
2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 1

4.a Programming real-time
systems (in Ada)

Where we see how program code may
conform to the real-time systems theory,
and then we build design and coding
patterns that ensure conformance

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

From abstract to actual
 The real-time systems theory is of no use if

no implementation technology can meet its
requirements and assumptions

 We should like precise pairing between
– The workload model and the static and dynamic

components of the application program
 What the program says it wants to do, and what it really

does
– The scheduling phenomena on paper and at run

time
 As assumed vs. as implemented

215 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Means of enforcement
 Response-time analysis can be used to assert

correct temporal behavior at design time
– But that may not be robust if the specification claims

err on the optimistic side
 Platform mechanisms can be used at run time to

ensure that the application’s temporal behavior
stays within the asserted boundaries
– We shall look at some example mechanisms

 Nicely complementary approaches, with very
different costs
– The cost of compile-time checking is paid once
– The cost of run-time checking is paid during operation

216 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Matching the workload model /1
 Static set of tasks

– Ada: tasks declared at library level (the outermost scope),
so that they have the longest lifetime

 Tasks issue jobs repeatedly
– Duty cycle: activation, execution, wait-for-next-activation

 To facilitate conformance, tasks should have a single source of
activation (release event)

 Real-time attributes
– Release time

 Periodic: at every 𝑇 time units
 Sporadic: at least 𝑇 between any two subsequent releases

– Execution
 Worst-case execution time 𝐶 assumed to be known statically

– Deadline: 𝐷 time units after release

217 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 2

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Matching the workload model /2
 Task interaction (collaboration)

– Shared variables with mutually exclusive access
 Ada: protected objects (PO) with procedures and functions

– No avoidance synchronization: one’s release must
have a time bound
 Ada: PO with a single entry, which fits sporadic tasks

 Scheduling model
– Fixed-priority preemptive

 Ada: FIFO within priorities
 Access protocol for shared objects

– Ceiling priority protocol
 Ada: Ceiling_Locking policy

218 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects: exclusion
synchronization

219 of 533

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);

private
The_Integer : Integer := Initial_Value;

end Shared_Integer;
protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Concurrent Read

Mutually-exclusive Write

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects: avoidance
synchronization /1

 The PO interface exposes entry methods
– Calls to PO entries are accepted only if given conditions hold

within the functional logic of the PO

220 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects: avoidance
synchronization /2

 Any call on such entries is accepted only when the Boolean
guard (“when” clause) is open
– But this may not follow a predictable time pattern (no plausible

worst-case)

221 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 3

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

222 of 533

Language profiling
 Any full language can hardly be restrictive
 Restricting needs language profiles
 Ada: profile enforced by a configuration

directive to the compiler
pragma Profile (Ravenscar);

 Equivalent to a set of restrictions, plus three
additional configuration pragmas
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;

 See “Per approfondire 8” on the static web page

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

223 of 533

Ravenscar profile restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

224 of 533

Restriction checking
 Almost all of the Ravenscar profile restrictions are

checked at compile time
– That’s the key to a profile: the program’s conformance is

statically ascertained
 Those restrictions that would need full-program

analysis to be decided, are left to run-time checking
– Potentially blocking operations in PO bodies
– Priority ceiling violation
– Multiple call queued on a protected entry or suspension

object
– Task termination (real-time tasks do not terminate!)
 Let us consider these situations in more depth

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Potentially blocking operations
 A call to a PO entry
 Delay until statement (explicit suspension)
 Transitively, call on a subprogram whose body

contains a potentially blocking operation
 Pragma Detect_Blocking requires detection of

potentially blocking operations
– Exception Program_Error raised if detected

 All bets are off …
– Blocking need not be detected if it occurs in a call to a

foreign language embedded in an Ada procedure

225 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 4

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other run-time checks
 Priority ceiling violation
 More than one call waiting on a protected entry or a

suspension object
– The release depends on the entry queuing policy and may

incur priority inversion
– Program_Error must be raised in any such case

 Task termination
– Program behavior must be documented
– Possible termination behaviors include

 Silent termination
 Holding the task in a pre-terminated state
 Call of an application-defined termination handler defined with

the Ada.Task_Termination package (C.7.3)

226 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other restrictions
 Some restrictions on the sequential part of the language

may be useful in conjunction with the Ravenscar profile
– No_Dispatch
– No_IO
– No_Recursion
– No_Unchecked_Access
– No_Allocators
– No_Local_Allocators

 See ISO/IEC TR 15392, Guide for the use of the Ada
Programming Language in High Integrity Systems

227 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Outside of Ravenscar profile
 Real-time programming facilities of use

when full static assurance is not possible
– Execution-time measurement
– Execution-time timers
– Group budgets (for sporadic servers and

other resource reservation policies)
– Timing events
– Additional dispatching policies

228 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time measurement
 To monitor the CPU time consumed by

individual tasks
 Per-task CPU clocks can be defined

– Set at t ൌ 0 before task activation
– The clock value increases (notionally) as the

task executes
 Actual increments occur solely at dispatching

points (sound) or at synchronous queries (silly)

229 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 5

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

230 of 533

Ada.Execution_Time
with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant := implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time timers
 To fire a user-defined event when a CPU

clock reaches a specified value
– A dedicated handler is invoked by the runtime

when the corresponding event occurs
– The handler is an (access to) a protected

procedure
 The educated equivalent of a callback

 Basic mechanism for execution-time
monitoring

231 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

232 of 533

Ada.Execution_Time.Timers
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Group budgets
 To specify groups of tasks which share a

global execution-time budget
– Basic mechanism for server-based scheduling
 As needed to serve aperiodic arrivals

– Can be used to provide temporal isolation
among task groups

233 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 6

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

234 of 533

Group budgets (spec)
with System;
package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Add_Task (GB : in out Group_Budget;
T : in Ada.Task_Identification.Task_Id);

...
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB : in out Group_Budget;

Interval : in Time_Span);
...
procedure Set_Handler (GB : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Timing events
 To execute user code at a specified time

– A lightweight mechanism that does not
require involving an application-level task

– Similar in principle to interrupt handling
 The code is defined as an event handler

– An (access to) a protected procedure
 Directly invoked by the runtime

– Lowest possible latency

235 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

236 of 533

Ada.Real_Time.Timing events
package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

237 of 533

Dispatching policies
 A real-world real-time system may need other

scheduling policies than just preemptive FPS
– Non preemptive

 With run-to-completion semantics in between explicit yields
– Round robin

 Within a specified band of priorities
 Dispatch on quantum expiry is deferred until the end of

protected action
– Earliest Deadline First

 Within a specified band of priorities
 Relative and absolute “deadline”
 EDF ordered ready queues
 Resource locking used Deadline Floor policy

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 7

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

OOD for real-time systems
 Real-time components are design objects

– Instances of classes
– Hold abstract data types (internal state and

operations on them), and expose interfaces
 Based on well-defined code patterns

– Cyclic & sporadic tasks
– Protected data
– Passive data

238 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

239 of 533

Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Component taxonomy
 Cyclic component
 Sporadic component
 Protected data component

 Under inversion of control
– What differentiates a framework from a library:

the ability to enforce given design principles

240 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Cyclic component
 Clock-activated activity with fixed rate
 Attributes

– Period
– Deadline
– Worst-case execution time

 The most basic cyclic code pattern does not
need the synchronization agent
– The system clock delivers the activation event
– The component behavior is fixed and immutable

241 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 8

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

242 of 533

Cyclic component (basic)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

243 of 533

Cyclic thread (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

Internally converted to Time_Span (the right type)

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

244 of 533

Cyclic thread (body)
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher up in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- this is the job
--+ (this one, fixed and parameterless)

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Sporadic component
 Activated by a software-activated or a non-clock

interrupt event
– Realized by signaling a waiting component

 Attributes
– Minimum inter-arrival time
– Deadline
– Worst-case execution time

 The synchronization agent of the target
component is used to signal the activation event
– And to store-and-forward signal-related data (if any)

245 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 9

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

246 of 533

Sporadic component

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

247 of 533

Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic thread is activated by calling
the Signal operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

248 of 533

Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

249 of 533

Sporadic control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 10

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

250 of 533

Protected component

normal PO operations
(OPCS)

protected component

PI

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Enforcing temporal properties
 The patterns we have seen just guarantee

periodic or sporadic activation
 For stronger temporal guarantees at run

time, such as
– Minimum inter-arrival time for sporadic events
– Deadline for all types of thread
– WCET budgets for all types of thread

 Those patterns should be augmented

251 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

252 of 533

Minimum inter-arrival time /1
 Violations of the specified separation

interval may cause increased interference
on lower-priority tasks
 Approach: prevent sporadic thread from

being activated earlier than stipulated
– Compute earliest (absolute) allowable

activation time
– Withhold activation (if triggered) until that time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

253 of 533

Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival time, internally converted to ms

ms

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 11

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

254 of 533

Sporadic thread (body)
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Still a single (logical) point of activation, but with nasty runtime overhead

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Critique
 May incur temporal drift as the clock is read

after task release
– Preemption may hit just after the release but before

reading the clock
– Separation may become larger than required

 Better to read the clock at the place and time
the task is released
– Within the synchronization agent, which is protected

hence less exposed to general interference

255 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

256 of 533

Minimum inter-arrival time /2

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

257 of 533

Recording release time /1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 12

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

258 of 533

Recording release time /2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline miss
 Two possible causes for it

– Higher-priority tasks executing more often
than expected
 Can be prevented with inter-arrival time

enforcement
– Overruns in the same or higher-priority tasks
 Programming error in the functional code
 Inaccurate WCET analysis

259 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline-miss detection
 Can be done with the help of timing events

– A mechanism for requiring some application-level
action to be executed at a given time

 Timing events are statically allocated
– Under the Ravenscar Profile, they can only exist at

the library level
 So that they never risk going out of scope!

 Minor optimization possible for periodic tasks
– Which however breaks the symmetry of code patterns

260 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

261 of 533

Cyclic thread with deadline miss
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 13

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

262 of 533

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

263 of 533

Sporadic thread with deadline
miss detection (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

264 of 533

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific
OPCS.Sporadic_Operation;
Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time overruns
 Tasks may execute for longer than stipulated,

owing to
– Programming errors in the functional code
– Inaccurate WCET values used in feasibility analysis

 Optimistic instead of conservative

 WCET overruns can be detected at run time
with the help of execution-time timers
– Not included in the Ravenscar profile because their

implementation is costly
– Included in extended profiles

265 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 14

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

266 of 533

Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

267 of 533

Thread body
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Observation
 WCET overruns in sporadic tasks can be

detected similarly
 The timer should be set after release
 The timer is implicitly canceled when set

again

268 of 533

Summary

 We have seen how one particular programming
language is able to capture all design and execution
aspects that descend from the real-time systems
theory that we seen so far

 We have seen how design and code patterns could
be used to make sure that the application program
conforms with the required semantics

2019/2020 UniPD – T. Vardanega Real-Time Systems 269 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 15

Selected readings

 Tullio Vardanega, Juan Zamorano, Juan Antonio de
la Puente (2005), On the Dynamic Semantics and the
Timing Behavior of Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2b

2019/2020 UniPD – T. Vardanega Real-Time Systems 270 of 533

