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4.b Under the hood

Where we understand how application-level 
RT abstractions come into existence, see 
how complex such services may be, and 
how RTA equations can capture their cost

Runtime support (aka the RTOS) /1

 If the programming language provides the abstraction 
of application-level “task”, then the runtime support of 
that language realizes its implementation
 As in Ada, Java, and more recently C11

 For programming languages that do not provide such 
abstraction, tasks exist only in the Real-Time Operating 
System (RTOS) to which the implementation is bound
 As in old-style C

 For a real-time embedded systems, the two (runtime 
and RTOS), by and large, are functionally equivalent
 Where I am saying RTOS in the sequel, I also mean runtime
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Runtime support (aka the RTOS) /2

 Application-level tasks issue jobs: now we know how 
 The jobs are the unit of CPU assignment
 The scheduler decides which job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 The RTOS knows all tasks, and manages their life cycle
 The task abstraction exists thanks to a descriptor: the Task Control 

Block (TCB) 
 One such TCB exists per task, stored in RAM
 The insertion of a task in a state queue (e.g., ready) happens by 

placing a pointer from a queue place to the corresponding TCB
 The end-of-life disposal of a task requires removing its TCB and 

releasing all of its memory (its stack and its global data in the heap)
 This is onerous: real-time embedded systems prefer infinite tasks
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Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority
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Runtime support (aka the RTOS) /3

 The model of computation of the application tasks defines 
what tasks can do and their life cycle

 The MoC should be fully determined by the RTOS
 Outside or inside of the programming language, contingent 

on the binding of it with the RTOS
 For Ada, we know it is inside of it

 At one extreme, the MoC may also be defined by the 
user, making “creative” use of the RTOS API
 Risky: the user’s whim determines whether the actually 

execution semantics of the program eventually conforms with 
the assumptions made in feasibility analysis
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System calls /1

 Most of the RTOS services execute in response to direct or 
indirect invocations made by application tasks
 In general-purpose systems, such invocations are termed system calls

 For safety reasons, the system call APIs of GPOSs are not
directly visible to the application
 System calls are “hidden” in procedures exported to the 

programming language via compiler libraries (OS bindings)
 Those library procedures do all of the preparatory work for correct 

invocation of the designated system call on behalf of the application
 Thanks to that “hiding”, the GPOS does not share memory 

with the application
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System calls /2
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System calls /3

 In embedded systems, the RTOS and the application 
often share memory
 Address-space separation would be too costly for them
 The RTOS is compiled with the application in a single binary
 Hence, real-time embedded programs must be much more 

trustworthy than general-purpose applications

 The RTOS must protect its own data structures from 
the risk of race condition arising from concurrent tasks
 RTOS services must therefore disable preemption selectively
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Runtime support (aka the RTOS) /4

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release, it executes the application-code of the job and then 
makes a suspension call until the next release

 Sporadic task
 An RTOS thread whose suspension point is not released 

periodically but with guaranteed minimum distance
 After release, it executes the job and then calls a wait-for-signal service

 Aperiodic task
 Indistinguishable from the rest, other than its being placed in 

a server’s backlog queue and not in the ready queue
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Task states /1
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Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least	overhead?
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Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on 

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the 
distinct forms of suspension
 A time-based queue for periodic suspension
 An event-based queue for sporadic suspension

 Howe to assure minimum separation between subsequent releases?
 The inversion of control pattern that we have seen in the model discussed 

earlier allows doing that transparently
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Context switch

 The time and space overhead incurred at preemption 
should be accounted for in schedulability analysis

 Under preemptive scheduling, every job run incurs at 
least two context switches
 At activation, to install its execution context
 At resumption after preemption (if any), to restore it
 At completion, to clean it up

 The corresponding time cost should be charged to the 
job’s WCET
 This requires knowing the internals of the run-time system
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Priority levels /1

 The feasibility analysis techniques that we have studied 
assume tasks (and jobs) to have distinct priorities
 Each index in the RTA equations denotes a single task 

unambiguously
 Concrete systems may not have sufficient priorities

 In that case, jobs may have to share priority levels
 For jobs at the same level of priority, we might use FIFO or 

round-robin
 FIFO is better in the RT domain: predictability wins over fairness!

 If priority levels were shared, we would have a worsening of 
worst-case situation to contemplate in the analysis
 Job 𝐽 might be released last after all other jobs at its level of priority
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Example: FIFO within priorities
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𝜋ଵ

𝜏௜ 𝜏௝

𝜏௥𝜏௦ 𝜏௞

low

high
FIFO

Running

Ready

𝜋 ஐೞ
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Priority levels /2

 Let 𝑆ሺ𝑖ሻ denote the set of jobs 𝐽௝ with 𝜋௝ ൌ 𝜋௜, 
excluding 𝐽௜ itself

 The time demand equation for 𝐽௜ in the interval 
0 ൏ 𝑡 ൑ min ሺ𝐷௜ ,𝑝௜ሻ becomes 

𝜔௜ 𝑡 ൌ 𝑒௜ ൅ 𝐵௜ ൅෍𝑒௝∈ௌ ௜ ൅
ௌሺ௜ሻ

෍
𝜔௜ 𝑡
𝑝௞௞ୀଵ,..,௜ିଵ

𝑒௞

 This obviously worsens 𝐽௜ ’s response time
 It is important to understand what is the impact of that 

at system level: schedulability loss measures that
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Priority levels /4

 When the assigned priorities ℛ ൌ 1, . . ,Ω௡ exceed the 
available priorities ℋ ൌ 𝜋ଵ, . . ,𝜋ஐೞ , ( ℛ ൐ ℋ ), we 
need a Ω௡:Ω௦ mapping function to collapse ℛ into ℋ : 
the priority grid
 All assigned priorities in range ሺ0,𝜋ଵሿ will take value 𝜋ଵ
 For 1 ൏ 𝑘 ൑ Ω௦, the assigned priorities in range ሺ𝜋௞ିଵ,𝜋௞ሿ

will take value 𝜋௞

 Two main techniques address this problem
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]
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Priority levels /5

 Uniform mapping (𝑄 ൌ ஐ೙
ஐೞ

)

 𝜋௞ ← 𝑘, … , 𝑘𝑄 ,𝜋௞ାଵ ← 𝑘𝑄 ൅ 1, … , ሺ𝑘 ൅ 1ሻ𝑄  ;  𝑘 ൌ 1, … ,Ω௦ െ 1
 Example

Ω௡ ൌ 9,Ω௦ ൌ 3, 𝑄 ൌ ଽ
ଷ
ൌ 3, 𝜋ଵ ൌ 1,𝜋ଶ ൌ 2,𝜋ଷ ൌ 3

𝜋ଵ ← 1. . 3 ,  𝜋ଶ← 4. . 6 ,𝜋ଷ ← 7. . 9

 Constant ratio mapping (CRM)
 Collapses subsets of ℛ into the 𝜋௜ values of ℋ by keeping the ratio 

𝑔 ൌ ሺగ೔షభାଵሻ
గ೔

constant for 𝑖 ൌ 2, . . ,Ω௦, to favor higher-priority jobs

 Example (same as above, with g ൌ ଵ
ଶ
)

𝜋ଵ ൌ 1,𝜋ଶ ൌ 4, 𝜋ଷ ൌ 10 ⇒ 𝜋ଵ ← 1 ,𝜋ଶ ← 2. . 4 ,𝜋ଷ ← 5. . 9

2019/2020 UniPD – T. Vardanega Real-Time Systems 287 of  533

Priority levels /6
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9
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𝛀𝒏
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𝟏
𝟐
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Uniform	mapping Constant	ratio	mapping
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ሺ𝜋ଵ ൅ 1ሻ
𝜋௦௨௖௖

ൌ 𝑔

𝝅𝒔𝒖𝒄𝒄 ൌ
𝝅𝟏 ൅ 𝟏
𝒈

𝝅𝒔𝒖𝒄𝒄 ൌ 𝟒

Priority levels /7

 CRM degrades the schedulable utilization of RMS gracefully
 For large 𝑛, implicit deadlines, and 𝑔 ൌ 𝑚𝑖𝑛ଶஸ௝ஸஐೞ

ሺగೕషభାଵሻ
గೕ

, 
the CRM’s schedulable utilization approximates

𝑓 𝑔 ൌ ቐ
𝑙𝑛 2𝑔 ൅ 1 െ 𝑔,  ଵ

ଶ
൏ 𝑔 ൑ 1

𝑔,                           0 ൏ 𝑔 ൑ ଵ
ଶ

 The ௙ሺ௚ሻ
௟௡ሺଶሻ

ratio thus represents the relative schedulability
of CRM in relation to RMS’ utilization bound
 Example

Ω௦ ൌ 256,Ω௡ ൌ 100,000 →
𝑓 𝑔

Ω௡ 2
ଵ
Ω೙ െ 1

ൌ 0.9986

 This shows that 256 priority levels should suffice for RMS
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With 𝐠 ൌ 𝟏, every task
would have its own priority

Time management /1

 The system clock abstraction is composed of 
 A HW part decremented by one unit at every clock pulse, 

as determined by the clock rate
 A periodic-counting register, automatically reset to a default tick size

when it reaches the triggering edge (0), and trips the clock tick
 A SW part incremented by SW at the clock tick

 The system clock effectively counts clock ticks
 A queue of time events, fired and not serviced

 Pending until they are serviced
 A handler of clock-tick interrupts

 Which increments the clock-tick counter and, every 𝑁 ൐ 0
occurrences, also services the pending time events
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Time management /2

 The frequency of the clock tick determines the 
resolution (granularity) of the system clock
 It should be an integer divisor of the tick size so that the

RTOS may service time events at exactly every 𝑁 ∈ 𝐼𝑁𝑇
clock ticks

 Clock-tick interrupts maintain the system clock
 More frequent, tolerable overhead

 One such interrupt in 𝑁 handles scheduling events
 Less frequent, high overhead
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Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy but the 

larger the interrupt overhead
 There must be a sound balance between the clock 

accuracy needed by the application and the clock 
resolution that can be afforded by the system
 Latency is intrinsic in any query to read the clock
 The ORK runtime for the Leon microprocessor takes 493 

clock cycles to read the clock (www.dit.upm.es/~ork/)
 @ 40 MHz, 500 clock cycles correspond to 12.5 𝜇sec

 The clock resolution cannot be finer-grained than the 
worst-case latency incurred reading the clock (!)
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Time management /4

 Beside periodic clocks, if the processor allows, the 
RTOS may also support one-shot (aka interval) timers
 They operate in a programmed (non-repetitive) way so that 

time events suffer no latency from resolution problems
 The RTOS scans the queue of the programmed time events to 

set the next interrupt alarm due from the interval timer
 Interval timers are costly

 They have to be written by SW and the value to set depends 
on the time events pending in the queue

 Their resolution is limited by the time overhead of its 
handling by the RTOS: 7,061 clock cycles in ORK for Leon 
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Time management /5

 The accuracy of a time event is the difference between 
when the event actually triggers and the time required

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected

 Without interval timer, it would be at every 𝑁 clock ticks
 With interval timer, it would be at every interval expiry

 The policy used to service the time-event queues
 Expiry-based, LIFO, FIFO

 The time overhead cost of handling the queue
 It follows that the release time of periodic tasks is 

exposed to jitter (!)
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The scheduler /1

 This is a distinct part of the RTOS that does not 
execute in response to explicit application invocations
 Other than when using cooperative scheduling

 The scheduler acts every time the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming 
language, the scheduler “activation” is periodic in 
response to clock interrupts
 The poor RTOS has no other way to know when to schedule!
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The scheduler /2

 If time-based scheduling (e.g. LLF) is used 
 The scheduler must increment the execution-time budget 

counter of the running job at every clock interrupt
 Possibly service the queue of time-based events pending
 Possibly attend to the ready queue

 General-purpose operating systems have a tick size in 
the region of 10 𝑚𝑠
 This is much too coarse-grained for RTOS, but too high frequency 

incurs excessive overhead
 The scheduler should support event-driven execution 

with minimum latency
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Tick scheduling /1

 The scheduler can be event-driven only if the MoC is 
defined within the application programming language
 The scheduler always immediately executes on the occurrence 

of a scheduling event (aka dispatching point)
 If it was so then we could assume that a job is placed in the 

ready queue exactly at its release time

 Several schedulers are time-driven
 They make scheduling decisions on the arrival of periodic 

clock interrupts, with no relation to application events
 This mode of operation is termed tick scheduling
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Tick scheduling /2

 The tick scheduler may acknowledge a job’s release 
time up to one clock tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release 

time arrived but not yet acknowledged” state are held
 The time and space overhead of transferring jobs from 

that logical place to the ready queue is not null and must 
be accounted for in the schedulability test together with 
the time and space overhead of handling clock interrupts
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Example
𝑻 ൌ 𝝉𝟏 ൌ 𝟎.𝟏,𝟒,𝟏,𝟒 , 𝝉𝟐 ൌ 𝟎.𝟏,𝟓,𝟏.𝟖,𝟓 , 𝝉𝟑 ൌ 𝟎,𝟐𝟎,𝟓,𝟐𝟎
𝝉𝟑 with a first no-preemption section of duration 𝟏.𝟏 time units

With RTA and event-driven scheduling, 𝑹𝟏 ൌ 𝟐.𝟏,𝑹𝟐 ൌ 𝟑.𝟗,𝑹𝟑 ൌ 𝟏𝟒.𝟒 ሺOKሻ
What with tick scheduling, clock period 𝟏 and 

time overhead 𝟎.𝟎𝟓 ൅ 𝟎.𝟎𝟔 ൈ 𝒏 per tick handling and queue movement?

0 1 2 3 4 5 6

𝝉𝟏

𝝉𝟑

Deadline miss

Release 
at tick

yield𝝉𝟐

𝝉𝟑

𝝉𝟏, 𝝉𝟐 𝝉𝟏 𝝉𝟐

1-tick delay
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ሺ𝜑௜ ,𝑝௜ , 𝑒௜ ,𝐷௜ሻ
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Tick scheduling /3

 The effect of tick scheduling is captured in RTA for job 𝐽௜ by
 Introducing a notional task 𝜏଴ ൌ ሺ𝑝଴, 𝑒଴ሻ with highest priority, to 

account for the 𝑒଴ cost of handling clock interrupts with period 𝑝଴
 For every job 𝐽௞ ∶ 𝜋௞ ൒ 𝜋௜ , adding to 𝑒௞ the time overhead 𝑚଴ due to 

moving 𝐽௞ to the ready queue
 ሺ𝐾௞ ൅ 1ሻ times for the 𝐾௞ times that job 𝐽௞ may self suspend

 For every job 𝐽௟:𝜋௟ ൏ 𝜋௜ , introducing a distinct notional task 𝜏ఊ ൌ
ሺ𝑝௟,𝑚଴ሻ to account for the time cost of moving 𝐽௟ to the ready queue

 Computing 𝐵௜ሺ𝑛𝑝ሻ as function of 𝑝଴:  𝐽௜ may suffer up to 𝑝଴ units of 
delay after becoming ready even without not-preemptive execution 

 𝐵௜ሺ𝑛𝑝ሻ ൌ ሺ 𝑚𝑎𝑥௞ሺ
ఏೖ
௣బ
ሻ ൅ 1ሻ𝑝଴ before including non-preemption

 Where 𝜃௞ is the maximum time of non-preemptive execution by any job 𝐽௞
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I/O subsystems

 When the I/O subsystem is an active resource (in 
the taxonomy seen in the introduction material), it 
would need its own scheduler

 Methods to serve I/O access requests may employ
 Run-to-completion non-preemptive FIFO semantics
 Non-preemptive time-division (quantized) schemes 
 Priority-driven scheduling as seen for CPU scheduling, 

such as FPS, EDF, LLF
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Interrupt handling /1

 HW interrupts are the most efficient manner for the 
processor to notify the application about the 
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated 

to external units like DMA (direct memory access)
 Frequency and load of the interrupt handling 

service vary with the source of the interrupt
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Interrupt handling /2

 For better efficiency, the interrupt handling service 
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt 

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which 
code to associate to either part
 Interrupt service can also have a device-independent part and 

a device-specific part
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Interrupt handling /3

 When the HW interface asserts an interrupt, the 
processor saves state registers (e.g., PC, PSW) in the 
interrupt stack and jumps to the address of the needed 
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions 

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending 

(depending on the HW)

 Interrupts operate at an assigned level of priority so 
that interrupt service incurs scheduling if interrupts nest
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Interrupt handling /4

 Depending on the HW, the interrupt source is 
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally 

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers 
are restored and interrupts are enabled again

2019/2020 UniPD – T. Vardanega Real-Time Systems 305 of  533

Interrupt handling /5

 The worst-case latency incurred on interrupt handling is 
determined by the time needed to
1. Complete the current instruction
2. Save the processor registers and the general context of the task 

being interrupted
3. Clear the processor pipeline
4. Acquire the interrupt vector
5. Activate the trap to kernel mode
6. Disable interrupts, so that the immediate part of the ISR can 

execute at the highest priority
7. Identify the interrupt source and jump to the corresponding ISR
8. Begin execution of the selected ISR
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Interrupt handling /6

 To reduce distributed overhead, the deferred part of 
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data 
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to 

spawn its own tasks for deferred interrupt handling
 We can do that in Ada …
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Interrupt handling /7

 Using the OOD patterns we saw earlier, the deferred 
part of the ISR would map to a sporadic task released by 
the immediate part of the ISR

 For better responsiveness, schemes such as slack stealing
or bandwidth preservation could be used
 So that total interference from interrupts is bounded, but a 

given quota of them may receive full service within 
replenishment intervals

 During those intervals, bandwidth preservation retains the 
unused reserve of execution budget, which can help serve 
occasional bursts

 These solutions need specialized support from the RTOS
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Putting it all together
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the clock
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interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a 
suspension call𝑅௜଴ ൌ 𝐵௜ ൅ 𝐶𝑆1 ൅ 𝐶௜

𝑅௜ ൌ 𝑅௜௡ ൅ 𝐽ௐ

𝑅௜ is a compositional term Its RHS benefits from composable terms
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Summary

 We have seen how an RTOS (or runtime) supports 
the application-level abstractions that recur in the 
real-time systems theory

 We have appreciated how complex those abstraction 
services may be

 We have understood that they may cause latency in 
the occurrence of scheduling and dispatching events

 We have realized that their impact should be captured 
in the Response-Time Analysis equations
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