
2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 1

3.b Task interactions and
blocking

Where we allow tasks to contend for
shared resources, we see what access
control protocols can do to prevent
disaster, and discuss their pros and cons

Inhibiting preemption /1

 In the real world, certain application procedures do not
allow preemption
 The execution of non-reentrant code shared by multiple jobs, whether

directly (by application-level calls) or indirectly (within system calls),
cannot tolerate preemption

 A reentrant procedure allows calls to itself to overlap – owing to
preemption – while safeguarding the local context of every such call
 Reentrancy needs the stack, which may need a lot of memory …

 For reasons of integrity or efficiency, some system-level
activities should not be preempted
 Operations on hardware devices do not allow preemption

 At its simplest, preemption is inhibited by just disabling
dispatching
 Uh: how does that happen?

2019/2020 UniPD – T. Vardanega Real-Time Systems 153 of 538

How does preemption happen?

 All the CPU does is to repeat a simple cycle of basic micro-operations
forever (until stopped)
 Fetch, Decode, Read, Execute, Write
 One such cycle for each instruction of the application program
 The throughout of this cycle (# of instructions executed / unit of time) is

increased by pipelining those micro-operations
 This is why branching and jumping are bad news!

 Those micro-operations cannot be interrupted
 Electrons save no context: if you stop, you lose the whole pipeline!

 The only way to preempt program execution is to prefix a “check-for-
interrupt” clause to the Fetch stage
 The source of an interrupt is an event that needs attention (which cannot be given

by the current program): the execution must move elsewhere, which is preemption
 This is why, if an interrupt request is found asserted, the CPU is hijacked

 Omitting that check or not allowing interrupt requests to register,
effectively disables preemption

2019/2020 UniPD – T. Vardanega Real-Time Systems 154 of 538

Inhibiting preemption /2

 A higher-priority job 𝐽௛ that, at its release time,
finds a lower-priority job 𝐽௟ executing with disabled
preemption, gets blocked for a time duration that
depends on 𝐽௟
 Under FPS, this is a flagrant case of priority inversion

 The feasibility of 𝐽௛ now depends on 𝐽௟ !
 Under FPS, this form of blocking for 𝐽௜ is upper-

bounded by 𝐵௜ሺ𝑛𝑝ሻ ൌ max ௞ୀ௜ାଵ,..,௡ሺ𝜃௞ሻ where 𝜃௞ ൑ 𝑒௞
is the longest span of 𝐽௞’s non-preemptible execution

 This cost is paid by of 𝐽௜ only once per release because
lower-priority jobs cannot preempt 𝐽௜

2019/2020 UniPD – T. Vardanega Real-Time Systems 155 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 2

The drag of self suspension /1

 A job 𝐽௜ that invokes suspending operations or self suspends
(sleep()), suffers a time penalty that worsens its response time

 𝐽௜ incurs a degenerate form of blocking that can be bounded as
𝐵௜ሺ𝑠𝑠ሻ ൌ max ሺ𝛿௜ሻ ൅ ∑ min ሺ𝑒௞ , max ሺ𝛿௞ሻሻ௞ୀଵ,..,௜ିଵ
 max ሺ𝛿௜ሻ is the longest duration of self suspension by job 𝐽௜
 The ∑ term is the cumulative interference caused by self-suspending high-

priority jobs that may become ready during the (shifted) busy period of 𝐽௜
 Every 𝐽௞ might resume from self-suspension exactly when 𝐽௜ does, and therefore

interfere up to 𝑚𝑎𝑥 𝛿௞ but never more than 𝑒௞

 In general, a job 𝐽௜ that self suspends 𝐾 times during execution
incurs total blocking 𝐵௜ ൌ 𝐵௜ 𝑠𝑠 ൅ ሺ𝐾 ൅ 1ሻ𝐵௜ሺ𝑛𝑝ሻ
 As 𝐵௜ሺ𝑛𝑝ሻ is potentially incurred at at every resumption

2019/2020 UniPD – T. Vardanega Real-Time Systems 156 of 538

 Self suspension with independent tasks on
single-core processors causes scheduling anomalies
 Deadlines can be missed when task utilization

or suspension delays are decreased
 Example: consider a feasible task set under EDF
 𝜏ଵ ൌ 0,10, 2,2,2 , 6
 𝜏ଶ ൌ 5,10, 1,1,1 , 4
 𝜏ଷ ൌ 7,10, 1,1,1 , 3
 𝜏ଷ would miss its deadline if 𝜏ଵ’s execution or

suspension was 1 time unit shorter

The drag of self suspension /2

2019/2020 UniPD – T. Vardanega Real-Time Systems 157 of 538

Execution includes self suspension

ሺ𝜑௜ ,𝑝௜ , 𝑒௜ ,𝐷௜ሻ

The drag of self suspension /3

2019/2020 UniPD – T. Vardanega Real-Time Systems 158 of 538

4

7

4

7

𝑒 ൌ 2.5,𝑝 ൌ 4

𝜑 ൌ 3, 𝑒 ൌ 2,𝑝 ൌ 7

𝑒 ൌ 2.5,𝑝 ൌ 4

𝜑 ൌ 3, 𝑒 ൌ 2,𝑝 ൌ 7

Selfish self-suspension

Under Rate Monotonic Scheduling

The drag of self suspension /4

T2

𝝉𝟏 ൌ 𝟎,𝟒,𝟐.𝟓,𝟒 , 𝝉𝟐 ൌ 𝟑,𝟏𝟎,𝟐,𝟏𝟎 𝑼 ൌ 𝟎.𝟖𝟕𝟓

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝝉𝟏 self-suspends for 1.5 𝝉𝟐 misses its deadline

𝑩𝟐 𝒔𝒔 ൌ 𝟎 ൅𝒎𝒊𝒏 𝟐.𝟓,𝟏.𝟓 ൌ 𝟏.𝟓 is a pessimistic upperbound!
With 𝝋𝟐 ൌ 𝟑, the actual blocking for 𝝉𝟐 in [3,10) reduces to 1

But still 𝑩𝟐 𝒔𝒔 ൌ 𝟏 ൐ 𝝈𝟐,𝟏ሺ𝟎ሻ ൌ 𝟎.𝟓

2019/2020 UniPD – T. Vardanega

ሺ𝜑௜ ,𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Real-Time Systems 159 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 3

Access contention

 Concurrent access to shared resources causes potential
for contention that needs specialized control
 A resource access control protocol

 Such a protocol specifies (1) when, (2) on what
conditions, (3) in which order, a resource access request
may be granted
 Access contention situations may cause priority inversion to arise

(see following examples)

2019/2020 UniPD – T. Vardanega Real-Time Systems 160 of 538

Example /1

2019/2020 UniPD – T. Vardanega

T1T2RT3RT1

2 4 6 8 10 12

𝝉𝟏 = {-, -, 2, 20, R(4)}, 𝝉𝟐 = {2, -, 3, 17, R(4)} , 𝝉𝟑 = {6, -, 3, 14, R(2)}

under EDF (periods not specified, as they do not matter here)

𝝉𝟏 :: e; R(4); e. 𝝉𝟐 :: e; e; R(4); e. 𝝉𝟑 :: e; e; R(2); e.

14 16 18

R T2 R T3 R

Max use of shared resource per execution

R in use by 𝜏1

R released
by 𝜏1and
assigned to 𝐽3,1

R in use by 𝜏3 R in use by 𝜏2

R released by 𝜏3

𝜏3 completes 𝜏2 completes

𝜏1 completes

𝜏2 gets blocked on access to R

𝐷1,1 ൌ 20 𝐷2,1 ൌ 17 𝐷3,1 ൌ 14

ሺ𝜑𝑖 ,𝑝𝑖 , 𝑒𝑖 ,𝐷𝑖ሻ

Real-Time Systems 161 of 538

Example /2

2019/2020 UniPD – T. Vardanega Real-Time Systems 162 of 538

𝝉𝟏 = {-, -, 2, 20, R(2.5)}, 𝝉𝟐 = {2, -, 3, 17, R(4)} , 𝝉𝟑 = {6, -, 3, 14, R(2)}

under EDF

Same as before, except with shorter use of R by 𝝉𝟏

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

𝜏3 misses its deadline

R in use by 𝜏1

R released by 𝜏1
R taken over by 𝜏2

R released by 𝜏2
R taken over by 𝜏3

R released by 𝜏3

ሺ𝜑𝑖 ,𝑝𝑖 , 𝑒𝑖 ,𝐷𝑖ሻ

Scheduling anomaly!

Assumptions and notations

 In order to minimize the extent of interference
 Jobs should not self suspend (directly or indirectly)
 Jobs can be preempted

 We say that job 𝐽௛ is directly blocked by a lower-priority
job 𝐽௟ when
 𝐽௟ is granted exclusive access to a shared resource 𝑅
 𝐽௛ has requested 𝑅 and its request has not been granted

 To study the problem we may want to use a wait-for graph

2019/2020 UniPD – T. Vardanega Real-Time Systems 163 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 4

Example (wait-for-graph)

2019/2020 UniPD – T. Vardanega Real-Time Systems 164 of 538

T1

T2

T3

T4

R1, 5

R2, 1

(2; 3)

(1; 1)

(1; 2)

Units available
(multiplicity)

Obviously!

𝑇ଷ accumulates 2 resources

𝑇ଷ wants 𝑅ଵ while holding 𝑅ଶ
(This is called resource nesting)

Resources

Tasks

𝒊; 𝒋 denotes 𝒊 units of resource required, and 𝒋 duration of use

𝑹𝟐, 𝟏;𝟖 𝑹𝟏, 𝟒;𝟏

𝑇ଵ uses 2 resources, not simultaneously

Resource access control [option a]

 Inhibiting preemption in critical sections
 A job that requires access to a resource is always granted it
 A job that has been assigned a resource runs at a priority

higher than any other job
 These two clauses imply each other (why?)
 They jointly prevent deadlock situations from occurring (why?)

 This protocol causes bounded priority inversion
 At most once per job (we already understood why)
 For a maximum duration of 𝐵௜ 𝑟𝑐 ൌ 𝑚𝑎𝑥௞ୀ௜ାଵ,…,௡ 𝐶௞

 For job indices in monotonically non-increasing order and 𝐶௞
denoting the worst-case duration of critical section for job 𝐽௞

2019/2020 UniPD – T. Vardanega Real-Time Systems 165 of 538

Critique of [option a]

 This strategy causes distributed overhead
 All jobs – including those that do not compete for resource

access – incur some time penalty
 Very unfair: undesirable

 It should be preferable that time overhead was solely (or
at least mostly) incurred by the jobs that do compete for
resource access
 The priority of the job that is granted the resource should be

no less than that of its competitor jobs (but of no other)
 This principle has two possible realizations
 One is called priority inheritance, the other is called priority ceiling
 We shall now examine how each of them operates

2019/2020 UniPD – T. Vardanega Real-Time Systems 166 of 538

Resource access control [option b]

 Basic priority inheritance protocol (BPIP)
 The job’s priority may vary over time
 The variation follows inheritance principles

 Protocol rules
 Scheduling: jobs are dispatched by preemptive priority-driven

scheduling; at release time, they assume their assigned priority
 Allocation: when job 𝐽 requires access to resource 𝑅 at time 𝑡

 If 𝑅 is free, 𝑅 is assigned to 𝐽 until release
 If 𝑅 is busy, the request is denied and 𝐽 becomes blocked

 Priority inheritance: when job 𝐽 becomes blocked, job 𝐽௟ that
blocks it takes on 𝐽’s current priority as its inherited priority and
retains it until 𝑅 is released; at that point 𝐽௟ reverts to its
previous priority

2019/2020 UniPD – T. Vardanega Real-Time Systems 167 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 5

Critique of [option b]

 BPIP suffers two forms of blocking
 Direct blocking, owing to resource contention
 Inheritance blocking, owing to priority raising

 Priority inheritance is transitive
 Direct blocking is transitive as jobs may need to accumulate resources

 BPIP does not prevent deadlock
 Cyclic blocking proceeds from transitive direct blocking

 BPIP incurs reducible distributed overhead
 Under BPIP, a job may become blocked every time it competes for a

shared resource, hence multiple times in the same run
 BPIP needs no prior knowledge on which resources are shared

 It is inherently dynamic, hence usable for open (non real-time) systems

2019/2020 UniPD – T. Vardanega Real-Time Systems 168 of 538

Resource access control [option c]

 Basic priority ceiling protocol (BPCP)
 Similar to BPIP, except that it needs all resource

requirements to be statically known
 Every resource 𝑅 is assigned a priority ceiling attribute set

statically to the highest priority of the jobs that require 𝑅
 At time 𝑡, the system has a ceiling 𝜋௦ሺ𝑡ሻ attribute set to the

highest priority ceiling of all resources currently in use
 If no resource is currently in use at 𝑡, 𝜋௦ሺ𝑡ሻ defaults to Ω < the

lowest priority of all jobs

2019/2020 UniPD – T. Vardanega Real-Time Systems 169 of 538

BPCP protocol rules

 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they assume their assigned priority

 Allocation: when job 𝐽 requests access to resource 𝑅 at time 𝑡
 If 𝑅 is already assigned, the request is denied and 𝐽 becomes blocked
 If 𝑅 is free and 𝐽’s priority 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ, the request is granted
 If 𝐽 currently owns the resource whose priority ceiling ൌ 𝜋௦ሺ𝑡ሻ, the

request is granted
 Otherwise the request is denied and 𝐽 becomes blocked

 Priority inheritance: when job 𝐽 becomes blocked by job 𝐽௟, 𝐽௟
takes on 𝐽’s current priority 𝜋௃ሺ𝑡ሻ until 𝐽௟ releases all resources
with priority ceiling ൐ 𝜋௃ሺ𝑡ሻ; at that point 𝐽௟’s priority reverts to
the level that preceded access to those resources

2019/2020 UniPD – T. Vardanega Real-Time Systems 170 of 538

Avoidance blocking

Critique of [option c] /1

 BPCP is not greedy (BPIP is!)
 Under BPCP, a request for a free resource may be denied

 Hence, BPCP causes each job 𝐽 to incur three distinct
forms of blocking caused by lower-priority job 𝐽௟

3.	Avoidance	blocking

J R Jl
1.	Direct	blocking

Jh R Jl
2.	Inheritance	blocking

J R X Jl𝝅𝑱ሺ𝒕ሻ 𝝅𝒔ሺ𝒕ሻ ൌ 𝝅𝑿 ൐ 𝝅𝑱ሺ𝒕ሻ

J 𝝅𝑱𝒉 ൐ 𝝅𝒋requires owns

2019/2020 UniPD – T. Vardanega Real-Time Systems 171 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 6

Critique of [option c] /2

 Avoidance blocking is what makes BPCP not greedy and
also prevents deadlock from occurring
 If, at time 𝑡, job 𝐽 has 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ then it must be so that

 𝐽 will never use any of the resources in use at time 𝑡
 So won’t all jobs with higher priority than 𝐽

 The system ceiling 𝜋௦ሺ𝑡ሻ determines which jobs can be
assigned a resource free at time 𝑡 without risking deadlock
 All jobs with priority higher than the system ceiling 𝜋௦ሺ𝑡ሻ

 Caveat
 To stop job 𝐽 from blocking itself when attempting to accumulate

resources, BPCP must grant its request in case 𝜋௃ሺ𝑡ሻ ൑ 𝜋௦ 𝑡 , but 𝐽
at 𝑡 holds the resources ሼ𝑋ሽ whose priority ceiling is ൌ 𝜋௦ 𝑡

2019/2020 UniPD – T. Vardanega Real-Time Systems 172 of 538

Critique of [option c] /3

 BPCP does not incur reducible distributed overhead as it
does not permit transitive blocking

 Theorem [Sha & Rajkumar & Lehoczky, 1990]
Under BPCP a job may become blocked for at most the
duration of one critical section
 Under BPCP, when a job becomes blocked, its blocking can only be

caused by a single ready job
 The job that causes others to block cannot itself be blocked

 Hence BPCP does not permit transitive blocking
 Demonstration:

 The maximum possible value of that duration for job 𝐽௜ is
termed the blocking time 𝐵௜ሺ𝑟𝑐ሻ due to resource contention
 𝐵௜ሺ𝑟𝑐ሻ must be accounted for in the schedulability test for 𝐽௜

2019/2020 UniPD – T. Vardanega Real-Time Systems 173 of 538

By exercise

Computing the BPCP blocking time /1

2019/2020 UniPD – T. Vardanega Real-Time Systems 174 of 538

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

3

𝑩𝒊ሺ𝒓𝒄ሻ ൌ max value in row 𝑱𝒊 across all tablesLow

High

Pr
io

rit
y

Computing the BPCP blocking time /2

 Table rows are sorted by priority
 Jobs are assigned distinct priorities (i.e., no overlap)

 Table “directly blocked by” is easy to understand …
 Table “priority-inheritance blocked by”

 Job 𝐽௜ାଵ causes direct blocking inherits the blocked job’s priority: all jobs with
priority lower than the inherited one but higher than 𝐽௜ାଵ’s suffer blocking

 The value in cell 𝑖,𝑘 is max across (rows 1, … , 𝑖 െ 1; column 𝑘) in Table
“directly blocked by”

 Table “avoidance blocked by”
 The resource is free but another resource with priority ceiling higher than your

current priority is being used by a job with assigned priority lower than yours
 The cells here are as in Table “priority-inheritance blocked by” except for the jobs

that do not request resources (e.g., 𝐽ହ), which are exempt from this blocking

2019/2020 UniPD – T. Vardanega Real-Time Systems 175 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 7

Resource access control [option d]

 Stack-based ceiling priority protocol
 SB-CPP uses the system ceiling same as BPCP, but it

allows jobs to share stack space, saving tons of memory
 Try and see why!
 The other protocols seen so far don’t

 SB-CPP does it by ensuring that no request for
resources will ever be denied to a running job
 This prevents jobs’ stack space from fragmenting

 Blocking causes stack fragmentation
 Preemption does not!
 One more reason to discourage self-suspension …

2019/2020 UniPD – T. Vardanega Real-Time Systems 176 of 538

What blocking and preemption do to
the stack

2019/2020 UniPD – T. Vardanega Real-Time Systems 177 of 538

𝛕𝟓

Ready queue Stack

𝛕𝟓 𝛕𝟓

Ready queue Stack

𝛕𝟓

𝛕𝟑 𝛕𝟑
𝛕𝟓

Ready queue Stack

𝛕𝟓

Time

𝛕𝟕

𝛕𝟓

Ready queue Stack

𝛕𝟓

𝛕𝟓

𝛕𝟕

Stack

𝛕𝟓
𝛕𝟕 𝛕𝟕

𝛕𝟕

Preemption is harmless

[Inheritance-]Blocking is disastrous

τ଻’s stack space
becomes fragmented

𝜏7 has acquired
resource 𝑅 before
being pre-empted
by 𝜏ହ, which will
want to use 𝑅

SB-CPP protocol rules [Baker, 1991]

 Computation of and updates to ceiling 𝜋௦ሺ𝑡ሻ:
 When all resources are free, 𝜋௦ሺ𝑡ሻ ൌ Ω
 𝜋௦ሺ𝑡ሻ is updated any time 𝑡 a resource is assigned or released

 Scheduling: on release at time 𝑡, job 𝐽 stays blocked until
its assigned priority 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ
 Jobs that are not blocked are dispatched to execution by

preemptive priority-driven scheduling
 Allocation: whenever a job issues a request for a

resource, the request is granted

2019/2020 UniPD – T. Vardanega Real-Time Systems 178 of 538

Critique of [option d]

 Under SB-CPP, a job 𝐽 can only begin execution when the
resources it may need are free
 Otherwise 𝜋௃ሺ𝑡ሻ ൐ 𝜋௦ሺ𝑡ሻ cannot hold

 Under SB-CPP, a job 𝐽 that may get preempted does not
become blocked on resumption
 The preempting job cannot contend resources with 𝐽

 SB-CPP prevents deadlock from occurring

 Under SB-CPP, 𝐵௜ሺ𝑟𝑐ሻ for any job 𝐽௜ is the same as BPCP’s

 SB-CPP has lower algorithmic complexity in time and space
than BPCP, as it needs less checks against 𝜋௦ 𝑡

2019/2020 UniPD – T. Vardanega Real-Time Systems 179 of 538

2019/2020 UniPD - T. Vardanega 29/03/2020

Real-Time Systems 8

Resource access control [option e]

 Ceiling priority protocol (base version)
 CPP does not use the system ceiling 𝜋௦ 𝑡
 Resources continue to have a ceiling priority attribute

 Scheduling: jobs are scheduled with FPS with “FIFO within
priorities” ruling
 A job that does not hold any resource, runs with its assigned priority
 A job that acquires a resource has its current priority set to the highest

value among the ceiling priority of the resources that it holds

 Allocation: whenever a job issues a request for a resource,
the request is granted

2019/2020 UniPD – T. Vardanega Real-Time Systems 180 of 538

Summary

 Issues arising from task contention of shared
resources under preemptive priority-based scheduling

 Survey of resource access control protocols
 Critique of the surveyed protocols

2019/2020 UniPD – T. Vardanega Real-Time Systems 181 of 538

Selected readings

 L. Sha, R. Rajkumar, J.P. Lehoczky (1990)
Priority inheritance protocols: an approach to real-time
synchronization
DOI: 10.1109/12.57058

 T. Baker (1990)
A Stack-Based Resource Allocation Policy for Real-time
Processes
DOI: 10.1109/REAL.1990.128747

2019/2020 UniPD – T. Vardanega Real-Time Systems 182 of 538

