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3.a Fixed-Priority Scheduling

Credits to A. Burns and A. Wellings
2 RTS

Where we look at the schedulability tests
for FPS, their strength and weaknesses, we
accommodate aperiodic tasks, and we
review the priority assignment algorithms

The simplest workload model

The application consists of 1 tasks, for constant n

All tasks are periodic with known periods

0 Whence the name “periodic workload nodel’

All tasks are assumed independent

o No sharing of logical resources; no precedence constraints
All tasks have implicit deadline (D = T)

o Each job must complete before the release of its successor
All tasks have a single, fixed WCET

0 Which can be trusted as a safe and tight upper-bound

All runtime overheads are collated in the tasks’ WCET
o Context-switch times, handing of clock interrupts, etc.
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Notation in this section

Worst-case blocking time for the task (if applicable)
Worst-case computation time (WCET) of the task (= e)
Relative deadline of the task

The interference time of the task

Release jitter of the task

Number of tasks in the system

Priority assigned to the task (if applicable)

Worst-case response time of the task

Minimum time between task releases, or task period (= p)
The utilization of each task (= ¢/7)

The name of a task
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Real-Time Systems

Fixed-priority scheduling (FPS)

Still the most widely used approach in industry

Each task has a fixed (static) priority determined off-line

The “priority” of a real-time task is solely derived from its /" 5
temporal requirements ®

0 The task’s relative importance (aka criticality) to correct system
operation ot system integrity does 7oz influence its scheduling priority

0 Later in this course we shall discuss mixed-criticality systems, which
employ scheduling solutions that also contemplate ¢riticality attributes

The ready jobs are dispatched to execution in the order

determined by the static priority of their corresponding task

0 FPS at run time if fully determined by the priority assignment algorithm!
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Preemption and non-preemption /1

With priority-based scheduling, a high-priority task may
released a job during the execution of a lower-priority one
o The HP job will be placed at the top of the (notional) ready queue
In a preemptive scheme, that event will cause an immediate
switch of execution to the HP job

With non-preemption, the LP job will be allowed to complete
before the job at the top of the ready queue may execute
Preemptive schemes (such as FPS and EDF) enable higher-
priority tasks to be more reactive, hence they are preferred

o Non-preemptive scheme protect “delicate” fractions of execution
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Preemption and non-preemption /2

Alternative strategies allow a LP job to continue executing
for a bounded time before being preempted

0 Eatlier than its completion

Such schemes use either deferred preemption (“give me a little
bit more”) or cogperative dispatching (“1 will tell you when”)

Value-based scheduling (VBS) is another way to control

preemption

0 When the system becomes overloaded, some adaptive scheme of
scheduling helps mitigate the risk or the consequences of overrun

0 A utility value is attached to each task off-line, and an on-line VBS
algorithm to decide which job to run next
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Rate-monotonic scheduling (RMS)

Each task is assigned a priority based on its period

a The shorter the period, the higher the priority

a Such priorities have to be unique: no ties allowed

For any two tasks 7;, 7; : T; <T; - P; > P;

0 Rate monotonic assignment is optimal under preemptive
priority-based scheduling and implicit deadlines

Oddity of nomenclature

0 Priority 1 as numerical value is the lowest (least) ptiority

o Task indices are sorted highest-priority to lowest-priority
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Utilization-based test

A simple sufficient but not necessary test exists for RMS for
task sets with D =T

a It upper-bounds the schedulable utilization of FPS
n

Un) = Z% < n(Z% — 1)
i=1 X
where lim n(2n—1) = In2~0.69
'This shows that the schedulable utilization of FPS
(RMS) is /ess than that of EDF

Utilization-based tests are simple to compute, but
highly inaccurate: they often don’t know ...
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| Example: task set A

Task | Period Computation Time Priority Utilization
T C P U
a 50 12 1 (low) 0.24
b 40 10 2 0.25
c 30 10 3 (high) 0.33

= The combined utilization of this task set is Uy = 0.82
u Above the threshold for three tasks: Uy > U(3) = 0.78

0 Task set A fails the utilization-based test

= Hence, we have no a-priori answer on its actual feasibility
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‘ Timeline for task set A

Task

a - h T Task Release Time

© Task Completion Time

b Deadline Met
:- ® Task Completion Time

Deadline Missed

0 10 20 -

Time & Executing

30 40 50 60

2019/2020 UniPD - T. Vardanega Real-Time Systems 117 of 536

‘ Example: task set B

Task | Period Computation Time Priority Utilization
T C P U
a 80 32 1 (low) 0.40
b 40 5 2 0.125
c 16 4 3 (high) 0.25

m Its combined utilization is Ug = 0.775 < U(3) = 0.78

0 It passes the utilization-based test

= Hence, this task set is guaranteed to meet all its deadlines
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‘ Example: task set C

Task | Period Computation Time Priority Utilization
T C P U
a 80 40 1 (low) 0.50
b 40 10 2 0.25
c 20 5 3 (high) 0.25

m Its combined utilization is Us = 1.0 > U(3) = 0.78
0 It fails the utilization-based test
0 But, interestingly, the task periods are harmonic

= The timeline shows that the task set meets all its deadlines
o FPS (RMS) performs much better with harmonic-rate tasks
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‘ Timeline for task set C

Task

a
b j | \:‘
i | i : : i I Time ——>
0 10 20 30 40 50 60 70 80
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‘ Response time analysis /1

u RTA is a feasibility test : it is exact, hence necessary
and sufficient
0 If the task set passes the test, then all its tasks will meet
all their deadlines
o If it fails the test, then some tasks will miss their deadline
at run time
= Unless the WCET values turn out to be pessimistic
u FPS determines exactly which tasks will miss their
deadline in that case
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‘ Response time analysis /2

= The worst-case response time R; of task T; is first
calculated and then checked with its deadline D;
o T; is feasible if and only if R; < D;

= R; = C; + I}, where I; denotes the znterference that T;
suffers from higher-priority tasks

= With feasibility analysis we reason about tasks, but
scheduling applies to their jobs!
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Calculating R

= Within the span of R;, each HP task 7; will execute at
Ri| ..
most || times
[Tj]

0 The ceiling function [f] gives the smallest integer greater than
the fractional number f on which it acts
= E.g, the ceiling of 1/3is 1, of 6/5 is 2, as it is of 6/3

o Using the ceiling signifies that a job of T; will be preempted
for a full execution of a job of T; released exactly at T;’s end

= The total interference suffered by 7; from 7; in R;

where P; < P;, is upper-bounded by % Cj
j
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Response time equation

R=C+ X R
jehp(i) TJ.

Where hp(i) is the set of tasks with priority higher than 7;’s
Solved by forming a recurrence relation
n
W
n+l
w*"=C+ X |- C,
. . ]
jehp(i)
The set of values WP, W}, W2, ..., W] is monotonically non-decreasing
o w must not be greater than C; besides being non-negative

When w* = w**, the solution to the equation has been found

Response time algorithm

for 1 in 1._.N loop -- for each task in turn
n:=0
w =C
i T Vi If the recurrence does not converge
loop before T; we can still set a termination

calculate new W,"71 condition that attempts to determine
if w™=w" then how long past T}, job i completes
w ‘
exit value found
end if
if w'=w' then 1
exit value not found |-
end if
n:=n+1
end loop
end loop
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Example: task set D
Task Period Computation Time Priority Utilization
T C P U
a 7 3 3 (high) 0.4285...
b 12 3 2 0.25
c 20 5 1 (low) 0.25
0 _
w, =3
3
wi=3+|23=6
R =3 !
6
2
wy =3+|—1[3=6
7
R, = 6
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Example (cont’d)
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Revisiting task set C

Task | Period Computation Time Priority Response Time
T C P R
a 80 40 1 (low) 80
b 40 10 2 15
c 20 5 3 (high) 5

Its combined utilization is Us = 1.0 > U(3) = 0.78

The utilization-based test fails, but RTA shows that the task set
will meet all its deadlines
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Sporadic tasks and other extensions

Sporadic tasks have a minimum inter-arrival time

o This should be preserved at run time if schedulability is
to be ensured, but how can it ?

The RTA for FPS works perfectly well for D < T as
long as the stopping criterion becomes Win+1 > D;

Interestingly, RT'A also works perfectly well with any
priority ordering, as long as the task indices reflect it
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Coexistence of hard and soft tasks /1

In many situations, the WCET given for sporadic tasks
are considerably higher than the average case

0 The WCET values are far off the center of the Gaussian

In exceptional circumstances, interrupts may arrive in
bursts, and abnormal sensor readings may require
significant extra computation to restore a baseline truth
Analyzing feasibility with WCET may lead to very low
processor utilization at run time, s#btracted to soft tasks

0 Hence to undesirable waste of precious (and scarce) resource
and a reduction of functional throughout

We need some common-sense rules to contain such
pessimism
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Coexistence of hard and soft tasks /2

Rule 1: All tasks (hard and soft; periodic and sporadic)
should be schedulable using average execution times and average
(sporadic) arrival rates

o Hence, there may be situations where it may #of be possible to
meet all deadlines

0 This condition is known as a #ransient overload

It is transient so long as not all tasks transition forever to worst-case
behavior

Rule 2 : All hard real-time tasks should be schedulable using
WCET and worst-case artival rates of all tasks (including soft)

0 No hard real-time task will therefore miss its deadline

a If Rule 2 causes unacceptably low utilization for soft tasks
then WCET values or arrival rates should be “massaged”
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| Handing aperiodic tasks /1

u They do 7ot have minimum inter-arrival times, and consequently
cannot claim deadlines
0 We may be interested in the system being responsive to them
0 In cyclic scheduling we would use slack stealing for those tasks ...

= We might run aperiodic tasks at a priotity below the priorities
assigned to hard tasks

0 That way, under preemption, aperiodic tasks won’t be able to steal
resources from hard tasks

= But this solution would penalize soft tasks, which might miss
their deadlines too often

= We need another kind of solution ...
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| Handing aperiodic tasks /2

= ... A solution that, besides preserving hard tasks and giving
fair opportunities to soft tasks, should minimize
0 The response time of the job a #he head of the aperiodic queue
0 Or the average response time of as many aperiodic jobs as possible

for a given queuing discipline

= Possible choices
o Execute the aperiodic jobs in the background
o Execute the aperiodic jobs by interrupting the periodic jobs Q
o Use slack stealing

0 Use dedicated servers |24
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| Handing aperiodic tasks /3

u Slack stealing

o Difficult to implement for preemptive systems
= The slack o(t) is a #ot a constant for them
= Itis a function of the time t at which it is computed

0 The slack stealer is ready when the aperiodic queue is not
empty; it is suspended otherwise

0 When ready and a(t) > 0, the slack stealer is assigned the
highest priority; the lowest when g(t) = 0

0 Static computation of g (t) for some t is useful but only when
the release jitter in the system is very low

[ = Under EDF, a(t = 0) = min;{0;(0)} where 0;(0) = D; — ]

Yke=1,,,i €xfor all jobs released in the hyperperiod starting at t = 0
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‘ Computing the slack under EDF

T,=(4,2), T,= (6, 2.75) - EDF scheduling: (%, pu i, )

T Jus iz e %) Jis e
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H=12 min;; (ai,,-(O))

001(0) =D, —C,=4-2=2

021(0) =Dy —C; —C, =6—-2-275=1.25

012(0) =Dy, =2 C; —C; =8—-2x2—-275=1.25
022(0) =Dy, —2XC; —2XC; =12—2x2—-2x275=2.5

015(0) =Dy, —3X € —2XC,=12-3%x2-2x275=0.5 —
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Computing the slack under FPS /1

The amount of slack that an FPS system has in a
time interval may depend on when the slack is used

To minimise the response time of an aperiodic job
Ja, the decision of when to schedule it, must
consider the execution time of J,

o No slack stealing algorithm under FPS can minimise the

response time of every aperiodic job, even with prior
knowledge of their arrival and execution times

0 Better not be greedy in using the available slack
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Computing the slack under FPS /2

The slack of periodic jobs of T; should be
computed based on their ¢ffective deadline Df

o For a job of 7;, it should be computed at the beginning
of the level-i — 1 busy petiod that precedes D; so that
Df < D;

The initial slack a; ;(0) of every periodic job J;;
(the j™ job of task J;) in H is determined as

i [Df
max | 0, D —Z T Cy
k=1| Tk
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Slack stealing defeats optimality

Greed is no good for aperiodic tasks

0 To minimize the response time of an aperiodic job, it
may be necessary to schedule it later, even if slack is
currently available

o For any periodic task set, under FPS, and any aperiodic
queuing policy, 70 valid algorithm exists that minimizes
the response time of a// aperiodic jobs

o Similarly, no valid algorithm exists that minimizes the
average response time of the aperiodic jobs

T8 Tia, J. W.S Lin, and M. Shankar, “Algorithms and Optimality of Scheduling
wlic Requests in Fixed-Priority Preemptive Systems.” Jonrnal of Real-Time
Systems, 10(1), pp. 23-43, 1996.
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Handing aperiodic tasks /4

Periodic server (PS), a general model

0 The PS is a notional (Tyg, Cps) periodic task scheduled at
the highest priority solely to execute aperiodic jobs

The PS has a budget Cy¢ time units and a replenishment
period of length T

When the PS is scheduled and executes aperiodic jobs, it
consumes its budget at the rate of 1 unit per unit of time

Budget is exhausted when Cp,s = 0 and replenished periodically

a The PS is backlogged when the aperiodic job queue is
nonempty and it is idle otherwise
Eligible for execution only when ready, backlogged and Cps > 0
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| Handing aperiodic tasks /5

u Polling server, a simple (naive) kind of PS
o Itis given a fixed budget that it uses to serve aperiodic
task requests that is replenished at every period
0 The budget is immediately consumed if the server is
scheduled while idle
a It is not bandwidth preserving, hence it is inefficient

= An aperiodic job that arrives just after the server has been
scheduled while idle, must wait until the next replenishment time
0 Bandwidth-preserving servers need additional rules for
consumption and replenishment of their budget
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| Handing aperiodic tasks /6

u Deferrable Server (DS), a bandwidth-preserving PS

a DS retains its budget if no aperiodic tasks require execution
= If an aperiodic job requires execution during the DS period, it can be
served immediately: when idle, the DS stays ready
0 The budget is replenished at the start of the new period (!)

= If an aperiodic job arrives € time units before the end of Ty, the
request begins to be served and blocks periodic tasks

= When the budget is replenished, new aperiodic jobs may then be
served for the full budget
o If that happens, in w(t), DS contributes a solid interference

of Cygs + [f;ng

] Cgs, longer than 1 X Cys pet busy petiod
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| Handing aperiodic tasks /7

u Sporadic Server (SS), fixes the bug in DS

0 The budget is replenished only when exhausted and at a
minimum guaranteed distance from its earlier execution

= Hence no longer at a fixed rate
o This places a tighter bound on its interference and makes

schedulability analysis simpler and less pessimistic

u This is the default server policy in POSIX
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SS rules under FPS

s Consumption rules

0 Attime t > t, (the latest replenishment time), a backlogged SS consumes
budget only if executing, hence when no higher-priority task is ready

0 The replenishment is limited to the quantity of actual consumption
s Replenishment rules
0 t, records the time that SS” budget was last replenished
0t records the time when SS first begins to execute since &,
u  te >ty is the latest time at which a lower-priority task than SS executes
0 The next replenishment time is set to t, + T
= Exception

0 If only higher-priority tasks had been busy since t,., then t, + Tgg > t, +
Tss and SS is late: hence, budget fully replenished as soon as exhausted
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SS rules unveiled

Let tg be the time at which SS has full budget azd becomes
backlogged, and tf = t, the time at which SS becomes idle

In the [ta, tf] interval, when SS is continuously active, three
cases are possible

1. SS has consumed no capacity: ty,, . = tr + Tss = no replenishment, and
no interference in that interval

)

SS has consumed all capacity: tr.,,.. = tq + Tss = full replenishment, and
bounded interference in that interval

3. SS has consumed fractional capacity: t,, =ty + Tgs > fractional
next
replenishment, and interference lower than allowed in that interval
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Handing aperiodic tasks /8

SS is more complex than PS or DS
o Its rules require keeping tab of lots of data
o Several cases to consider when making scheduling decisions

0 This complexity is acceptable because the schedulability of a SS is
easy to demonstrate

Under FPS, SS equates to a petiodic task T with (pg, €s)
EDF and LLF use a dynamic variant of SS as well as other
bandwidth-preserving server algorithms known as
0 Constant ntilization server
a  Total bandwidth server

0 Weighted fair quening server
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Task sets with D < T

We know that, for D = T, Rate Monotonic ptiority

assignment (aka RMS) is optimal

For D < T, Deadline Monotonic priority ordering

(DMPO), where D; < Dj = P; > Pj, is optimal

0 Any task set Q that is schedulable by priority-dtiven
scheme W, it is also schedulable by DMPO

The proof of optimality of DMPO involves
transforming the priorities of Q as assigned by W
until the ordering becomes as assigned by DMPO

0 Each step of the transformation preserves schedulability
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DMPO is optimal /1

Let 73, Tj be two tasks with adjacent priorities in @ such that
under W we have P; > P; A D; > D;

Define scheme W' to be identical to W except that tasks T;, T;
are swapped

Now consider the schedulability of Q under W'

All tasks {7y} with priority Py > P; will be unaffected

All tasks {75} with priority Py < P; will be unaffected as they will
experience the same interference from 7; and 7;

Task 7; which was schedulable under W, now has a higher
priority, suffers less interference, and hence must be schedulable

under W'
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DMPO is optimal /2

All that is left to show is that task T;, which has had its priority
lowered, is still schedulable

Under W we have R; < D;,D; < Djand R; < T

Task 7; only interferes once during the execution of task
T;hence R, = R; <D; <Dy

o Under W' task T; completes at the time task 7; did under W

0 Hence task 7; is still schedulable after the switch

Priotity scheme W' can now be transformed to W'’ by choosing

two more tasks that are in the wrong order for DMPO and
switching them
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Generalized priority assignment
(aka simulated annealing)

Theorem: If task p is assigned the lowest priority and it is feasible, then, if a
feasible priority ordering exists for the complete task set, one such ordering exists
where task p is assigned the lowest priority

procedure Assign_Pri (Set : in out Task_Set;
N : Natural; -- number of tasks
OK : out Boolean) is
begin
for K in 1..N loop
for Next in K..N loop
Swap(Set, K, Next);

Process_Test(Set, K, OK); -- is task K feasible now?
exit when OKj;
end loop;
exit when not OK; -- failed to find a schedulable task
end loop;

end Assign_Pri;
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Summary

A simple (periodic) workload model

Delving into fixed-priority scheduling

A (rapid) survey of schedulability tests for FPS
Some extensions to the workload model

Priority assignment techniques
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