
2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 1

8a. Going parallel

Where we take a bird’s eye look at what
changes (again!) when jobs become
parallel in response to the quest for best
use of (massively) parallel hardware

Parallel Lang Support 505

Terminology /1

• Program = static piece of text
– Instructions + link-time data

• Processor = resource that can execute a program
– In a “multi-processor,” processors may

– Share uniformly one common address space for main memory
– Have non-uniform access to shared memory
– Have unshared parts of memory
– Share no memory as in “Shared Nothing” (distributed memory)

architectures

• Process = instance of program + run-time data
– Run-time data = registers + stack(s) + heap(s)

Parallel Lang Support 506

Terminology /2
• No uniform naming of threads of control within process

– Thread, Kernel Thread, OS Thread, Task, Job, Light-Weight
Process, Virtual CPU, Virtual Processor, Execution Agent,
Executor, Server Thread, Worker Thread

– Task generally describes a logical piece of work
– Element of a software architecture

– Thread generally describes a virtual CPU, a thread of control
within a process

– Job in the context of a real-time system generally describes a
single execution consequent to a task release

• No uniform naming of user-level lightweight threads
– Task, Microthread, Picothread, Strand, Tasklet, Fiber, Lightweight

Thread, Work Item
– Called “user-level” in that scheduling is done by code outside of

the kernel/operating-system

Parallel Lang Support 507

Terms in context: LWT within LWP

Lightweight because OS
does not schedule threads

Exactly the same logic applies to user-level lightweight
threads (aka tasklets), which do not need scheduling

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 2

Parallel Lang Support 508

SIMD – Single Instruction Multiple Data

• Vector Processing
– Single instruction can operate on “vector” register set, producing

many adds/multiplies, etc. in parallel

• Graphical Processing Unit
– Broken into independent “warps” consisting of multiple “lanes” all

performing the same operation at the same time
– Typical GPU might be 32 warps of 32 lanes each ~= 1024 cores
– Modern GPUs allow individual lanes to be conditionally turned on

or off, to allow for “if-then-else” programming

Parallel Lang Support 509

How to Support Parallel Programming

• Library Approach
– Provide an API for spawning and waiting for tasklets
– Examples: Intel’s TBB, Java Fork/Join, Rust

– Rust emanates from Mozilla (Graydon Hoare), see http://rust-lang.org

• Pragma Approach
– No new syntax
– Everything controlled by pragmas on

– Declarations
– Loops
– Blocks

– Examples: OpenMP, OpenACC

• Syntax Approach
– Menu of new constructs: Cilk+, CPlex, Go

– Go emanates from Google (Rob Pike), see http://golang.org

– Building Blocks + Syntactic Sugar: Ada 202X, ParaSail

Parallel Lang Support 510

What About Memory Safety?

• Language-provided safety is to some extent orthogonal
to the approach to parallel programming support
– Harder to provide using Library Approach

– Rust does it by having more complex parameter modes

– Very dependent on amount of “aliasing” in the language

• Key question is whether compiler
1. Trusts programmer requests and follows orders
2. Treats programmer requests as hints, only following safe hints
3. Treats programmer requests as checkable claims, complaining if

not true

• If compiler does 3, it can insert safe parallelism
automatically

• More on this later

Parallel Lang Support 511

Scheduling All of the Parallel Computing

• Fully Symmetric Multiprocessor scheduling out of favor
– Significant overhead associated with switching processors in the

middle of a stream

• Notion of Processor Affinity introduced to limit threads
(bouncing) migration across processors
– Requires additional specification when creating threads

• One-to-One mapping of program threads to kernel
threads falling out of favor
– Kernel thread switching is expensive

• Moving to lightweight threads managed in user space
– But still need to worry about processor affinity

• Consensus solution is on work stealing (see later)
– Small number of kernel threads (server processes)
– Large number of lightweight user-space threads
– Processor affinity managed automatically and adaptively

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 3

Parallel Lang Support 512

Library Option: TBB, Java Fork/Join, Rust

• Compiler is removed from the picture completely
– Except for Rust, where compiler enforces memory safety

• Run-time library controls everything
– Focusing on the scheduling problem
– Needs some run-time notion of “tasklet ID” to know what work to do

• Can be verbose and complex
– Feels almost like going back to assembly language
– No real sense of abstraction from details of solution
– Can use power of C++ templates to approximate syntax approach

Parallel Lang Support 513

Pragma Option: OpenMP, OpenACC

• User provides hints via #pragma
• No building blocks – all smartness in the compiler
• Not conducive to new ways of thinking about the

problem
– Historical example: Ada 95 Passive Tasks vs. Protected Types

Ed Schonberg (NYU, AdaCore) on pragmas

• The two best-known language-independent (kind of) models of distribution
and parallel computation currently in use, OpenMP and OpenACC, both chose
a pragma-like syntax to annotate a program written in the standard syntax of
a sequential language (Fortran, C, C++)

• Those annotations typically carry target-specific information (number of threads,
chunk size, etc.)

• This solution eases the inescapably iterative process of program tuning,
because it only needs the annotations to be modified

Parallel Lang Support 514

Lesson Learned: Task Interaction /1

• Ada 83 relied completely on task + rendezvous
synchronization
– In the manner of CSP

• Users familiar with Mutex, Semaphore, Queue, etc.
• One solution – Pragma Passive_Task

– Required an idiom
– Task body as loop enclosing a single “select with terminate” statement

– Passive_Task optimization turned “active” task into a “slave” to
callers

– Executed only when task entry was called, with reduced overhead
– A.N. Habermann, I.R. Nassi: Efficient Implementation of Ada Tasks,

CMU-CS-80-103, 1980

• Ada 9X Team proposed “Protected Objects”
– Provided entries like tasks
– Also provided protected functions and procedures for simple

Mutex functionality

Parallel Lang Support 515

Lesson Learned: Task Interaction /2

• Major battle of ideology
• Final result was Protected Objects added to language
• Data-Oriented Synchronization Model Widely Embraced
• Immediately allowed focus to shift to interesting

scheduling and implementation issues
– Priority Inheritance
– Priority Ceiling Protocol
– Priority Ceiling Emulation
– “Eggshell” model for servicing of entry queues
– Use of “convenient” task to execute entry body to reduce context

switches
– Notion of “requeue” to do some processing and then requeue for

later steps of processing

• New way of thinking
– Use of Task Rendezvous became quite rare

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 4

Parallel Lang Support 516

Building Blocks + Syntactic Sugar Option

• Ada 202X, ParaSail
• Examples

– Operators, Indexing, Literals & Aggregates, Iterators

• New level of abstraction
– Defining vs. calling a function
– Defining vs. using a private type
– Implementing vs. using syntactic sugar

• Minimize built-in-type “magic”

Parallel Lang Support 517

Parallel Block

– Each alternative is an explicitly specified “parallelism opportunity”
(POp) where the compiler may create a tasklet, which can be
executed by an execution server while still running under the
context of the enclosing task (same task ‘Identity, attributes, etc.)

– Compiler will complain if any data races or blocking are possible

parallel
sequence_of_statements

{and
sequence_of_statements}

end parallel;

Parallel Lang Support 518

Parallel Loop

– Parallel loop equivalent to parallel block by unrolling loop
– Each iteration as a separate alternative of parallel block
– Compiler will complain if iterations are not independent or might

block

for I in parallel 1 .. 1_000 loop
A(I) := B(I) + C(I);

end loop;

for Elem of parallel Arr loop
Elem := Elem * 2;

end loop;

Parallel Lang Support 519

Simple and Obvious, but Not Quite

• Exiting the block/loop, or a return statement?
– All other tasklets are aborted (need not be preemptive) and awaited,

and then, in the case of return with an expression, the expression is
evaluated, and finally the exit/return takes place

– With multiple concurrent exits/returns, one is chosen arbitrarily, and
the others are aborted

• With a very big range or array to be looped over, wouldn’t
that create a huge number of tasklets?
– Compiler may choose to “chunk” the loop into sub-loops, each sub-

loop becomes a tasklet (sub-loop runs sequentially within tasklet)

• Iterations are not completely independent, but could
become so by creating multiple accumulators?
– We provide notion of parallel array of such accumulators (next slides)

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 5

Parallel Lang Support 520

Parallel Arrays of Accumulators: Map/Reduce /1

Parallel Lang Support 521

Parallel Arrays of Accumulators: Map/Reduce /2

Partial : an array with a dynamic bound
whose elements can be worked on
in parallel (the elements of an accumulator
must be initialized to 0)

0 0 0

Arr : an input array «mapped» onto Partial
to square all of its elements and sum them up

4 1 9

2 1 3

෍ 𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝒊
𝒏

𝒊ୀ𝟏

1 n

1 n
Map & (initial) Reduce

(Final) Reduce

Parallel Lang Support 522

Parallel Arrays of Accumulators: Map/Reduce /3

declare
Partial: array (parallel <>) of Float := (others => 0.0);
Sum_Of_Squares : Float := 0.0;

begin
for E of parallel Arr loop -- “Map” and partial reduction

Partial(<>) := Partial(<>) + E ** 2;
end loop;

for I in Partial’Range loop -- Final reduction step
Sum_Of_Squares := Sum_Of_Squares + Partial (I);

end loop;

Put_Line (“Sum of squares of elements of Arr =“ &
Float’Image (Sum_Of_Squares));

end;

Parallel array bounds of <> are set to match number of “chunks” of parallel
loop in which they are used with (<>) indices. May be specified explicitly

Parallel Lang Support 523

Parallel Languages Can Simplify Multi-
/manycore Programming

• As the number of cores increases, traditional
multithreading approaches become unwieldy
– Compiler ignoring availability of extra cores would be like a

compiler ignoring availability of extra registers in a machine and
forcing programmer to use them explicitly

– Forcing programmer to worry about possible race conditions
would be like requiring programmer to handle register allocation,
or to worry about memory segmentation

• Cores should be seen as a resource, like virtual
memory or registers
– Compiler should be in charge of using cores wisely
– Algorithm as expressed in programming language should allow

compiler maximum freedom in using cores
– Number of cores available should not affect difficulty of

programmer’s job or correctness of algorithm

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 6

Parallel Lang Support 524

The ParaSail Approach /1

• Eliminate global variables
• Operation can only access or update variable state via its parameters

• Eliminate parameter aliasing
– Use “hand-off” semantics

• Eliminate explicit threads, lock/unlock, signal/wait
– Concurrent objects synchronized automatically

• Eliminate run-time exception handling
– Compile-time checking and propagation of preconditions

• Eliminate pointers
– Adopt notion of “optional” objects that can grow and shrink

• Eliminate global heap with no explicit allocate/free
of storage and no garbage collector
– Replaced by region-based storage management (local heaps)
– All objects conceptually live in a local stack frame

Parallel Lang Support 525

The ParaSail Approach /2

• Pervasive parallelism
– Parallel by default; it is easier to write in parallel than sequentially
– All ParaSail expressions can be evaluated in parallel

– In expression like “G(X) + H(Y)”, G(X) and H(Y) can be evaluated in parallel
– Applies to recursive calls as well (as in Word_Count example)

– Statement executions can be interleaved if no data dependencies unless
separated by explicit then rather than “;”

– Loop iterations are unordered and possibly concurrent unless explicit
forward or reverse is specified

– Programmer can express explicit parallelism easily using “||” as statement
connector, or concurrent on loop statement

– Compiler will complain if any possible data dependencies

• Full object-oriented programming model
– Full class-and-interface-based object-oriented programming
– All modules are generic, but with fully shared compilation model
– Convenient region-based automatic storage management

• Annotations part of the syntax
– Pre- and post-conditions
– Class invariants and value predicates

Parallel Lang Support 526

Why Pointer Free?

• Consider F(X) + G(Y)
– We want to be able to safely evaluate F(X) and G(Y) in

parallel without looking inside of F or G
– Presume X and/or Y might be incoming var (in-out)

parameters to the enclosing operation
– Clearly, no global variables can help

– Otherwise F and G might be stepping on same object
– “No parameter aliasing” is important, so we know X and Y

do not refer to the same object
– What do we do if X and Y are pointers?

– Without more information, we must presume that from X and
Y you could reach a common object Z

– How do parameter modes (in-out vs. in, var vs. non-var)
relate to objects accessible via pointers?

• Pure value semantics for non-concurrent objects

Parallel Lang Support 527

Safety in a Parallel Program – Data Races
• Data races

– Two simultaneous computations reference same object and at least
one is writing to the object

– Reader may see a partially updated object
– With two Writers running simultaneously, result may be a meaningless

mixture of two computations

• Solutions to data races
– Dynamic run-time locking to prevent simultaneous use
– Use atomic hardware instructions such as test-and-set or compare-

and-swap (CAS)
– Static compile-time checks to prevent simultaneous incompatible

references

• Can support all three
– Dyamic: ParaSail “concurrent” objects; Ada “protected” objects
– Atomic: ParaSail “Atomic” module; Ada pragma “Atomic”
– Static: ParaSail hand-off semantics plus no globals; SPARK checks

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 7

Parallel Lang Support 528

Safety in a Parallel Program – Deadlock

• Deadlock, also called “Deadly Embrace”
– One thread attempts to lock A and then B
– Second thread attempts to lock B and then A

• Solutions amenable to language-based approaches
– Assign full order to all locks; must acquire locks according to this order
– Localize locking into “monitor”-like construct and ensure an operation

of such a monitor does not call an operation of some other monitor
that in turn calls back

– I.e. disallow cyclic call chain between monitors

• More general kind of deadlock – waiting forever
– One thread waits for an event to occur
– Event never occurs, or is dependent on some further action of thread

waiting for the event

• No general solution to this general problem
– Requires full power of formal proof

8.b A bareboard runtime for
time-predictable parallelism

Where we reflect on the lessons learned
from a under-the-hood implementation of a
runtime for a parallel-job programming
model on a 256-core processor

Moral

 When you seek sustainable time-composable parallelism,
you have to mind what you abstract away of the
processor hardware

 Implementation experience suggests that you
should hide much less than used to be with
concurrency
 Unless you have a powerful language on your side

2019/2020 UniPD – T. Vardanega Real-Time Systems 530 of 558

Kalray MPPA-256

 288-core on a single chip
 16 17-core compute clusters
 4 I/O subsystems (2D torus)

 Each cluster includes 17 cores
 16 for general-purpose computing
 1 for communication and core scheduling ops

 2MB RAM per cluster, in 16 128KB-memory banks,
grouped pairwise for 8 core pairs
 Divided in left-side and right-side banks
 Memory address mapping interleaved or blocked

2019/2020 UniPD – T. Vardanega Real-Time Systems 531 of 558

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 8

Our runtime library /1

 Execution model supports tasklets natively
 For efficient rendering of the potential parallelism of

applications
 Applications seen as DAGs

 Edges denote sequential strands of computation
 Nodes denote fork/join operations

 User-level runtime implements dynamic, load-
balanced tasklet scheduling on top of threads

2019/2020 UniPD – T. Vardanega Real-Time Systems 532 of 558

Our runtime library /2

2019/2020 UniPD – T. Vardanega Real-Time Systems 533 of 558

Our runtime library /3

 Suspension is costly because it holds the stack of an
executor thread: it should be avoided
 Invert control-flow dependencies and convert the

program to a continuation-passing style
 The computation always makes progress

performing a tail-recursive function call
 No return to the caller, but to a “continuation” that

represents the remainder of the computation

2019/2020 UniPD – T. Vardanega Real-Time Systems 534 of 558

Shedding linear recursion /1

 Linear recursive functions take dear stack space as
the call has something to do after the last callee
returns
 The call’s stack frame must be kept, and execution must

walk back to it

2019/2020 UniPD – T. Vardanega Real-Time Systems 535 of 558

factorial(n) {
if (n == 0) return 1;
return n * factorial(n - 1);

}

factorial(4)
4*factorial(3)
3*factorial(2)
2*factorial(1)
1*factorial(0) 1

2
6

24

Stack depth = 5

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 9

Shedding linear recursion /2

 A tail-recursive function has nothing to do after the
last callee returns
 Its stack frame can be reclaimed and reused

2019/2020 UniPD – T. Vardanega Real-Time Systems 536 of 558

factorial_tr (n, accumulator) {
if (n == 0) return accumulator;
return factorial_tr (n - 1, n * accumulator);

}

factorial (n) {
return factorial_tr (n, 1);

}

factorial (4)
factorial_tr (4,1)

factorial_tr (3,4)

factorial_tr (2,12)

factorial_tr (1,24)

factorial_tr (0,24)

24

Stack depth = 2

Continuations /1

 The completion of 𝑇ଶ and 𝑇ଷ triggers the execution
of 𝑇ସ (their continuation)

 The continuation tasklet 𝑇ସ is seen as part of 𝑇ଵ
 It inherits 𝑇ଵ’s possible ancestor
 Children tasklets return to their parent effectively by

sending return values to the continuation

2019/2020 UniPD – T. Vardanega Real-Time Systems 537 of 558

Continuations /2

 Tasklets never suspend
 Their execution is simply held until start
 After that they run to completion

 This does away with the nesting of stack frames,
and makes the execution of tasklets completely
asynchronous

 This model needs a tasklet pool that stores the
tasklets that need execution
 That pool neatly caters for load balancing

2019/2020 UniPD – T. Vardanega Real-Time Systems 538 of 558

Execution model /1

 Tasklets run to completion
 No blocking, yielding, suspension, or other interference
 Very nice for time and space locality

 The runtime is stack-less
 All tasklets that execute within the context of the same

executor thread may share its stack
 Runtime complexity is minimum

2019/2020 UniPD – T. Vardanega Real-Time Systems 539 of 558

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 10

Execution model /2

 The schedule loop exits when all tasklets have been
executed
 Checking whether tasklet pool is empty may not be sufficient
 Residual tasklets may be still executing with an empty

tasklet pool and can (still) spawn further tasklets
 We check completion at the root of the DAG
 Its completion corresponds to the termination of the

computation

2019/2020 UniPD – T. Vardanega Real-Time Systems 540 of 558

Load balancing /1

 Work-sharing is work-conserving
 No worker can be idle as there are ready tasklets

 Not very efficient to implement
 Push model feeds one worker at a time
 Pull model needs queue locking, which serializes

scheduling and becomes scalability bottleneck
 It presumes evenly-balanced workloads, which are

not frequent

2019/2020 UniPD – T. Vardanega Real-Time Systems 541 of 558

Work sharing

2019/2020 UniPD – T. Vardanega Real-Time Systems 542 of 558

Executor 1 Executor 2 Executor 3 Executor 4

Push

Pull

Load balancing /2

 Work-seeking uses cooperative distribution of load
between busy and idle workers
 When a worker empties its local queue, it seeks load from

busy workers

 Busy workers regularly check for work-seeking workers
and, when they find one, they synchronously push a
tasklet into their queue
 If all workers are busy, each will spend time trying to offload!

 Idle worker suspends on empty local queue and
resumes as soon as queue is no longer empty

2019/2020 UniPD – T. Vardanega Real-Time Systems 543 of 558

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 11

Work seeking

2019/2020 UniPD – T. Vardanega Real-Time Systems 544 of 558

Executor 1 Executor 2 Executor 3 Executor 4

Seek

Push

Load balancing /3

 Work-stealing uses double-ended queues
 One deque per worker, one worker per physical core
 Pushing new on the tail, popping it from there (serialized LIFO)

 When local deque is empty, worker steals from a victim
 Stealing from the head of victim’s deque

 FIFO style minimizes access conflicts with victim
 Random victim selection propagates work well

 Not cooperative: no offer from busy worker
 Nice bag of features

 Automatic load balancing
 Good locality of reference within executor,
 Good separation between executors

2019/2020 UniPD – T. Vardanega Real-Time Systems 545 of 558

Work stealing

2019/2020 UniPD – T. Vardanega Real-Time Systems 546 of 558

Executor 1 Executor 2 Executor 3 Executor 4

Steal
Pop

Push

Oldest

Newest

Newest

Best depends on type of workload 

2019/2020 UniPD – T. Vardanega Real-Time Systems 547 of 558

Our library is much lighter-weight than OpenMP

Speed-up is not breath-taking and
all do poorly for more than 8 cores …

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 12

Parallel Lang Support 548

Work Stealing: Subtleties

• Picothreads are very lightweight because they don’t
need their own stack while waiting to be served
– Once started, they piggyback on server’s stack

• Server stack remains occupied when current picothread
has to wait …
– For a sub-picothread to finish
– For a resource to be released
– For input to be available

• … but server can start another picothread
• Must prevent servers from waiting on each other

– May need to start additional server processes in some cases

Parallel Lang Support 549

Work Stealing: Subtleties /1

Server 1
Stack: A

Server 2 Server 3

Oldest picothreads
liable to be stolenB

C

• A spawns B and C
• A awaits B and C;

• Server 2 steals B;
• Server 1 serves C

Parallel Lang Support 550

Work Stealing: Subtleties /2

Server 1
Stack:

A, C (lock)

Server 2
Stack:

B

Server 3

Oldest picothreads
liable to be stolenED

• C acquires lock and
spawns D (on server 1);

• C will await D before
releasing lock;

• B spawns E (on server 2);
• B awaits E

• Server 3 steals D;
• Server 1 steals E;

• A spawns B and C
• A awaits B and C;

• Server 2 steals B;
• Server 1 serves C

Parallel Lang Support 551

Work Stealing: Subtleties /3

Server 1
Stack:

A, C(lock), E

Server 2
Stack:

B

Server 3
Stack:

D
Oldest picothreads
liable to be stolen

• D finishes (on server 3);
• E (on server 1) tries to

acquire lock held by C;
• E cannot proceed hence

B continues to wait
• Hence also C (behind E

in server 1’s stack)
cannot release lock

• A will never complete!

• C acquires lock and
spawns D (on server 1);

• C will await D before
releasing lock;

• B spawns E (on server 2);
• B awaits E

• Server 3 steals D;
• Server 1 steals E;

• A spawns B and C
• A awaits B and C;

• Server 2 steals B;
• Server 1 serves C

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 13

Parallel Lang Support 552

Work Stealing: Subtleties /4

Solution: Server whose stack has picothread holding a lock, should only serve
spawns of that picothread as all other picothreads may contend for that lock and
therefore freeze the stack.

Server 1, where C holds lock, should not steal E, spawn of B, not spawn of C!

Server 1
Stack:

A, C(lock), E

Server 2
Stack:

B

Server 3
Stack:

D
Oldest picothreads
liable to be stolen

• D finishes (on server 3);
• E (on server 1) tries to

acquire lock held by C;
• E cannot proceed hence

B continues to wait
• Hence also C (behind E

in server 1’s stack)
cannot release lock

• A will never complete!

• C acquires lock and
spawns D (on server 1);

• C will await D before
releasing lock;

• B spawns E (on server 2);
• B awaits E

• Server 3 steals D;
• Server 1 steals E;

• A spawns B and C
• A awaits B and C;

• Server 2 steals B;
• Server 1 serves C

Parallel Lang Support 553

How Do Iterators Fit into This Picture?

• Computationally-intensive programs typically Build,
Analyze, Search, Summarize, and/or Transform large
data structures or large data spaces

• Iterators encapsulate the process of walking data
structures or data spaces

• The biggest speed-up from parallelism is provided by
spreading the processing of a large data structure or
data space across multiple processing units

• High-level iterators that are amenable to a safe, parallel
interpretation can be critical to capitalizing on
distributed and/or multicore HW

Parallel Lang Support 554

While Loops and Tail Recursion Issues

+ While loop – pros
– Universal sequential loop construct: semantics defined simply

- While loop – cons
– Necessarily updates a global to advance through iteration
– Generally doesn’t update global until after finishing processing

current iteration

+ Tail recursion – pros
– No need for global variables: each loop iteration carries its own

copy of loop variable(s)
– Can generalize to walking more complex data structure such as a

tree by recurring on multiple subtrees

- Tail recursion – cons
– Next iteration value not specified until making (tail) recursive call
– Each loop necessarily becomes a separate function

Parallel Lang Support 555

Combine “pros” of Tail Recursion with (Parallel) “for” Loop

• Parallelism requires each iteration to carry its own copy
of loop variable(s), like tail recursion
– For-loop variable treated as local constant of each loop iteration

• For-loop syntax allows next iteration value to be
specified before beginning current iteration
– Rather than at tail-recursion point or end of loop body
– Multiple iterations can be initiated in parallel

• Explicit “continue” statement may be used to handle
more complex iteration requirements
– Condition can determine loop-variable values for next iteration(s)

• Explicit “parallel” statement connector allows
“continue” statement to be executed in parallel with
current iteration
– Rather than after the current iteration is complete

• Explicit “exit” or “return” allows easy premature exit

2019/2020 UniPD - T. Vardanega 02/06/2020

Real-Time Systems 14

Summary

 When jobs are no longer sequential, a new world opens,
whose execution (and scheduling) model differs very
much from what we saw before
 Sequential jobs in concurrent tasks help organize the

application according to collaboration patterns
 Parallel jobs are not collaborative: they help divide the

workload in independent chunks
 Parallel-job programming used to be a non-real-time

brute-force high-performance computing business only
 The convergence of HPC and embedded real-time

causes predictable parallel programming to become a
new important dimension of research

2019/2020 UniPD – T. Vardanega Real-Time Systems 556 of 558

Selected readings

 R.D. Blumofe, C.E. Leisersen (1999)
Scheduling Multithreaded Computations by Work Stealing
DOI: 10.1145/324133.324234

 U.A. Acar, G.E. Blelloch, R.D. Blumofe (2000)
The Data Locality of Work Stealing
DOI: 10.1145/341800.341801

2019/2020 UniPD – T. Vardanega Real-Time Systems 557 of 558

