
2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 1

4.a Programming real-time
systems (in Ada)

Where we see how program code may
conform to the real-time systems theory,
and then we build design and coding
patterns that ensure conformance

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

From abstract to actual
 The real-time systems theory is of no use if

no implementation technology can meet its
requirements and assumptions

 We should like precise pairing between
– The workload model and the static and dynamic

components of the application program
 What the program says it wants to do, and what it really

does
– The scheduling phenomena on paper and at run

time
 As assumed vs. as implemented

215 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Means of enforcement
 Response-time analysis can be used to assert

correct temporal behavior at design time
– But that may not be robust if the specification claims

err on the optimistic side
 Platform mechanisms can be used at run time to

ensure that the application’s temporal behavior
stays within the asserted boundaries
– We shall look at some example mechanisms

 Nicely complementary approaches, with very
different costs
– The cost of compile-time checking is paid once
– The cost of run-time checking is paid during operation

216 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Matching the workload model /1
 Static set of tasks

– Ada: tasks declared at library level (the outermost scope),
so that they have the longest lifetime

 Tasks issue jobs repeatedly
– Duty cycle: activation, execution, wait-for-next-activation

 To facilitate conformance, tasks should have a single source of
activation (release event)

 Real-time attributes
– Release time

 Periodic: at every 𝑇 time units
 Sporadic: at least 𝑇 between any two subsequent releases

– Execution
 Worst-case execution time 𝐶 assumed to be known statically

– Deadline: 𝐷 time units after release

217 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 2

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Matching the workload model /2
 Task interaction (collaboration)

– Shared variables with mutually exclusive access
 Ada: protected objects (PO) with procedures and functions

– No avoidance synchronization: one’s release must
have a time bound
 Ada: PO with a single entry, which fits sporadic tasks

 Scheduling model
– Fixed-priority preemptive

 Ada: FIFO within priorities
 Access protocol for shared objects

– Ceiling priority protocol
 Ada: Ceiling_Locking policy

218 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects: exclusion
synchronization

219 of 533

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);

private
The_Integer : Integer := Initial_Value;

end Shared_Integer;
protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Concurrent Read

Mutually-exclusive Write

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects: avoidance
synchronization /1

 The PO interface exposes entry methods
– Calls to PO entries are accepted only if given conditions hold

within the functional logic of the PO

220 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Protected objects: avoidance
synchronization /2

 Any call on such entries is accepted only when the Boolean
guard (“when” clause) is open
– But this may not follow a predictable time pattern (no plausible

worst-case)

221 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 3

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

222 of 533

Language profiling
 Any full language can hardly be restrictive
 Restricting needs language profiles
 Ada: profile enforced by a configuration

directive to the compiler
pragma Profile (Ravenscar);

 Equivalent to a set of restrictions, plus three
additional configuration pragmas
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;

 See “Per approfondire 8” on the static web page

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

223 of 533

Ravenscar profile restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

224 of 533

Restriction checking
 Almost all of the Ravenscar profile restrictions are

checked at compile time
– That’s the key to a profile: the program’s conformance is

statically ascertained
 Those restrictions that would need full-program

analysis to be decided, are left to run-time checking
– Potentially blocking operations in PO bodies
– Priority ceiling violation
– Multiple call queued on a protected entry or suspension

object
– Task termination (real-time tasks do not terminate!)
 Let us consider these situations in more depth

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Potentially blocking operations
 A call to a PO entry
 Delay until statement (explicit suspension)
 Transitively, call on a subprogram whose body

contains a potentially blocking operation
 Pragma Detect_Blocking requires detection of

potentially blocking operations
– Exception Program_Error raised if detected

 All bets are off …
– Blocking need not be detected if it occurs in a call to a

foreign language embedded in an Ada procedure

225 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 4

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other run-time checks
 Priority ceiling violation
 More than one call waiting on a protected entry or a

suspension object
– The release depends on the entry queuing policy and may

incur priority inversion
– Program_Error must be raised in any such case

 Task termination
– Program behavior must be documented
– Possible termination behaviors include

 Silent termination
 Holding the task in a pre-terminated state
 Call of an application-defined termination handler defined with

the Ada.Task_Termination package (C.7.3)

226 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Other restrictions
 Some restrictions on the sequential part of the language

may be useful in conjunction with the Ravenscar profile
– No_Dispatch
– No_IO
– No_Recursion
– No_Unchecked_Access
– No_Allocators
– No_Local_Allocators

 See ISO/IEC TR 15392, Guide for the use of the Ada
Programming Language in High Integrity Systems

227 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Outside of Ravenscar profile
 Real-time programming facilities of use

when full static assurance is not possible
– Execution-time measurement
– Execution-time timers
– Group budgets (for sporadic servers and

other resource reservation policies)
– Timing events
– Additional dispatching policies

228 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time measurement
 To monitor the CPU time consumed by

individual tasks
 Per-task CPU clocks can be defined

– Set at t ൌ 0 before task activation
– The clock value increases (notionally) as the

task executes
 Actual increments occur solely at dispatching

points (sound) or at synchronous queries (silly)

229 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 5

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

230 of 533

Ada.Execution_Time
with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant := implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time timers
 To fire a user-defined event when a CPU

clock reaches a specified value
– A dedicated handler is invoked by the runtime

when the corresponding event occurs
– The handler is an (access to) a protected

procedure
 The educated equivalent of a callback

 Basic mechanism for execution-time
monitoring

231 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

232 of 533

Ada.Execution_Time.Timers
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Group budgets
 To specify groups of tasks which share a

global execution-time budget
– Basic mechanism for server-based scheduling
 As needed to serve aperiodic arrivals

– Can be used to provide temporal isolation
among task groups

233 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 6

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

234 of 533

Group budgets (spec)
with System;
package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Add_Task (GB : in out Group_Budget;
T : in Ada.Task_Identification.Task_Id);

...
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB : in out Group_Budget;

Interval : in Time_Span);
...
procedure Set_Handler (GB : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Timing events
 To execute user code at a specified time

– A lightweight mechanism that does not
require involving an application-level task

– Similar in principle to interrupt handling
 The code is defined as an event handler

– An (access to) a protected procedure
 Directly invoked by the runtime

– Lowest possible latency

235 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

236 of 533

Ada.Real_Time.Timing events
package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

237 of 533

Dispatching policies
 A real-world real-time system may need other

scheduling policies than just preemptive FPS
– Non preemptive

 With run-to-completion semantics in between explicit yields
– Round robin

 Within a specified band of priorities
 Dispatch on quantum expiry is deferred until the end of

protected action
– Earliest Deadline First

 Within a specified band of priorities
 Relative and absolute “deadline”
 EDF ordered ready queues
 Resource locking used Deadline Floor policy

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 7

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

OOD for real-time systems
 Real-time components are design objects

– Instances of classes
– Hold abstract data types (internal state and

operations on them), and expose interfaces
 Based on well-defined code patterns

– Cyclic & sporadic tasks
– Protected data
– Passive data

238 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

239 of 533

Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Component taxonomy
 Cyclic component
 Sporadic component
 Protected data component

 Under inversion of control
– What differentiates a framework from a library:

the ability to enforce given design principles

240 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Cyclic component
 Clock-activated activity with fixed rate
 Attributes

– Period
– Deadline
– Worst-case execution time

 The most basic cyclic code pattern does not
need the synchronization agent
– The system clock delivers the activation event
– The component behavior is fixed and immutable

241 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 8

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

242 of 533

Cyclic component (basic)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

243 of 533

Cyclic thread (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

Internally converted to Time_Span (the right type)

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

244 of 533

Cyclic thread (body)
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher up in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- this is the job
--+ (this one, fixed and parameterless)

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Sporadic component
 Activated by a software-activated or a non-clock

interrupt event
– Realized by signaling a waiting component

 Attributes
– Minimum inter-arrival time
– Deadline
– Worst-case execution time

 The synchronization agent of the target
component is used to signal the activation event
– And to store-and-forward signal-related data (if any)

245 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 9

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

246 of 533

Sporadic component

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

247 of 533

Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic thread is activated by calling
the Signal operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

248 of 533

Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

249 of 533

Sporadic control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 10

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

250 of 533

Protected component

normal PO operations
(OPCS)

protected component

PI

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Enforcing temporal properties
 The patterns we have seen just guarantee

periodic or sporadic activation
 For stronger temporal guarantees at run

time, such as
– Minimum inter-arrival time for sporadic events
– Deadline for all types of thread
– WCET budgets for all types of thread

 Those patterns should be augmented

251 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

252 of 533

Minimum inter-arrival time /1
 Violations of the specified separation

interval may cause increased interference
on lower-priority tasks
 Approach: prevent sporadic thread from

being activated earlier than stipulated
– Compute earliest (absolute) allowable

activation time
– Withhold activation (if triggered) until that time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

253 of 533

Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival time, internally converted to ms

ms

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 11

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

254 of 533

Sporadic thread (body)
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Still a single (logical) point of activation, but with nasty runtime overhead

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Critique
 May incur temporal drift as the clock is read

after task release
– Preemption may hit just after the release but before

reading the clock
– Separation may become larger than required

 Better to read the clock at the place and time
the task is released
– Within the synchronization agent, which is protected

hence less exposed to general interference

255 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

256 of 533

Minimum inter-arrival time /2

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

257 of 533

Recording release time /1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 12

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

258 of 533

Recording release time /2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline miss
 Two possible causes for it

– Higher-priority tasks executing more often
than expected
 Can be prevented with inter-arrival time

enforcement
– Overruns in the same or higher-priority tasks
 Programming error in the functional code
 Inaccurate WCET analysis

259 of 533

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Deadline-miss detection
 Can be done with the help of timing events

– A mechanism for requiring some application-level
action to be executed at a given time

 Timing events are statically allocated
– Under the Ravenscar Profile, they can only exist at

the library level
 So that they never risk going out of scope!

 Minor optimization possible for periodic tasks
– Which however breaks the symmetry of code patterns

260 of 533 Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

261 of 533

Cyclic thread with deadline miss
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 13

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

262 of 533

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

263 of 533

Sporadic thread with deadline
miss detection (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

264 of 533

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific
OPCS.Sporadic_Operation;
Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Execution-time overruns
 Tasks may execute for longer than stipulated,

owing to
– Programming errors in the functional code
– Inaccurate WCET values used in feasibility analysis

 Optimistic instead of conservative

 WCET overruns can be detected at run time
with the help of execution-time timers
– Not included in the Ravenscar profile because their

implementation is costly
– Included in extended profiles

265 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 14

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

266 of 533

Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

267 of 533

Thread body
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

Observation
 WCET overruns in sporadic tasks can be

detected similarly
 The timer should be set after release
 The timer is implicitly canceled when set

again

268 of 533

Summary

 We have seen how one particular programming
language is able to capture all design and execution
aspects that descend from the real-time systems
theory that we seen so far

 We have seen how design and code patterns could
be used to make sure that the application program
conforms with the required semantics

2019/2020 UniPD – T. Vardanega Real-Time Systems 269 of 533

2019/2020 UniPD - T. Vardanega 14/04/2020

Real-Time Systems 15

Selected readings

 Tullio Vardanega, Juan Zamorano, Juan Antonio de
la Puente (2005), On the Dynamic Semantics and the
Timing Behavior of Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2b

2019/2020 UniPD – T. Vardanega Real-Time Systems 270 of 533

