
2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 1

3.a Fixed-Priority Scheduling

Where we look at the schedulability tests
for FPS, their strength and weaknesses, we
accommodate aperiodic tasks, and we
review the priority assignment algorithms

The simplest workload model

 The application consists of 𝑛 tasks, for constant 𝑛
 All tasks are periodic with known periods

 Whence the name “periodic workload model”
 All tasks are assumed independent

 No sharing of logical resources; no precedence constraints
 All tasks have implicit deadline 𝐷 ൌ 𝑇

 Each job must complete before the release of its successor
 All tasks have a single, fixed WCET

 Which can be trusted as a safe and tight upper-bound
 All runtime overheads are collated in the tasks’ WCET

 Context-switch times, handing of clock interrupts, etc.

2019/2020 UniPD – T. Vardanega Real-Time Systems 109 of 536

Notation in this section

𝐵: Worst-case blocking time for the task (if applicable)
𝐶: Worst-case computation time (WCET) of the task (ൌ 𝑒)
𝐷: Relative deadline of the task
𝐼: The interference time of the task
𝐽: Release jitter of the task
𝑁: Number of tasks in the system
𝑃: Priority assigned to the task (if applicable)
𝑅: Worst-case response time of the task
𝑇: Minimum time between task releases, or task period (ൌ 𝑝)
𝑈: The utilization of each task (ൌ

்⁄)
a-Z: The name of a task

2019/2020 UniPD – T. Vardanega Real-Time Systems 110 of 536

Fixed-priority scheduling (FPS)

 Still the most widely used approach in industry
 Each task has a fixed (static) priority determined off-line
 The “priority” of a real-time task is solely derived from its

temporal requirements
 The task’s relative importance (aka criticality) to correct system

operation or system integrity does not influence its scheduling priority
 Later in this course we shall discuss mixed-criticality systems, which

employ scheduling solutions that also contemplate criticality attributes

 The ready jobs are dispatched to execution in the order
determined by the static priority of their corresponding task
 FPS at run time if fully determined by the priority assignment algorithm!

2019/2020 UniPD – T. Vardanega Real-Time Systems 111 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 2

Preemption and non-preemption /1

 With priority-based scheduling, a high-priority task may
released a job during the execution of a lower-priority one
 The HP job will be placed at the top of the (notional) ready queue

 In a preemptive scheme, that event will cause an immediate
switch of execution to the HP job

 With non-preemption, the LP job will be allowed to complete
before the job at the top of the ready queue may execute

 Preemptive schemes (such as FPS and EDF) enable higher-
priority tasks to be more reactive, hence they are preferred
 Non-preemptive scheme protect “delicate” fractions of execution

2019/2020 UniPD – T. Vardanega Real-Time Systems 112 of 536

Preemption and non-preemption /2

 Alternative strategies allow a LP job to continue executing
for a bounded time before being preempted
 Earlier than its completion

 Such schemes use either deferred preemption (“give me a little
bit more”) or cooperative dispatching (“I will tell you when”)

 Value-based scheduling (VBS) is another way to control
preemption
 When the system becomes overloaded, some adaptive scheme of

scheduling helps mitigate the risk or the consequences of overrun
 A utility value is attached to each task off-line, and an on-line VBS

algorithm to decide which job to run next

2019/2020 UniPD – T. Vardanega Real-Time Systems 113 of 536

Rate-monotonic scheduling (RMS)

 Each task is assigned a priority based on its period
 The shorter the period, the higher the priority
 Such priorities have to be unique: no ties allowed

 For any two tasks 𝜏 , 𝜏 : 𝑇 ൏ 𝑇 → 𝑃 𝑃
 Rate monotonic assignment is optimal under preemptive

priority-based scheduling and implicit deadlines

 Oddity of nomenclature
 Priority 1 as numerical value is the lowest (least) priority
 Task indices are sorted highest-priority to lowest-priority

2019/2020 UniPD – T. Vardanega Real-Time Systems 114 of 536

Utilization-based test

 A simple sufficient but not necessary test exists for RMS for
task sets with 𝐷 ൌ 𝑇
 It upper-bounds the schedulable utilization of FPS

𝑈 𝑛 ൌ
𝐶
𝑇
 𝑛 2

ଵ
 െ 1

ୀଵ

where lim
→ஶ

𝑛 2
భ
 െ 1 ൌ ln 2 ~0.69

 This shows that the schedulable utilization of FPS
(RMS) is less than that of EDF

 Utilization-based tests are simple to compute, but
highly inaccurate: they often don’t know …

2019/2020 UniPD – T. Vardanega Real-Time Systems 115 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 3

Example: task set A

 The combined utilization of this task set is 𝑈 ൌ 0.82
 Above the threshold for three tasks: 𝑈 𝑈 3 ൌ 0.78

 Task set A fails the utilization-based test

 Hence, we have no a-priori answer on its actual feasibility

Task Period Computation Time Priority Utilization

T C P U

a 50 12 1 (low) 0.24

b 40 10 2 0.25

c 30 10 3 (high) 0.33

2019/2020 UniPD – T. Vardanega Real-Time Systems 116 of 536

Timeline for task set A

0 10 20 30 40 50 60

Task

a

b

c

Task Release Time

Task Completion Time
Deadline Met
Task Completion Time
Deadline Missed

Executing

Preempted

Time

2019/2020 UniPD – T. Vardanega Real-Time Systems 117 of 536

Example: task set B

 Its combined utilization is 𝑈 ൌ 0.775 ൏ 𝑈 3 ൌ 0.78
 It passes the utilization-based test

 Hence, this task set is guaranteed to meet all its deadlines

Task Period Computation Time Priority Utilization

T C P U

a 80 32 1 (low) 0.40

b 40 5 2 0.125

c 16 4 3 (high) 0.25

2019/2020 UniPD – T. Vardanega Real-Time Systems 118 of 536

Example: task set C

 Its combined utilization is 𝑈 ൌ 1.0 𝑈 3 ൌ 0.78
 It fails the utilization-based test
 But, interestingly, the task periods are harmonic

 The timeline shows that the task set meets all its deadlines
 FPS (RMS) performs much better with harmonic-rate tasks

Task Period Computation Time Priority Utilization

T C P U

a 80 40 1 (low) 0.50

b 40 10 2 0.25

c 20 5 3 (high) 0.25

2019/2020 UniPD – T. Vardanega Real-Time Systems 119 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 4

Timeline for task set C

2019/2020 UniPD – T. Vardanega Real-Time Systems 120 of 536

0 10 20 30 40 50 60

Task

a

b

c

70 80
Time

Response time analysis /1

 RTA is a feasibility test : it is exact, hence necessary
and sufficient
 If the task set passes the test, then all its tasks will meet

all their deadlines
 If it fails the test, then some tasks will miss their deadline

at run time
 Unless the WCET values turn out to be pessimistic

 FPS determines exactly which tasks will miss their
deadline in that case

2019/2020 UniPD – T. Vardanega Real-Time Systems 121 of 536

Response time analysis /2

 The worst-case response time 𝑅 of task 𝜏 is first
calculated and then checked with its deadline 𝐷
 𝜏 is feasible if and only if 𝑅 𝐷

 𝑅 ൌ 𝐶 𝐼, where 𝐼 denotes the interference that 𝜏
suffers from higher-priority tasks

 With feasibility analysis we reason about tasks, but
scheduling applies to their jobs!

2019/2020 UniPD – T. Vardanega Real-Time Systems 122 of 536

Calculating R

 Within the span of 𝑅 , each HP task 𝜏 will execute at
most ோ

்ೕ
times

 The ceiling function 𝑓 gives the smallest integer greater than
the fractional number 𝑓 on which it acts
 E.g., the ceiling of 1/3 is 1, of 6/5 is 2, as it is of 6/3

 Using the ceiling signifies that a job of 𝜏 will be preempted
for a full execution of a job of 𝜏 released exactly at 𝜏 ’s end

 The total interference suffered by 𝜏 from 𝜏 in 𝑅
where 𝑃 ൏ 𝑃 , is upper-bounded by ோ

்ೕ
𝐶

2019/2020 UniPD – T. Vardanega Real-Time Systems 123 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 5

Response time equation

 Where ℎ𝑝ሺ𝑖ሻ is the set of tasks with priority higher than 𝜏’s
 Solved by forming a recurrence relation

 The set of values 𝑤,𝑤ଵ,𝑤ଶ, … ,𝑤 is monotonically non-decreasing
 𝑤 must not be greater than 𝐶 besides being non-negative

 When 𝑤 ൌ 𝑤ାଵ, the solution to the equation has been found

j
ihpj

j

i
ii C

T
RCR

)(

j
ihpj

j

n
i

i
n
i C

T
wCw

)(

1

2019/2020 UniPD – T. Vardanega Real-Time Systems 124 of 536

Response time algorithm
for i in 1..N loop -- for each task in turn

n := 0

loop
calculate new
if then

exit value found
end if
if then
exit value not found

end if
n := n + 1

end loop
end loop

i
n
i Cw :

1n
iw

n
i

n
i ww 1

1n
iw

n
i

n
i ww 1

If the recurrence does not converge
before 𝑇 we can still set a termination
condition that attempts to determine
how long past 𝑇 , job 𝑖 completes

2019/2020 UniPD – T. Vardanega Real-Time Systems 125 of 536

Example: task set D
Task Period Computation Time Priority Utilization

T C P U

a 7 3 3 (high) 0.4285…
b 12 3 2 0.25
c 20 5 1 (low) 0.25

3aR

6

63
7
63

63
7
33

3

2

1

0

b

b

b

b

R

w

w

w

2019/2020 UniPD – T. Vardanega Real-Time Systems 126 of 536

Example (cont’d)

173
12
143

7
145

143
12
113

7
115

113
12
53

7
55

5

3

2

1

0

c

c

c

c

w

w

w

w

20

203
12
203

7
205

203
12
173

7
175

5

4

c

c

c

R

w

w

2019/2020 UniPD – T. Vardanega Real-Time Systems 127 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 6

Revisiting task set C

 Its combined utilization is 𝑈 ൌ 1.0 𝑈 3 ൌ 0.78
 The utilization-based test fails, but RTA shows that the task set

will meet all its deadlines

Task Period Computation Time Priority Response Time

T C P R

a 80 40 1 (low) 80

b 40 10 2 15

c 20 5 3 (high) 5

2019/2020 UniPD – T. Vardanega Real-Time Systems 128 of 536

Sporadic tasks and other extensions

 Sporadic tasks have a minimum inter-arrival time
 This should be preserved at run time if schedulability is

to be ensured, but how can it ?

 The RTA for FPS works perfectly well for 𝐷 𝑇 as
long as the stopping criterion becomes 𝑊

ାଵ 𝐷

 Interestingly, RTA also works perfectly well with any
priority ordering, as long as the task indices reflect it

2019/2020 UniPD – T. Vardanega Real-Time Systems 129 of 536

Coexistence of hard and soft tasks /1

 In many situations, the WCET given for sporadic tasks
are considerably higher than the average case
 The WCET values are far off the center of the Gaussian

 In exceptional circumstances, interrupts may arrive in
bursts, and abnormal sensor readings may require
significant extra computation to restore a baseline truth

 Analyzing feasibility with WCET may lead to very low
processor utilization at run time, subtracted to soft tasks
 Hence to undesirable waste of precious (and scarce) resource

and a reduction of functional throughout
 We need some common-sense rules to contain such

pessimism

2019/2020 UniPD – T. Vardanega Real-Time Systems 130 of 536

Coexistence of hard and soft tasks /2

 Rule 1 : All tasks (hard and soft; periodic and sporadic)
should be schedulable using average execution times and average
(sporadic) arrival rates
 Hence, there may be situations where it may not be possible to

meet all deadlines
 This condition is known as a transient overload

 It is transient so long as not all tasks transition forever to worst-case
behavior

 Rule 2 : All hard real-time tasks should be schedulable using
WCET and worst-case arrival rates of all tasks (including soft)
 No hard real-time task will therefore miss its deadline
 If Rule 2 causes unacceptably low utilization for soft tasks

then WCET values or arrival rates should be “massaged”

2019/2020 UniPD – T. Vardanega Real-Time Systems 131 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 7

Handing aperiodic tasks /1

 They do not have minimum inter-arrival times, and consequently
cannot claim deadlines
 We may be interested in the system being responsive to them
 In cyclic scheduling we would use slack stealing for those tasks ….

 We might run aperiodic tasks at a priority below the priorities
assigned to hard tasks
 That way, under preemption, aperiodic tasks won’t be able to steal

resources from hard tasks
 But this solution would penalize soft tasks, which might miss

their deadlines too often
 We need another kind of solution …

2019/2020 UniPD – T. Vardanega Real-Time Systems 132 of 536

Handing aperiodic tasks /2

 … A solution that, besides preserving hard tasks and giving
fair opportunities to soft tasks, should minimize
 The response time of the job at the head of the aperiodic queue
 Or the average response time of as many aperiodic jobs as possible

for a given queuing discipline

 Possible choices
 Execute the aperiodic jobs in the background
 Execute the aperiodic jobs by interrupting the periodic jobs
 Use slack stealing
 Use dedicated servers

2019/2020 UniPD – T. Vardanega Real-Time Systems 133 of 536

Handing aperiodic tasks /3

 Slack stealing
 Difficult to implement for preemptive systems

 The slack 𝜎ሺ𝑡ሻ is a not a constant for them
 It is a function of the time 𝑡 at which it is computed

 The slack stealer is ready when the aperiodic queue is not
empty; it is suspended otherwise

 When ready and 𝜎 𝑡 0, the slack stealer is assigned the
highest priority; the lowest when 𝜎 𝑡 ൌ 0

 Static computation of 𝜎ሺ𝑡ሻ for some 𝑡 is useful but only when
the release jitter in the system is very low
 Under EDF, 𝜎ሺ𝑡 ൌ 0ሻ ൌ 𝑚𝑖𝑛 𝜎ሺ0ሻ where 𝜎 0 ൌ 𝐷 െ

∑ 𝑒ୀଵ,.., for all jobs released in the hyperperiod starting at 𝑡 ൌ 0

2019/2020 UniPD – T. Vardanega Real-Time Systems 134 of 536

Computing the slack under EDF

𝐻 ൌ 12

𝜎ଵ,ଵ 0 ൌ 𝐷ଵ െ 𝐶ଵ ൌ 4 െ 2 ൌ 𝟐
𝜎ଶ,ଵ 0 ൌ 𝐷ଶ െ 𝐶ଵ െ 𝐶ଶ ൌ 6 െ 2 െ 2.75 ൌ 𝟏.𝟐𝟓
𝜎ଵ,ଶ 0 ൌ 𝐷ଵమ െ 2 ൈ 𝐶ଵ െ 𝐶ଶ ൌ 8 െ 2 ൈ 2 െ 2.75 ൌ 𝟏.𝟐𝟓
𝜎ଶ,ଶ 0 ൌ 𝐷ଶమ െ 2 ൈ 𝐶ଵ െ 2 ൈ 𝐶ଶ ൌ 12 െ 2 ൈ 2 െ 2 ൈ 2.75 ൌ 𝟐.𝟓
𝜎ଵ,ଷ 0 ൌ 𝐷ଵయ െ 3 ൈ 𝐶ଵ െ 2 ൈ 𝐶ଶ ൌ 12 െ 3 ൈ 2 െ 2 ൈ 2.75 ൌ 𝟎.𝟓

2019/2020 UniPD – T. Vardanega Real-Time Systems 135 of 536

𝒎𝒊𝒏𝒊,𝒋 𝝈𝒊,𝒋 𝟎

ሺ𝜑 ,𝑝 , 𝑒 ,𝐷ሻх х

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 8

Computing the slack under FPS /1

 The amount of slack that an FPS system has in a
time interval may depend on when the slack is used

 To minimise the response time of an aperiodic job
𝐽, the decision of when to schedule it, must
consider the execution time of 𝐽
 No slack stealing algorithm under FPS can minimise the

response time of every aperiodic job, even with prior
knowledge of their arrival and execution times

 Better not be greedy in using the available slack

2019/2020 UniPD – T. Vardanega Real-Time Systems 136 of 536

Computing the slack under FPS /2

 The slack of periodic jobs of 𝜏 should be
computed based on their effective deadline 𝐷

 For a job of 𝜏, it should be computed at the beginning
of the level-𝑖 െ 1 busy period that precedes 𝐷 so that
𝐷 𝐷

 The initial slack 𝜎,ሺ0ሻ of every periodic job 𝐽
(the 𝑗th job of task 𝐽) in 𝐻 is determined as

𝑚𝑎𝑥 0,𝐷 െ
𝐷

𝑇
𝐶

ୀଵ

2019/2020 UniPD – T. Vardanega Real-Time Systems 137 of 536

Slack stealing defeats optimality

 Greed is no good for aperiodic tasks
 To minimize the response time of an aperiodic job, it

may be necessary to schedule it later, even if slack is
currently available

 For any periodic task set, under FPS, and any aperiodic
queuing policy, no valid algorithm exists that minimizes
the response time of all aperiodic jobs

 Similarly, no valid algorithm exists that minimizes the
average response time of the aperiodic jobs

2019/2020 UniPD – T. Vardanega Real-Time Systems 138 of 536

Handing aperiodic tasks /4

 Periodic server (PS), a general model
 The PS is a notional (𝑇௦,𝐶௦) periodic task scheduled at

the highest priority solely to execute aperiodic jobs
 The PS has a budget 𝐶௦ time units and a replenishment

period of length 𝑇௦
 When the PS is scheduled and executes aperiodic jobs, it

consumes its budget at the rate of 1 unit per unit of time
 Budget is exhausted when 𝐶௦ ൌ 0 and replenished periodically

 The PS is backlogged when the aperiodic job queue is
nonempty and it is idle otherwise
 Eligible for execution only when ready, backlogged and 𝐶௦ 0

2019/2020 UniPD – T. Vardanega Real-Time Systems 139 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 9

Handing aperiodic tasks /5

 Polling server, a simple (naïve) kind of PS
 It is given a fixed budget that it uses to serve aperiodic

task requests that is replenished at every period
 The budget is immediately consumed if the server is

scheduled while idle
 It is not bandwidth preserving, hence it is inefficient

 An aperiodic job that arrives just after the server has been
scheduled while idle, must wait until the next replenishment time

 Bandwidth-preserving servers need additional rules for
consumption and replenishment of their budget

2019/2020 UniPD – T. Vardanega Real-Time Systems 140 of 536

Handing aperiodic tasks /6

 Deferrable Server (DS), a bandwidth-preserving PS
 DS retains its budget if no aperiodic tasks require execution

 If an aperiodic job requires execution during the DS period, it can be
served immediately: when idle, the DS stays ready

 The budget is replenished at the start of the new period (!)
 If an aperiodic job arrives 𝜀 time units before the end of 𝑇ௗ௦, the

request begins to be served and blocks periodic tasks
 When the budget is replenished, new aperiodic jobs may then be

served for the full budget

 If that happens, in 𝜔 𝑡 , DS contributes a solid interference
of 𝐶ௗ௦

షೞ
ೞ

𝐶ௗ௦, longer than 1 ൈ 𝐶ௗ௦ per busy period

2019/2020 UniPD – T. Vardanega Real-Time Systems 141 of 536

Handing aperiodic tasks /7

 Sporadic Server (SS), fixes the bug in DS
 The budget is replenished only when exhausted and at a

minimum guaranteed distance from its earlier execution
 Hence no longer at a fixed rate

 This places a tighter bound on its interference and makes
schedulability analysis simpler and less pessimistic

 This is the default server policy in POSIX

2019/2020 UniPD – T. Vardanega Real-Time Systems 142 of 536

SS rules under FPS

 Consumption rules
 At time 𝑡 𝑡 (the latest replenishment time), a backlogged SS consumes

budget only if executing, hence when no higher-priority task is ready
 The replenishment is limited to the quantity of actual consumption

 Replenishment rules
 𝑡 records the time that SS’ budget was last replenished
 𝑡 records the time when SS first begins to execute since 𝑡

 𝑡 𝑡 is the latest time at which a lower-priority task than SS executes
 The next replenishment time is set to 𝑡 𝑇௦௦

 Exception
 If only higher-priority tasks had been busy since 𝑡 , then 𝑡 𝑇௦௦ 𝑡

𝑇ௌௌ and SS is late: hence, budget fully replenished as soon as exhausted

2019/2020 UniPD – T. Vardanega Real-Time Systems 143 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 10

SS rules unveiled

 Let 𝑡 be the time at which SS has full budget and becomes
backlogged, and 𝑡 𝑡 the time at which SS becomes idle

 In the 𝑡, 𝑡 interval, when SS is continuously active, three
cases are possible

1. SS has consumed no capacity: 𝑡ೣ ൌ 𝑡 𝑇ௌௌ no replenishment, and
no interference in that interval

2. SS has consumed all capacity: 𝑡ೣ ൌ 𝑡 𝑇ௌௌ full replenishment, and
bounded interference in that interval

3. SS has consumed fractional capacity: 𝑡ೣ ൌ 𝑡 𝑇ௌௌ fractional
replenishment, and interference lower than allowed in that interval

2019/2020 UniPD – T. Vardanega Real-Time Systems 144 of 536

Handing aperiodic tasks /8

 SS is more complex than PS or DS
 Its rules require keeping tab of lots of data
 Several cases to consider when making scheduling decisions
 This complexity is acceptable because the schedulability of a SS is

easy to demonstrate
 Under FPS, SS equates to a periodic task 𝜏௦ with ሺ𝑝௦, 𝑒௦ሻ

 EDF and LLF use a dynamic variant of SS as well as other
bandwidth-preserving server algorithms known as
 Constant utilization server
 Total bandwidth server
 Weighted fair queuing server

2019/2020 UniPD – T. Vardanega Real-Time Systems 145 of 536

Task sets with D < T

 We know that, for 𝐷 ൌ 𝑇, Rate Monotonic priority
assignment (aka RMS) is optimal

 For 𝐷 ൏ 𝑇, Deadline Monotonic priority ordering
(DMPO), where 𝐷 ൏ 𝐷 → 𝑃 𝑃, is optimal
 Any task set Q that is schedulable by priority-driven

scheme W, it is also schedulable by DMPO
 The proof of optimality of DMPO involves

transforming the priorities of 𝑄 as assigned by 𝑊
until the ordering becomes as assigned by DMPO
 Each step of the transformation preserves schedulability

2019/2020 UniPD – T. Vardanega Real-Time Systems 146 of 536

DMPO is optimal /1

 Let 𝜏 , 𝜏 be two tasks with adjacent priorities in 𝑄 such that
under 𝑊 we have 𝑃 𝑃 ∧ 𝐷 𝐷

 Define scheme 𝑊ᇱ to be identical to 𝑊 except that tasks 𝜏 , 𝜏
are swapped

 Now consider the schedulability of 𝑄 under 𝑊ᇱ

 All tasks 𝜏 with priority 𝑃 𝑃 will be unaffected
 All tasks 𝜏௦ with priority 𝑃௦ ൏ 𝑃 will be unaffected as they will

experience the same interference from 𝜏 and 𝜏
 Task 𝜏 which was schedulable under 𝑊, now has a higher

priority, suffers less interference, and hence must be schedulable
under 𝑊ᇱ

2019/2020 UniPD – T. Vardanega Real-Time Systems 147 of 536

2019/2020 UniPD - T. Vardanega 27/03/2020

Real-Time Systems 11

DMPO is optimal /2

 All that is left to show is that task 𝜏 , which has had its priority
lowered, is still schedulable

 Under 𝑊 we have 𝑅 𝐷 ,𝐷 ൏ 𝐷 and 𝑅 𝑇
 Task 𝜏 only interferes once during the execution of task
𝜏 hence 𝑅ᇱ ൌ 𝑅 𝐷 ൏ 𝐷
 Under 𝑊ᇱ task 𝜏 completes at the time task 𝜏 did under 𝑊
 Hence task 𝜏 is still schedulable after the switch

 Priority scheme 𝑊ᇱ can now be transformed to 𝑊ᇱᇱ by choosing
two more tasks that are in the wrong order for DMPO and
switching them

2019/2020 UniPD – T. Vardanega Real-Time Systems 148 of 536

procedure Assign_Pri (Set : in out Task_Set;
N : Natural; -- number of tasks
OK : out Boolean) is

begin
for K in 1..N loop
for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Generalized priority assignment
(aka simulated annealing)
Theorem: If task 𝑝 is assigned the lowest priority and it is feasible, then, if a
feasible priority ordering exists for the complete task set, one such ordering exists
where task 𝑝 is assigned the lowest priority

2019/2020 UniPD – T. Vardanega Real-Time Systems 149 of 536

Summary

 A simple (periodic) workload model
 Delving into fixed-priority scheduling
 A (rapid) survey of schedulability tests for FPS
 Some extensions to the workload model
 Priority assignment techniques

2019/2020 UniPD – T. Vardanega Real-Time Systems 150 of 536

Selected readings

 N.C. Audsley, A. Burns, R.I. Davis, K.W. Tindell,
A.J. Wellings (1995)
Fixed priority pre-emptive scheduling: an historical
perspective
DOI: 10.1007/BF01094342

 D. Faggioli, M. Bertogna, F. Checconi (2010)
Sporadic Server revisited
DOI: 10.1145/1774088.1774160

2019/2020 UniPD – T. Vardanega Real-Time Systems 151 of 536

