7.b Seeking the lost optimality

Where we reflect more deeply into what became of optimality in the multicore world, and look at two ways to achieve it very differently from PFair

Rationale of the selection

- Between 2003 and 2016, multiple research efforts devised multicore scheduling algorithms capable of achieving optimality at lesser costs than with strict Pfairness
- We now look at two such results, which shine for their originality, and shed light on what really are the first principles for optimality in this world
 - Greg Levin et al. (2010), DP-FAIR: A Simple Model for Understanding Optimal Multiprocessor Scheduling
 - Paul Regnier et al. (2011), RUN: Optimal Multiprocessor Real-Time Scheduling via Reduction to Uniprocessor

2019/2020 UniPD - T. Vardanega

2019/2020 UniPD - T. Vardanega

Real-Time Systems

395 of 538

397

Real-Time Systems

RUN Assumptions

Model parameters

- m > 1 homogeneous (symmetric) processors
- n implicit-deadline, independent, periodic tasks τ_i , $i \in \{1...n\}$
- $n = m + k, k \ge 0$
- Fixed-rate tasks $U_i = rac{\mathcal{C}_i}{T_i}$ $\sum_{i=1}^n U_i \leq m$
- Fully utilized system: no idle time (add filler task if needed)
- $\emph{Migration}$ and $\emph{preemption}$ costs included in \emph{c}_i

2019/2020 UniPD - T. Vardanega

Real-Time Systems

426

428

Duality

- The (primal) problem of scheduling $\mathbf{S} = \{ \boldsymbol{\tau}_1 = (c_1, T_1), ..., \boldsymbol{\tau}_n = (c_n, T_n) \}, \boldsymbol{m}$ has a $\frac{d\mathbf{ual}}{dt}$ problem that consists of scheduling $\mathbf{S}' = \{ \boldsymbol{\tau}_1' = (T_1 c_1, T_1), ..., \boldsymbol{\tau}_n' = (T_n c_n, T_n) \}, (n m)$
- · With this definition of duality
 - Laxity in primal is work remaining in the dual
 - . A work-complete event in the primal is zero-laxity in the dual
 - And vice versa
- Corollary: any scheduling problem with ${\pmb m}$ processors, ${\pmb n}={\pmb m}+{\pmb 1}$ tasks, and $\sum_{i=1}^n U_i={\pmb m}$ may be scheduled by applying EDF to its uniprocessor dual
 - If we can schedule n tasks on m processors, then we can also schedule the dual of those n tasks on n-m processors
 - This is so because the scheduling events in the dual system map to scheduling events in the primal system

2019/2020 UniPD - T. Vardanega

Real-Time Systems

The G-LLF example at page 372 ... $S = \{\tau_1 = (3,4), \tau_2 = (3,4), \tau_3 = (5,10)\}, n = 3, H_S = 20$ $U_S = \frac{3}{4} + \frac{3}{4} + \frac{5}{10} = 2.0 \rightarrow m = 2$ $\downarrow_{l_1 = 1}$ $\downarrow_{l_2 = 1}$ $\downarrow_{l_2 = 1}$ $\downarrow_{l_3 = 5}$ $\downarrow_{l_3 = 6}$ $\downarrow_{l_3 = 6}$ $\downarrow_{l_3 = 7}$ $\downarrow_{l_3 = 6}$ $\downarrow_{l_3 = 7}$ \downarrow_{l

Summary

- The DP-Fair algorithm shows us that optimal scheduling for multicore processors need *not* be greedy and instead can dispatch *parsimoniously*
 - ☐ This algorithm proved very difficult to implement, surprisingly, owing to the lack of adequate RTOS support
- The RUN algorithm shows us how the principle of *duality* allows reducing multicore scheduling to a (simple) uniprocessor case
 - □ This algorithm, although so unusual, was easier to implement and proved as efficient as on paper

2019/2020 UniPD – T. Vardanega

Real-Time Systems

454 of 538

Selected readings

S. Funk, G. Levin, G., et al. (2011)

DP-FAIR: a unifying theory for optimal hard real-time multiprocessor scheduling

DOI: 10.1007/s11241-011-9130-0

 E. Massa, G. Lima, P. Regnier (2016)
 From RUN to QPS: new trends for optimal real-time multiprocessor scheduling

DOI: 10.1504/IJES.2016.080390

D. Compagnin, E. Mezzetti, T. Vardanega (2014)
 Putting RUN into Practice: Implementation and Evaluation
 DOI: 10.1109/ECRTS.2014.27

2019/2020 UniPD – T. Vardanega

Real-Time Systems

455 of 538