

Preemption and non-preemption /1

- With priority-based scheduling, a high-priority task may released a job during the execution of a lower-priority one
 The HP job will be placed at the top of the (notional) ready queue
- In a *preemptive* scheme, that event will cause an immediate switch of execution to the HP job
- With *non-preemption*, the LP job will be allowed to complete before the job at the top of the ready queue may execute
- Preemptive schemes (such as FPS and EDF) enable higherpriority tasks to be more reactive, hence they are preferred
 Non-preemptive scheme protect "delicate" fractions of execution

Real-Time Systems

```
2019/2020 UniPD - T. Vardanega
```

112 of 536

Task	Period	Computation Time	Priority	Utilization
	Т	С	Р	U
а	50	12	1 (low)	0.24
b	40	10	2	0.25
с	30	10	3 (high)	0.33
Abo	ove the th ask set A f	ed utilization of this t reshold for three tash ails the utilization-based ave no a-priori answe	ks: $U_A > U(3)$	3) = 0.78

Task	Period	Computation Time	Priority	Utilization
	Т	С	Р	U
a	80	32	1 (low)	0.40
b	40	5	2	0.125
с	16	4	3 (high)	0.25
🗆 It	t passes the	utilization is $U_B =$ utilization-based test ask set is guaranteed		

Task	Period Computation Time Priorit	Priority	y Utilization	
	Т	С	Р	U
а	80	40	1 (low)	0.50
b	40	10	2	0.25
с	20	5	3 (high)	0.25
		l utilization is $U_C = 1$ tilization-based test	1.0 > U(3) =e harmonic	= 0.78

Response time analysis /2

- The worst-case response time R_i of task τ_i is first calculated and then checked with its deadline D_i
 τ_i is feasible if and only if R_i ≤ D_i
- $R_i = C_i + I_i$, where I_i denotes the *interference* that τ_i suffers from higher-priority tasks
- With feasibility analysis we reason about tasks, but scheduling applies to their jobs!

Real-Time Systems

122 of 536

Response time analysis /1 RTA is a *feasibility test*: it is exact, hence necessary and sufficient If the task set passes the test, then all its tasks will meet all their deadlines If it fails the test, then some tasks will miss their deadline at run time Unless the WCET values turn out to be pessimistic FPS determines exactly which tasks will miss their deadline in that case

2019/2020 UniPD - T. Vardanega

Task	Period	Computation Time	Priority	Utilization
	Т	С	Р	U
а	7	3	3 (high)	0.4285
b	12	3	2	0.25
с	20	5	1 (low)	0.25
R	_a = 3	~	$+\left\lceil\frac{3}{7}\right\rceil3 = +\left\lceil\frac{6}{7}\right\rceil3 =$	

Task	Period	Computation Time	Priority	Response Time
	Т	С	Р	R
а	80	40	1 (low)	80
b	40	10	2	15
с	20	5	3 (high)	5
The	utilization	utilization is $U_C = 1.0$ n-based test fails, but I s deadlines		

137 of 536

138 of 536

Slack stealing defeats optimality

- □ To minimize the response time of an aperiodic job, it may be necessary to schedule it later, even if slack is currently available
- □ For any periodic task set, under FPS, and any aperiodic queuing policy, no valid algorithm exists that minimizes the response time of all aperiodic jobs
- □ Similarly, no valid algorithm exists that minimizes the average response time of the aperiodic jobs T.-S. Tia, J. W.-S. Liu, and M. Shankar, "Algorithms and Optimality of Scheduling

Aperiodic Requests in Fixed-Priority Preemptive Systems," Journal of Real-Time Systems, 10(1), pp. 23-43, 1996. 2019/2020 UniPD - T. Vardancea Real-Time Systems

