems 382 of 538

Enters proportionate fairness

 An airline has 𝑚 planes and 𝑛 flight crews, with 𝑛 𝑚
 All planes and crews are based in the same city

 Exactly 𝑚 crews are scheduled to work on any given days
 Due to seniority, job performance, or other factors, it may be

desirable to schedule some crews more often than others
 This notion reflects the crew work period

 For each crew 𝑘, 𝑊 is the fraction of all days that crew
𝑥 is desired work, in a manner that ∑ 𝑊 ൌ 𝑚

 The airline wants a scheduler that produces a schedule in
which every crew works at a balanced rate
 One in which, after 𝑡 workdays (the hyperperiod), crew 𝑘 will have

worked either 𝑊 ൈ 𝑡 or 𝑊 ൈ 𝑡 workdays

2019/2020 UniPD – T. Vardanega Real-Time Systems 383 of 538

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness also
known as P-fairness
 Each task 𝜏 is assigned processing resources in proportion to its

weight 𝑊 ൌ
்

so that it may progress steadily
 Think of real-time multimedia applications …

 At every time 𝑡 0, task 𝜏 must have been scheduled
either 𝑊 ൈ 𝑡 or 𝑊 ൈ 𝑡 time units
 Without loss of generality, preemption is assumed to occur solely at

integral time units
 The workload model is assumed to be periodic with implicit

deadlines

2019/2020 UniPD – T. Vardanega Real-Time Systems 384 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 9

P-fair scheduling /2

 𝒍𝒂𝒈ሺ𝑆, 𝜏 , 𝑡ሻ is the delta between the total resource
allocation that task 𝜏 should have received in ሾ0, 𝑡ሻ
and what schedule 𝑆 gave it

 For a P-fair schedule 𝑆, at time 𝑡
 𝜏 is ahead if and only if 𝒍𝒂𝒈ሺ𝑆, 𝜏 , 𝑡ሻ ൏ 0
 𝜏 is behind if and only if 𝒍𝒂𝒈ሺ𝑆, 𝜏 , 𝑡ሻ 0
 𝜏 is punctual if and only if 𝒍𝒂𝒈ሺ𝑆, 𝜏 , 𝑡ሻ ൌ 0

2019/2020 UniPD – T. Vardanega Real-Time Systems 385 of 538

P-fair scheduling /3

 𝜶ሺ𝑥ሻ is the characteristic (infinite) string of task 𝜏௫
over ሼെ, 0,ሽ for 𝑡 ∈ ℕ with
 𝜶௧ 𝑥 ൌ 𝒔𝒊𝒈𝒏 𝑊௫ ൈ 𝑡 1 െ 𝑊௫ ൈ 𝑡 െ 1

 The position from the integral approximation of fluid rate curve

 𝜶ሺ𝑥, 𝑡ሻ is the characteristic substring
𝜶௧ାଵ 𝑥 𝜶௧ାଶ 𝑥 …𝜶௧ᇱ 𝑥 of task 𝜏௫ at time 𝑡
where 𝑡′ ൌ 𝑚𝑖𝑛 𝑖: 𝑖 𝑡:𝜶ሺ𝑥ሻ ൌ 0

 For a P-fair schedule 𝑆 at time 𝑡, task 𝜏 is
 Urgent iff 𝜏 is behind and 𝜶𝒕 𝜏 ് െ : 𝜏 has credits to claim
 Tnegru iff 𝜏 is ahead and 𝜶𝒕 𝜏 ് : 𝜏 has stolen from others
 Contending otherwise

2019/2020 UniPD – T. Vardanega Real-Time Systems 386 of 538

The fluid rate curve

2019/2020 UniPD – T. Vardanega Real-Time Systems 387 of 538

𝜶௧ୀସ 𝑖 ൌ 𝒔𝒊𝒈𝒏 𝑊 ൈ 4 1 െ 𝑊 ൈ 4 െ 1 ൌ 3.125 െ 2 െ 1 ൌ
At time 𝑡 ൌ 5, in the worst case, task 𝜏 would have a credit that could not be satisfied in one single

round of scheduling: 𝜏 would be urgent now if it was also behind (it is not in this schedule!)

100% workload

𝑾𝒊 ൌ
𝑪𝒊
𝑻𝒊
ൌ
𝟓
𝟖 ൌ 𝟎.𝟔𝟐𝟓

𝑡 ൌ 4

𝑊 ൈ 4

𝑊 ൈ 4 1

𝑇 ൌ 8

𝐶 ൌ 5

𝑡 ൌ 5

Time supply

Time demand

Properties of a P-fair schedule 𝑆

 For task 𝜏 ahead at time 𝑡 under 𝑆
 If 𝜶𝒕 𝜏 ൌ െ and 𝜏 not scheduled at 𝑡 then 𝜏 is ahead at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ 0 and 𝜏 not scheduled at 𝑡 then 𝜏 is punctual at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ and 𝜏 not scheduled at 𝑡 then 𝜏 is behind at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ and 𝜏 scheduled at t then 𝜏 is ahead at 𝑡 1

 For task 𝜏 behind at time 𝑡 under 𝑆
 If 𝜶𝒕 𝜏 ൌ െ and 𝜏 scheduled at 𝑡 then 𝜏 is ahead at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ െ and 𝜏 not scheduled at 𝑡 then 𝜏 is behind at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ 0 and 𝜏 scheduled at 𝑡 then 𝜏 is punctual at 𝑡 1
 If 𝜶𝒕 𝜏 ൌ and 𝜏 scheduled at 𝑡 then 𝜏 is behind at 𝑡 1urgent

tnegru

2019/2020 UniPD – T. Vardanega Real-Time Systems 388 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 10

P-fair scheduling /4

 General principle of P-fairness
 Every task urgent at time 𝑡 must be scheduled at 𝑡 so that

P-fairness can be preserved
 No task tnegru at time 𝑡 can be scheduled at 𝑡 without breaking

P-fairness

 With 𝑚 resources, 𝑛 tasks, and 𝑛 tnegru, 𝑛ଵ contending,
𝑛ଶ urgent tasks at time 𝑡 ሺ𝑛 ൌ 𝑛 𝑛ଵ 𝑛ଶሻ
 If 𝑛ଶ 𝑚, the scheduling algorithm cannot schedule all urgent

tasks: some tasks will never be able to catch back
 If 𝑛 𝑛 െ𝑚, the scheduling algorithm will schedule some

tnegru tasks and consequently waste CPU time on them

2019/2020 UniPD – T. Vardanega Real-Time Systems 389 of 538

P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Always schedule all urgent tasks
 Allocate the remaining resources to the ℎ𝑝 contending tasks according

to the total order function ⊇ with ties broken arbitrarily
 𝑥 ⊇ 𝑦 iff 𝜶ሺ𝑥, 𝑡ሻ 𝜶ሺ𝑦, 𝑡ሻ
 With the comparison between the characteristics substrings resolved

lexicographically with െ൏ 0 ൏

 With PF, we have ∑ 𝑊௫ ൌ 𝑚௫∈ሾ,ሿ
 A dummy task may need to be added to the task set to top the

utilization up to 𝑚
 No problematic situation can occur with the PF algorithm

 PF always has 𝑛ଶ 𝑚 and 𝑛 𝑛 െ𝑚

2019/2020 UniPD – T. Vardanega Real-Time Systems 390 of 538

Example (PF scheduling) /1

Task C T W

𝝉𝒗 1 3 0.333…
𝝉𝒘 2 4 0.5
𝝉𝒙 5 7 0.714…
𝝉𝒚 8 11 0.727…
𝝉𝒛 335 462 3-U

 𝑚 ൌ 3 processors
 𝑛 ൌ 4 tasks
 𝜏௭ is a dummy task used to top

up system utilization to 𝑚
 In general, 𝜏௭’s period is set to

the system hyperperiod
 This time we just halved it

2019/2020 UniPD – T. Vardanega Real-Time Systems 391 of 538

Example (PF scheduling) /2
These tasks are scheduled and they become ahead

2019/2020 UniPD – T. Vardanega Real-Time Systems 392 of 538

2019/2020 UniPD - T. Vardanega 03/05/2020

Real-Time Systems 11

Summary

 Multicore processors may well be the processor
makers’ escape route to the doom of Moore’s law,
but their advent shatters the foundations of real-
time systems theory that rest on the single-CPU
assumption

 We are confounded between the (seeming) need to
schedule greedily and the actual inanity of it

 We begin to see that optimality here is a wholly
different story

2019/2020 UniPD – T. Vardanega Real-Time Systems 393 of 538

