2019/2020 UniPD - T. Vardanega 05/04/2020

Task interactions and blocking

3.c Exercises on task interactions, That a job Jj should wait for a lower-priority job to
complete some computation, before being able to

and further model extensions) o S
proceed, undermines the principle of priority

Credits to A. Burns and A. Wellings

? RTS o If that happens, job Jj is said to suffer priority inversion
o In that situation, Jp, is said to be blocked
. Al
Where we use a running example to recap 0 The blocked state is other than preempted or suspended
the effects of access control protocols on . .
task blocking, and then we make further We would like R_TA to contf.:mplate blocking, so
extensions to the workload model that we can continue to use it for FPS
0 But then we must determine a consetrvative bound B to it
2019/2020 UniPD - T. Vardanega Real-Time Systems 185 of 538
Incorporating blocking in RTA Running example
R;=C;+B; +[; Consider the task set shown below
R; N
o Where I; = Zthp(i) [T—JL] Cj, and hp(i) is the set of tasks A 1(ow ¢QQQQe 3
with priority higher than 7; B 2 ce 2
n+l Wl) © 3 eVVe 2
9 And 0" = €+ By + Zjenp [T—j] Cj is the D 4 (high) ceQVe 4
recurrence relation that we need to solve Legend:

e e:one unit of execution;

Let us now look at some priority-inversion - Q (or V): one unit of use of resource R, (or Ry,

situations and the effect of various access control

protocols on B; for any task 7;, under FPS Let us see how some key access control protocols

treat it ...

2019/2020 UniPD —T. Vardanega Real-Time Systems 186 of 538 2019/2020 UniPD —T. Vardanega Real-Time Systems 187 of 538

Real-Time Systems 1

2019/2020 UniPD - T. Vardanega

‘ With simple locking

Task
priority

b T e T,
¢| T ——

Time
0 2 4 6 8 10 12 14 16
- Execution |:| Preempted
I:I Execution with Q locked - Blocked
- Execution with V locked
2019/2020 UniPD — T. Vardanega Real-Time Systems 188 of 538

With Basic Priority Inheritance (BPIP)

If task Ty is blocking task Ty, then Ty runs with Ty 's priority ...

Tp is blocked

Ta§k . "‘-_.Direct blocking Direct blocking
priority from 7, from 7,
D

Inheritance blocking
C

Inheritance blocking
B LT[/ [[T T 1 1 o

1
i

A [T T BT T T TTTITTTIT B
7,4 inherits the priority of 7, Time
0 2 4 6 8 10 12 14 16
2019/2020 UniPD — T. Vardanega Real-Time Systems 189 of 538

Bounding direct blocking under BPIP

= If the system has {Tj=1,..,K} critical sections that can lead to a task
7; being blocked under BPIP, then K is the maximum number
of times that T; can be blocked

= The upper bound on the blocking time B;(rc) for T; that
contends for K critical slez‘ctions thus is

B;(rc) = Z use(15,1) X Crmax(15)

Jj=1

Where use(rj, i) = 1if 7; is used by at least one task 7;: 7 < ; and one task Tp: Ty 2 7; |
0 otherwise, and Cpqx (1) denotes the duration of use of 7j by any such task T

= The worst case for task T; with BPIP is to block for the longest
duration of contending use on access to a// the resources it needs

= Note that the running example includes inberitance blocking too!

2019/2020 UniPD —T. Vardanega Real-Time Systems 190 of 538

| What with Ceiling Priotity protocols?

= Let us consider two main variants of them
0 Basic Priority Ceiling Protocol (aka “Original CPP”)
= Which uses the system ceiling g (t)
0 Ceiling Priority Protocol (aka “Immediate CPP”)
u Which does noz use the system ceiling
= When using either of them on a single processor
0 A high-priority task can only be blocked by lower-priority tasks a#
most once per job
0 Deadlocks are prevented by construction because transitive
blocking is also prevented by construction
0 Mutual exclusive access to resources is ensured by the protocol
itself, hence locks are 7ot needed

2019/2020 UniPD —T. Vardanega Real-Time Systems 191 of 538

Real-Time Systems

05/04/2020

2019/2020 UniPD - T. Vardanega

‘ Recalling the BPC protocol (BPCP)

= Fach task 7; has an assigned szatic priority

= FEach resource 1y, has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

= T; has a dynamic current priority 7;(t) at time t, set to the
maximum of its assigned priority and any priorities it has
inherited at t from blocking higher-priority tasks

= T; can lock a resource Ty at time t if and only if w; () > 15 (t)
0 Where 7s(t) = max; (T['rj) for all 7j currently locked at t, excluding

those that 7; locks itself

= The blocking B; suffered by 7; is bounded by the longest critical
section with ceiling 7, > 7; used by lower-priority tasks
a9 By = maxi_y (use(rie,) X Cinax (1))

2019/2020 UniPD —T. Vardanega Real-Time Systems 192 of 538

' With Basic Priority Ceiling (BPCP)

mc(3) <my(3)

Ta.Sk - access is denied gclcselsicil;e;enied
priority Dir tblocking
b i

Avo;dance blockmg Inheritance blocking
c b [[,
Inherltance blockmg
B | W T N T T T 7T e

74 inherits 74 inherits
T¢'s priority Tp’s priority

2019/2020 UniPD - T. Vardanega Real-Time Systems 193 of 538

Recalling the CP Protocol (CPP)

m Each task 7; has an assigned szazic priority
0 Perhaps determined by deadline monotonic assignment

= Each resoutce 1 has a static cez/ing attribute defined as the
maximum priority of the tasks that may use it

= T; has a dynamic current priority 1;(t) at time ¢, that is set to
the maximum of its own static priority and the ceiling values
of any resources it is currently using

= Any job of that task will suffer blocking on/y once, at release
0 Once the job starts executing, all the resources it needs must be free

o If they were not, then some task would have priotity = than the job’s,
hence its execution would be postponed

= Blocking computed exactly as for BPCP

2019/2020 UniPD - T. Vardanega Real-Time Systems 194 of 538

Real-Time Systems

' With Ceiling Priotity (CPP)

Task Inheri

iorit nheritance
prionty blocking
D

Inheritance blocking

C

Inheritance blocking
b _ N

A:_.IIIIIIIIIIIIIIII-)

0 !2 4 6 8 10 12 14 16 Time

7,4 inherits Q’s ceiling priority

2019/2020 UniPD —T. Vardanega Real-Time Systems 195 of 538

05/04/2020

2019/2020 UniPD - T. Vardanega

'BPCP vs. CPP

points of difference between them
need not be monitored

activation

occurred

Emnlation in Ada and Real-Time Java

0 CPP requires more priority movements as they happen with a//
resource usages: BPCP changes priority only if an actual block has

= Although the worst-case behavior of the two ceiling priority
schemes is identical from a scheduling viewpoint, there are some

0 CPP is easier to implement than BPCP as blocking relationships

0 CPP leads to /ess context switches as blocking occurs prior to job

u CPP is called Priority Protect Protocol in POSIX and Priority Ceiling

2019/2020 UniPD — T. Vardanega Real-Time Systems

196 of 538

‘ Extending the workload model further

u Our workload model so far contemplates
o Constrained and implicit deadlines (D < T), petiodic and
sporadic tasks, aperiodic tasks under some server
scheme, task interactions with blocking factored in the
response-time equations
u There are further extensions that we may need
a Allowing cogperative scheduling
0 Incorporating release jitter
a Allowing arbitrary deadlines
o Allowing gffsets (phases)

2019/2020 UniPD - T. Vardanega Real-Time Systems 197 of 538

| Cooperative scheduling /1

tasks into (fixed ot floating) slots

u Full preemption may not always suit critical systems

0 The running task yields the CPU at the end of each such slot
0 If no hp task is ready, then the running task continues
0 The time duration of any such slot is bounded by By, g
0 Mutual exclusion must use non-preemption (else it breaks)
u Deferred preemption has two interesting properties

0 It dominates both preemptive and non-preemptive scheduling

u Cooperative or deferred-preemption scheduling splits

0 Each last slot of execution is (obviously) from from interference

2019/2020 UniPD - T. Vardanega Real-Time Systems

198 of 538

Real-Time Systems

Why deferred preemption is clever

n o I | = B
=

e | b o
® LB R e R e Lo

(n) Fully presmpiive (FPPS)

- 1:|T F;L..“.,_Tn i !

Ta
PRI T) ’nL bl

ﬂiﬁ T @\. Ihn;l I I

@n. —
u‘n L E'?H. F'.o The e e e b e luLln =

(4) Droforred proamption with a shansd rosource

[- Prommptitie execation
[= Execution within a nen-presmptive regon
= - Execution within . critical section

2019/2020 UniPD —T. Vardanega Real-Time Systems 199 of 538

05/04/2020

2019/2020 UniPD - T. Vardanega

| Cooperative scheduling /2

u Let Fj be the execution time of the final slot of T;’s
execution, naturally exempt from interference

Wn
n+l i
W' =B,y +C, + je%(i) | C,
= When the response time equation converges (and
wt = w1’ response time is
R =w+
i
2019/2020 UniPD — T. Vardanega Real-Time Systems 200 of 538

‘ Release jitter /1

= Most critical for precedence-constrained tasks

= Example: a periodic task T with period T, = 20, releases a sporadic
task Ty, at some point of some runs of its (Ty’s) jobs
0 The release is conditional and does not occur at constant time: a perfect
example of sporadic activation
= What can we say about the minimum time interval between any two

. ren
Subsequent)obs of T,’s: These two subsequent releases

of 7, are spaced by A=21—-15=6
time units instead of T}, = 20, owing to
jitter in 7;’s response time:

Sporadic arrivali{ =t+Ry,,,

Vit1
PS

-
Sporadic arrival Ay, =t + Ry

Py

- T, inherits 7;,s period Ty,

N N - and release jitter /, = Ry, .. — Ricpin
] T 7 max(J,) = R — Ci
T, =20 ;
L } —+ Time —
t Ry, =15 Ry, =1
2019/2020 UniPD — T. Vardanega Real-Time Systems 201 of 538

Release jitter /2

u Task T, in example is released at 0, T — J, 2T — J,3T —]

= The RTA equation stipulates that task T; will suffer interference
from Ty, for m; < my,
o Once, if R; € [0,T — J)
0 Twice, if R; € [T = J,2T = J) l
o Thrice, if R; € [2T —],3T —]) 1T ,

= Higher-priority tasks with release jitter inflict zore interference
0 The response-time equation must capture that increase potential

Ri+);
Ry =Ci+ Bi+ Ljenpp) [LT—]J)

u Periodic tasks can only suffer release jitter if the clock is jittery

o In that case, the response time of a jittery periodic task T,, measured
relative to the rea/ release time becomes R'p =R, +Jp

I' '] meg

2019/2020 UniPD —T. Vardanega Real-Time Systems 202 of 538

Real-Time Systems

Arbitrary deadlines /1

u To cater for situations where D > T, in which, multiple
jobs of the same task compete for execution, the RTA equation
must be modified

2 o) = (@ + DG+ jenpy [wiT iq)] G
a Ri(@) = o} (@) — qT;

The number q of additional releases to consider is
bounded by the lowest value of ¢ 2R;(q) < T;

0 w;(q) represents the level-i busy petiod, which extends as
long as qT; falls within it

= The worst-case response time is then R; = max,R;(q)

2019/2020 UniPD —T. Vardanega Real-Time Systems 203 of 538

05/04/2020

2019/2020 UniPD - T. Vardanega 05/04/2020

‘ Arbitrary deadlines /2 ‘ Arbitrary deadlines /3

= When the formulation of the RTA equation is

+1 : : >
: L 2 d 1 combined with the effect of release jitter, two
wi(q alterations must be made
> » First, the interference factor must be increased
accordingly
! l n+l) = wi'(@+Ji
w(q) =B+ (q+ 1 + — G

The (q + 1)t" job release of task t; falls in i) Jj

the level-i busy period, but this q is also the S d.if th Kk d]l P fr, 1

last index to consider as the next job release = dSecond, 1 the task un er analysis can sutfer release

belongs in a different busy period jitter, then two consecutive windows could overlap if

(response time plus jitter) were greater than the period

Ri(@) = wi'(q) —qT; +J;

2019/2020 UniPD — T. Vardanega Real-Time Systems 204 of 538 2019/2020 UniPD - T. Vardanega Real-Time Systems 205 of 538

| Arbitrary deadlines /4 Non-optimal analysis for offsets /1

= So far, we assumed all tasks share a common release time

0 1 2 q , a+1 (aka, the critical instan?)
e AR T AT T
: Ta 8 5 4 4 05
T, 1 T 20 9 4 8 02
13
Te 20 10 4 0.2 Deadline miss!

If task 7; has release jitter then
the level-i busy period may extend

= What if we allowed offsets?

until the next release nn“ Arbitrary offsets are

not tractable with

Ta 8 5 4 0 4 critical-instant

Th 20 9 4 0 8 analysis, hence we
cannot use the RTA

Tc 20 10 4 10 8 equation for them!

In tempo assoluto, T, completaat =8 + 0, = 18

2019/2020 UniPD - T. Vardanega Real-Time Systems 206 of 538 2019/2020 UniPD - T. Vardanega Real-Time Systems 207 of 538

Real-Time Systems 6

2019/2020 UniPD - T. Vardanega

‘ Non-optimal analysis for offsets /2

u Task periods are not entirely arbitrary in reality: they are
likely to have some relation’to one another

0 In the previous example, two tasks have a common period

. . . T
0 Then we might give one of them an offset O (tentatively set to 5 as

long as O + D < T) and analyze the resulting system with a)
transformation that resoves the offset so that critical-instant analysis
continues to apply
. . . T,
= Doing so with the example, tasks Tp, T, (T, with O, = f
are replaced by a single notional task with T, = T, — O,
C, = max(Cy, C;) = 4, D,, = T,, and no offset
0 This technique aids in the determination of a “good” offset
0 The base RTA equation allows offsets, but determining the worst
case with them is an intractable problem:
= That is why we upper-bound it with the critical instant!

2019/2020 UniPD — T. Vardanega Real-Time Systems 208 of 538

| Non-optimal analysis for offsets /3

= This notional task T, has two important properties

o Ifitis feasible (when sharing a critical instant with all other tasks), then the
two real tasks that it represents will meet their deadlines when one is given
the stipulated offset

o Ifall lower priority tasks are feasible when suffering interference from 7,
then they will stay schedulable when the notional task is replaced by the
two real tasks (one of which with offset)

u These properties follow from the observation that T, always has
no less CPU utilization than the two real tasks that it subsumes

[Task | T | D | ¢ | R | U |
T, 8 5 4 4 05

Ty 10 10 4 8 0.4

2019/2020 UniPD - T. Vardanega Real-Time Systems 209 of 538

Notional task parameters

T, T,

T =-2a=_"b Tasks 7, and t;, have the same period
n 2 2 else we would use Min(T,, Tp) for greater pessimism

C, = Max(C,,C,)
D, = Min(D,, D,)
Pn = Max(Pa, Pb) Priority relations

This strategy can be extended to handle more than two tasks

2019/2020 UniPD - T. Vardanega Real-Time Systems 210 of 538

Real-Time Systems

Sustainability [Baruah & Burns, 2006]

= Extends the notion of predictability for single-core systems
to wider range of relaxations of workload parameters
o Shorter execution times
o Longer periods
0 Less release jitter
0 Later deadlines
= Any such relaxation should preserve schedulability
0 Much like what predictability does but for less types of variation
= A sustainable scheduling algorithm does not suffer
scheduling anomalies under any such relaxations

2019/2020 UniPD —T. Vardanega Real-Time Systems 211 of 538

05/04/2020

2019/2020 UniPD - T. Vardanega 05/04/2020

Summary Selected readings
Completing the survey and critique of resource access A. Baldovin, E. Mezzetti, T. Vardanega
control protocols by means of some examples Limited preemptive scheduling of non-independent task sets
Considering further extensions to our workload DOI: 10.1109/EMSOFT.2013.6658596
model

Contemplating the notion of sustainability for
scheduling

2019/2020 UniPD — T. Vardanega Real-Time Systems 212 of 538 2019/2020 UniPD - T. Vardanega Real-Time Systems 213 of 538

Real-Time Systems 8

