
2019/2020 UniPD - T. Vardanega 17/05/2020

Real-Time Systems 1

7.d Mixed-criticality systems

Where we see how the want of more-for-
less has entered the high-integrity domain,
causing tasks with different levels of
criticality to be integrated in a mixed-
criticality (real-time) system

Background /1

 Critical systems are those that perform essential services
 When required, they have to run with high assurance: should they

not, serious consequences would follow
 Previously they were dedicated (for HW) and specialized (for SW)

 Few, sparse, and nearly invisible to the public eye
 Isolation is conservative, it may waste resources to warrant integrity

 Digital transformation wants far greater unitary functional
value in those systems
 Integration is pragmatic, it wants more value for less resource usage
 Not all functions equally essential: some only serve competitive

edge (e.g., comfort over safety)
 Tension builds between integration and isolation

2019/2020 UniPD – T. Vardanega Real-Time Systems 483 of 562

An example of digital transformation

2019/2020 UniPD – T. Vardanega Real-Time Systems 484 of 562

Premise /2

 Isolation makes static allocations, with conservative
margins to mitigate the uncertainty of extreme events
 Conservative margins are wasteful

if the worst-case profile has an
extreme tail
 Very far to the right of the average

case

 The baseline approach is known
as Time and Space Partitioning
 It warrants isolation via a resource scheduling hypervisor

2019/2020 UniPD – T. Vardanega Real-Time Systems 485 of 562

2019/2020 UniPD - T. Vardanega 17/05/2020

Real-Time Systems 2

The consequence of conservatism

 Budgeting for the rare extreme here would cost 240% more than
provisioning for the average case

 You may not want to budget for the WC statically, but you must be
able to sustain it when it happens: something’s gotta give in that case …

Very rare extreme eventVery frequent event

2019/2020 UniPD – T. Vardanega Real-Time Systems 486 of 562

Premise /3

 Well-behaved integration may reduce waste
 Tasks with different levels of criticality might be allowed to

co-exist under strict safeguarding guarantees
 Main goal (in this line of research) is maximum use of CPU

 Tasks with higher integrity requirements (high criticality)
must be guaranteed up to their worst case, but their
default allocation covers only the high watermark
 This is the central tenet of Mixed-Criticality Systems
 When a Hi-crit job executes above average, a mode change

occurs, which “adjusts things”
 Thereafter, all Hi-crit tasks retain their guarantees
 Lo-crit tasks lose them (they are held up), until normality is restored

2019/2020 UniPD – T. Vardanega Real-Time Systems 487 of 562

Vestal’s initial vision of MCS (2007)

 The system is single-core
 Tasks are divided in multiple criticality-based groups

 A mode attribute 𝐿 ∈ 𝐿𝑜, … ,𝐻𝑖 is attached to each task 𝜏, determining
its budget allocation

 Hi-crit tasks are given a high conservative margin over their measured WCET
 Lo-crit tasks have no margin
 Any task can use the unclaimed margin, but only Hi-crit tasks can claim it

 The RTA for this case becomes

𝑅 ൌ 𝐶 𝑳𝒊
𝑅
𝑇

𝐶 𝑳𝒋
∈

 Each task is assumed to contribute its per-criticality (𝐿) allocation
 Priority and criticality do not coincide: we need a priority assignment

scheme that serves the MCS intent

2019/2020 UniPD – T. Vardanega Real-Time Systems 488 of 562

Vestal’s experimental evidence

𝜟∗ is the largest simultaneous increase in the budget
allocation of all tasks (over the measured bound) that
would preserve overall feasibility

The MCS solution assures a 20% margin
without wastage

𝒎𝒂𝒓𝒈𝒊𝒏 ൌ
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 െ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

Average

2019/2020 UniPD – T. Vardanega Real-Time Systems 489 of 562

2019/2020 UniPD - T. Vardanega 17/05/2020

Real-Time Systems 3

Immediate ramifications

 EDF does not dominate FPS for systems with criticality levels
 Feasible systems can be constructed that EDF is unable to schedule

 The MCS model of (constrained-deadline) sporadic task may be
formalized as 𝑇→,𝐷,𝐶→, 𝐿 such that 𝐿 is a set of criticality levels
… , 𝐿 , 𝐿 , … where

𝐿 𝐿 ⟹ 𝐶 𝐿 𝐶 𝐿 ,𝑇 𝐿 𝑇 𝐿
 The higher the task’s criticality, the larger the guarantee above its default allocation
 Most commonly, 𝐿 ൌ 𝐿𝑜,𝐻𝑖 and 𝑇→ ൌ 𝑇

 The solution rests on an effective (fixed) priority ordering
 First, order all Hi-crit and Lo-crit tasks with deadline-monotonic ordering
 At each step, first test the lowest-priority Lo-crit task (Audsley’s style)

 If feasible, it takes that priority
 Else, try the next task; if none is feasible, failure

 This logic assures best guarantees for Hi-crit tasks

2019/2020 UniPD – T. Vardanega Real-Time Systems 490 of 562

Adaptive Mixed Criticality (2012)

 Approach proposed by Baruah, Burns and Davis
 System model still single-core, FPS assumed

 To achieve higher average utilization, WCET allocation is not static
 When a Hi-crit job runs past its Lo-crit budget, a mode change triggers
 To safeguard Hi-crit tasks, all Lo-crit tasks are (temporarily) suspended

 Three distinct feasibility conditions
Lo-crit mode: 𝑅 𝐿𝑜 ൌ 𝐶 𝐿𝑜 ∑ ோ

்ೕ
𝐶 𝐿𝑜∈

Hi-crit mode: 𝑅 𝐻𝑖 ൌ 𝐶 𝐻𝑖 ∑ ோ ு
்ೕ

𝐶 𝐻𝑖∈

Lo-2-Hi: mode: 𝑅∗ ൌ 𝐶 𝐻𝑖 ∑ ோ
∗

்ೕ
𝐶 𝐻𝑖∈ு ∑ ோ

்ೖ
𝐶 𝐿𝑜∈

 The Lo-crit tasks are (pessimistically) assumed to contribute their maximum
interference before being suspended

2019/2020 UniPD – T. Vardanega Real-Time Systems 491 of 562

Asserted benefits

Approaches

UB-H&L: theoretical upper bound
AMC-max: adaptive mixed-criticality (minor tweak
over base AMC)
AMC-rtb: adaptive mixed-criticality (base method)
SMC: as Vestal, but with mode-change monitoring
SMC-NO: Vestal’s original approach
CrMPO: priorities assigned in order of criticality

20 tasks per task set, an average of 50% tasks
assumed Hi-crit, and 𝑪 𝑯𝒊 ൌ 𝟐 ൈ 𝑪 𝑳𝒐

2019/2020 UniPD – T. Vardanega Real-Time Systems 492 of 562

What with multicores?

 Higher functional value if Lo-crit tasks could migrate
instead of being suspended
 This requires partitioned scheduling and per core criticality mode
 Hi-crit tasks statically assigned to a core
 The Lo-crit tasks feasible in Hi-crit mode are statically assigned
 The Lo-crit tasks that would be abandoned on one core and could

fit feasibly on another core, are allowed to migrate to it
 Residual Lo-crit tasks marked “expendable”

 Only a small fraction of cores is assumed to enter Hi-crit
mode simultaneously
 The system should be kept feasible up to that limit

 Solution in three mutually-dependent parts
 Partition tasks, determine allowable migrations, assign priorities

2019/2020 UniPD – T. Vardanega Real-Time Systems 493 of 562

2019/2020 UniPD - T. Vardanega 17/05/2020

Real-Time Systems 4

Xu & Burns (2019) /1

 3 models of migration for a quad-core processor

 Model 1: each core has one migration route
 Model 2: each core has two migration routes
 Model 3: each core allows migration to all other cores

2019/2020 UniPD – T. Vardanega Real-Time Systems 494 of 562

Xu & Burns (2019) /2

 Order tasks by decreasing criticality
 Use one of (First-Fit, Best-Fit, Worst-Fit) bin-packing for task-to-

core assignment
 Use Audsley’s algorithm to assign per-core priorities

 If a Hi-crit task is not feasible on one core, try it on another core
 If a Hi-crit task cannot be feasibly assigned, then failure
 If a Lo-crit task is not feasible, pick the highest-priority Lo-crit task on

that core and try a migration route for it
 If that fails, try the next Lo-crit task down: if any Lo-crit task remains

unassigned, mark it expendable
 The system needs to be studied before and after mode change

 Dependent on how many cores can enter Hi-crit mode simultaneously
 We look at the 1-mode-change case only: the others can be built analogously

2019/2020 UniPD – T. Vardanega Real-Time Systems 495 of 562

Xu & Burns (2019) /3

 Before mode change (steady mode), core 𝐾௦ hosts some Hi-crit tasks,
some Lo-crit tasks, and some Lo-crit “can migrate” tasks

𝑅 𝐿𝑜 ൌ 𝐶 𝐿𝑜
𝑅 𝐿𝑜
𝑇

𝐶 𝐿𝑜
∈

 After mode change (𝐿 𝐿𝑜) in core 𝐾௦, with migration route to
core 𝐾௧
 Core 𝐾௦ sheds its “can migrate” Lo-crit tasks (𝑴𝑲𝒔), which contribute their

maximum interference before going

𝑅 𝐿 ൌ 𝐶 𝐿 ∑ ோ
்ೕ

𝐶 𝐿∈ ,ೞ

∑ 𝑹𝒊 𝑳𝒐

ഘ்
𝐶ఠ 𝐿𝑜ఠ∈ ,𝑴𝑲𝒔

2019/2020 UniPD – T. Vardanega Real-Time Systems 496 of 562

Xu & Burns (2019) /4

 After mode change, in core 𝐾௧ with migration from core 𝐾௦
 Core 𝐾௧ will have to schedule the incoming Lo-crit tasks

𝑅 𝐿𝑜 ൌ 𝐶 𝐿𝑜
𝑅 𝐿𝑜 𝑱𝒋

𝑇
𝐶 𝐿𝑜

∈ ,

 Any “can migrate” task 𝜏 will carry residual work 𝐶 െ 𝑎 with
relative deadline 𝐷 െ 𝑡 to core 𝐾௧

 Any such task 𝜏 will suffer release jitter 𝐽 𝑅 𝐿𝑜 െ 𝐶 𝐿𝑜

2019/2020 UniPD – T. Vardanega Real-Time Systems 497 of 562

2019/2020 UniPD - T. Vardanega 17/05/2020

Real-Time Systems 5

Performance evaluation /1

 Analysis scenarios (no real execution)
 Percentage of schedulable task sets over increasing utilization

 No migration (AMC) vs. model 1, model 2, model 3

 Weighted schedulability as a function of two factors
 How much one approach dominates the other(s)

 Over varying parameters
 Log-uniform period distribution
 Size of task set
 Plot 1: ratio of Hi-crit tasks in task set
 Plot 2 (criticality factor): Hi:Lo inflation rate in demand

2019/2020 UniPD – T. Vardanega Real-Time Systems 498 of 562

Performance evaluation /2

Results reproduced by:
https://github.com/cornacchia/py-xu-burns-2019-rta

2019/2020 UniPD – T. Vardanega Real-Time Systems 499 of 562

Performance evaluation /3

2019/2020 UniPD – T. Vardanega Real-Time Systems 500 of 562

 Migration affords more schedulable utilization
 At least 10% more feasible task sets for 4 𝑈 3.8, and task sets cardinality no

larger than 50 tasks
 The gain increases as the proportion of Hi-crit tasks or the criticality margin grow
 Model 1, by far the simplest, suffices

Migration costs are not negligible

Minimal Linux, 10k R/W random access ops on variable-size array
(0.4 kB – 4 MB in 0.4 kB increments), job migration every even iteration

PC1, 4-core i7, 64KB L1 cache, 256KB L2 cache, 8MB L3 shared cache
PC2, con 2-core, 16KB L1 cache, 2MB L2 cache L2

2019/2020 UniPD – T. Vardanega Real-Time Systems 501 of 562

2019/2020 UniPD - T. Vardanega 17/05/2020

Real-Time Systems 6

Summary

 Digital transformation wants real-time systems to
embed an ever increasing number of value-added
software functions
 Some such functions are of high integrity and must be given

high assurance
 Other functions are less critical, but we want to deploy them

in the same processor as the other functions to have more
functional value per unit of computation

 This need has originated mixed-criticality systems
 We have examined approaches that give sufficient assurance

of time isolation while achieving high schedulable utilization

2019/2020 UniPD – T. Vardanega Real-Time Systems 502 of 562

Selected readings

 S. Vestal (2007)
Preemptive Scheduling of Multi-Criticality Systems with
Varying Degrees of Execution Time Assurance
DOI: 10.1109/RTSS.2007.47

 H. Xu, A. Burns (2019)
A semi-partitioned model for mixed criticality systems
10.1016/j.jss.2019.01.015

2019/2020 UniPD – T. Vardanega Real-Time Systems 503 of 562

