
2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 1

4.b Under the hood

Where we understand how application-level
RT abstractions come into existence, see
how complex such services may be, and
how RTA equations can capture their cost

Runtime support (aka the RTOS) /1

 If the programming language provides the abstraction
of application-level “task”, then the runtime support of
that language realizes its implementation
 As in Ada, Java, and more recently C11

 For programming languages that do not provide such
abstraction, tasks exist only in the Real-Time Operating
System (RTOS) to which the implementation is bound
 As in old-style C

 For a real-time embedded systems, the two (runtime
and RTOS), by and large, are functionally equivalent
 Where I am saying RTOS in the sequel, I also mean runtime

2019/2020 UniPD – T. Vardanega Real-Time Systems 272 of 533

Runtime support (aka the RTOS) /2

 Application-level tasks issue jobs: now we know how
 The jobs are the unit of CPU assignment
 The scheduler decides which job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 The RTOS knows all tasks, and manages their life cycle
 The task abstraction exists thanks to a descriptor: the Task Control

Block (TCB)
 One such TCB exists per task, stored in RAM
 The insertion of a task in a state queue (e.g., ready) happens by

placing a pointer from a queue place to the corresponding TCB
 The end-of-life disposal of a task requires removing its TCB and

releasing all of its memory (its stack and its global data in the heap)
 This is onerous: real-time embedded systems prefer infinite tasks

2019/2020 UniPD – T. Vardanega Real-Time Systems 273 of 533

Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority

2019/2020 UniPD – T. Vardanega Real-Time Systems 274 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 2

Runtime support (aka the RTOS) /3

 The model of computation of the application tasks defines
what tasks can do and their life cycle

 The MoC should be fully determined by the RTOS
 Outside or inside of the programming language, contingent

on the binding of it with the RTOS
 For Ada, we know it is inside of it

 At one extreme, the MoC may also be defined by the
user, making “creative” use of the RTOS API
 Risky: the user’s whim determines whether the actually

execution semantics of the program eventually conforms with
the assumptions made in feasibility analysis

2019/2020 UniPD – T. Vardanega Real-Time Systems 275 of 533

System calls /1

 Most of the RTOS services execute in response to direct or
indirect invocations made by application tasks
 In general-purpose systems, such invocations are termed system calls

 For safety reasons, the system call APIs of GPOSs are not
directly visible to the application
 System calls are “hidden” in procedures exported to the

programming language via compiler libraries (OS bindings)
 Those library procedures do all of the preparatory work for correct

invocation of the designated system call on behalf of the application
 Thanks to that “hiding”, the GPOS does not share memory

with the application

2019/2020 UniPD – T. Vardanega Real-Time Systems 276 of 533

System calls /2

2019/2020 UniPD – T. Vardanega Real-Time Systems 277 of 533

System calls /3

 In embedded systems, the RTOS and the application
often share memory
 Address-space separation would be too costly for them
 The RTOS is compiled with the application in a single binary
 Hence, real-time embedded programs must be much more

trustworthy than general-purpose applications

 The RTOS must protect its own data structures from
the risk of race condition arising from concurrent tasks
 RTOS services must therefore disable preemption selectively

2019/2020 UniPD – T. Vardanega Real-Time Systems 278 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 3

Runtime support (aka the RTOS) /4

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release, it executes the application-code of the job and then
makes a suspension call until the next release

 Sporadic task
 An RTOS thread whose suspension point is not released

periodically but with guaranteed minimum distance
 After release, it executes the job and then calls a wait-for-signal service

 Aperiodic task
 Indistinguishable from the rest, other than its being placed in

a server’s backlog queue and not in the ready queue

2019/2020 UniPD – T. Vardanega Real-Time Systems 279 of 533

Task states /1

2019/2020 UniPD – T. Vardanega

Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least	overhead?

Real-Time Systems 280 of 533

Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the
distinct forms of suspension
 A time-based queue for periodic suspension
 An event-based queue for sporadic suspension

 Howe to assure minimum separation between subsequent releases?
 The inversion of control pattern that we have seen in the model discussed

earlier allows doing that transparently

2019/2020 UniPD – T. Vardanega Real-Time Systems 281 of 533

Context switch

 The time and space overhead incurred at preemption
should be accounted for in schedulability analysis

 Under preemptive scheduling, every job run incurs at
least two context switches
 At activation, to install its execution context
 At resumption after preemption (if any), to restore it
 At completion, to clean it up

 The corresponding time cost should be charged to the
job’s WCET
 This requires knowing the internals of the run-time system

2019/2020 UniPD – T. Vardanega Real-Time Systems 282 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 4

Priority levels /1

 The feasibility analysis techniques that we have studied
assume tasks (and jobs) to have distinct priorities
 Each index in the RTA equations denotes a single task

unambiguously
 Concrete systems may not have sufficient priorities

 In that case, jobs may have to share priority levels
 For jobs at the same level of priority, we might use FIFO or

round-robin
 FIFO is better in the RT domain: predictability wins over fairness!

 If priority levels were shared, we would have a worsening of
worst-case situation to contemplate in the analysis
 Job 𝐽 might be released last after all other jobs at its level of priority

2019/2020 UniPD – T. Vardanega Real-Time Systems 283 of 533

Example: FIFO within priorities

2019/2020 UniPD – T. Vardanega

𝜋ଵ

𝜏௜ 𝜏௝

𝜏௥𝜏௦ 𝜏௞

low

high
FIFO

Running

Ready

𝜋 ஐೞ

Real-Time Systems 284 of 533

Priority levels /2

 Let 𝑆ሺ𝑖ሻ denote the set of jobs 𝐽௝ with 𝜋௝ ൌ 𝜋௜,
excluding 𝐽௜ itself

 The time demand equation for 𝐽௜ in the interval
0 ൏ 𝑡 ൑ min ሺ𝐷௜ ,𝑝௜ሻ becomes

𝜔௜ 𝑡 ൌ 𝑒௜ ൅ 𝐵௜ ൅෍𝑒௝∈ௌ ௜ ൅
ௌሺ௜ሻ

෍
𝜔௜ 𝑡
𝑝௞௞ୀଵ,..,௜ିଵ

𝑒௞

 This obviously worsens 𝐽௜ ’s response time
 It is important to understand what is the impact of that

at system level: schedulability loss measures that

2019/2020 UniPD – T. Vardanega Real-Time Systems 285 of 533

Priority levels /4

 When the assigned priorities ℛ ൌ 1, . . ,Ω௡ exceed the
available priorities ℋ ൌ 𝜋ଵ, . . ,𝜋ஐೞ , (ℛ ൐ ℋ), we
need a Ω௡:Ω௦ mapping function to collapse ℛ into ℋ :
the priority grid
 All assigned priorities in range ሺ0,𝜋ଵሿ will take value 𝜋ଵ
 For 1 ൏ 𝑘 ൑ Ω௦, the assigned priorities in range ሺ𝜋௞ିଵ,𝜋௞ሿ

will take value 𝜋௞

 Two main techniques address this problem
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]

2019/2020 UniPD – T. Vardanega Real-Time Systems 286 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 5

Priority levels /5

 Uniform mapping (𝑄 ൌ ஐ೙
ஐೞ

)

 𝜋௞ ← 𝑘, … , 𝑘𝑄 ,𝜋௞ାଵ ← 𝑘𝑄 ൅ 1, … , ሺ𝑘 ൅ 1ሻ𝑄 ; 𝑘 ൌ 1, … ,Ω௦ െ 1
 Example

Ω௡ ൌ 9,Ω௦ ൌ 3, 𝑄 ൌ ଽ
ଷ
ൌ 3, 𝜋ଵ ൌ 1,𝜋ଶ ൌ 2,𝜋ଷ ൌ 3

𝜋ଵ ← 1. . 3 , 𝜋ଶ← 4. . 6 ,𝜋ଷ ← 7. . 9

 Constant ratio mapping (CRM)
 Collapses subsets of ℛ into the 𝜋௜ values of ℋ by keeping the ratio

𝑔 ൌ ሺగ೔షభାଵሻ
గ೔

constant for 𝑖 ൌ 2, . . ,Ω௦, to favor higher-priority jobs

 Example (same as above, with g ൌ ଵ
ଶ
)

𝜋ଵ ൌ 1,𝜋ଶ ൌ 4, 𝜋ଷ ൌ 10 ⇒ 𝜋ଵ ← 1 ,𝜋ଶ ← 2. . 4 ,𝜋ଷ ← 5. . 9

2019/2020 UniPD – T. Vardanega Real-Time Systems 287 of 533

Priority levels /6

2019/2020 UniPD – T. Vardanega

1

2

3

4

5

6

4 ..6

7

8

9

Ω𝑠 ൌ 3

𝛀𝒏

𝛀𝒔
ൌ 𝟑

1

2

3

4

5

6

7

8

9

1

𝐠 ൌ
𝟏
𝟐

2 .. 4

5 ..9

Uniform	mapping Constant	ratio	mapping

7 .. 9

1 ..3
𝜋ଵ

Ω𝑛 ൌ 9
𝜋ଶ

𝜋ଷ

𝜋ଵ

𝜋ସ

𝜋ଵ଴

Real-Time Systems 288 of 533

ሺ𝜋ଵ ൅ 1ሻ
𝜋௦௨௖௖

ൌ 𝑔

𝝅𝒔𝒖𝒄𝒄 ൌ
𝝅𝟏 ൅ 𝟏
𝒈

𝝅𝒔𝒖𝒄𝒄 ൌ 𝟒

Priority levels /7

 CRM degrades the schedulable utilization of RMS gracefully
 For large 𝑛, implicit deadlines, and 𝑔 ൌ 𝑚𝑖𝑛ଶஸ௝ஸஐೞ

ሺగೕషభାଵሻ
గೕ

,
the CRM’s schedulable utilization approximates

𝑓 𝑔 ൌ ቐ
𝑙𝑛 2𝑔 ൅ 1 െ 𝑔, ଵ

ଶ
൏ 𝑔 ൑ 1

𝑔, 0 ൏ 𝑔 ൑ ଵ
ଶ

 The ௙ሺ௚ሻ
௟௡ሺଶሻ

ratio thus represents the relative schedulability
of CRM in relation to RMS’ utilization bound
 Example

Ω௦ ൌ 256,Ω௡ ൌ 100,000 →
𝑓 𝑔

Ω௡ 2
ଵ
Ω೙ െ 1

ൌ 0.9986

 This shows that 256 priority levels should suffice for RMS

2019/2020 UniPD – T. Vardanega Real-Time Systems 289 of 533

With 𝐠 ൌ 𝟏, every task
would have its own priority

Time management /1

 The system clock abstraction is composed of
 A HW part decremented by one unit at every clock pulse,

as determined by the clock rate
 A periodic-counting register, automatically reset to a default tick size

when it reaches the triggering edge (0), and trips the clock tick
 A SW part incremented by SW at the clock tick

 The system clock effectively counts clock ticks
 A queue of time events, fired and not serviced

 Pending until they are serviced
 A handler of clock-tick interrupts

 Which increments the clock-tick counter and, every 𝑁 ൐ 0
occurrences, also services the pending time events

2019/2020 UniPD – T. Vardanega Real-Time Systems 290 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 6

Time management /2

 The frequency of the clock tick determines the
resolution (granularity) of the system clock
 It should be an integer divisor of the tick size so that the

RTOS may service time events at exactly every 𝑁 ∈ 𝐼𝑁𝑇
clock ticks

 Clock-tick interrupts maintain the system clock
 More frequent, tolerable overhead

 One such interrupt in 𝑁 handles scheduling events
 Less frequent, high overhead

2019/2020 UniPD – T. Vardanega Real-Time Systems 291 of 533

Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy but the

larger the interrupt overhead
 There must be a sound balance between the clock

accuracy needed by the application and the clock
resolution that can be afforded by the system
 Latency is intrinsic in any query to read the clock
 The ORK runtime for the Leon microprocessor takes 493

clock cycles to read the clock (www.dit.upm.es/~ork/)
 @ 40 MHz, 500 clock cycles correspond to 12.5 𝜇sec

 The clock resolution cannot be finer-grained than the
worst-case latency incurred reading the clock (!)

2019/2020 UniPD – T. Vardanega Real-Time Systems 292 of 533

Time management /4

 Beside periodic clocks, if the processor allows, the
RTOS may also support one-shot (aka interval) timers
 They operate in a programmed (non-repetitive) way so that

time events suffer no latency from resolution problems
 The RTOS scans the queue of the programmed time events to

set the next interrupt alarm due from the interval timer
 Interval timers are costly

 They have to be written by SW and the value to set depends
on the time events pending in the queue

 Their resolution is limited by the time overhead of its
handling by the RTOS: 7,061 clock cycles in ORK for Leon

2019/2020 UniPD – T. Vardanega Real-Time Systems 293 of 533

Time management /5

 The accuracy of a time event is the difference between
when the event actually triggers and the time required

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected

 Without interval timer, it would be at every 𝑁 clock ticks
 With interval timer, it would be at every interval expiry

 The policy used to service the time-event queues
 Expiry-based, LIFO, FIFO

 The time overhead cost of handling the queue
 It follows that the release time of periodic tasks is

exposed to jitter (!)

2019/2020 UniPD – T. Vardanega Real-Time Systems 294 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 7

The scheduler /1

 This is a distinct part of the RTOS that does not
execute in response to explicit application invocations
 Other than when using cooperative scheduling

 The scheduler acts every time the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming
language, the scheduler “activation” is periodic in
response to clock interrupts
 The poor RTOS has no other way to know when to schedule!

2019/2020 UniPD – T. Vardanega Real-Time Systems 295 of 533

The scheduler /2

 If time-based scheduling (e.g. LLF) is used
 The scheduler must increment the execution-time budget

counter of the running job at every clock interrupt
 Possibly service the queue of time-based events pending
 Possibly attend to the ready queue

 General-purpose operating systems have a tick size in
the region of 10 𝑚𝑠
 This is much too coarse-grained for RTOS, but too high frequency

incurs excessive overhead
 The scheduler should support event-driven execution

with minimum latency

2019/2020 UniPD – T. Vardanega Real-Time Systems 296 of 533

Tick scheduling /1

 The scheduler can be event-driven only if the MoC is
defined within the application programming language
 The scheduler always immediately executes on the occurrence

of a scheduling event (aka dispatching point)
 If it was so then we could assume that a job is placed in the

ready queue exactly at its release time

 Several schedulers are time-driven
 They make scheduling decisions on the arrival of periodic

clock interrupts, with no relation to application events
 This mode of operation is termed tick scheduling

2019/2020 UniPD – T. Vardanega Real-Time Systems 297 of 533

Tick scheduling /2

 The tick scheduler may acknowledge a job’s release
time up to one clock tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release

time arrived but not yet acknowledged” state are held
 The time and space overhead of transferring jobs from

that logical place to the ready queue is not null and must
be accounted for in the schedulability test together with
the time and space overhead of handling clock interrupts

2019/2020 UniPD – T. Vardanega Real-Time Systems 298 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 8

Example
𝑻 ൌ 𝝉𝟏 ൌ 𝟎.𝟏,𝟒,𝟏,𝟒 , 𝝉𝟐 ൌ 𝟎.𝟏,𝟓,𝟏.𝟖,𝟓 , 𝝉𝟑 ൌ 𝟎,𝟐𝟎,𝟓,𝟐𝟎
𝝉𝟑 with a first no-preemption section of duration 𝟏.𝟏 time units

With RTA and event-driven scheduling, 𝑹𝟏 ൌ 𝟐.𝟏,𝑹𝟐 ൌ 𝟑.𝟗,𝑹𝟑 ൌ 𝟏𝟒.𝟒 ሺOKሻ
What with tick scheduling, clock period 𝟏 and

time overhead 𝟎.𝟎𝟓 ൅ 𝟎.𝟎𝟔 ൈ 𝒏 per tick handling and queue movement?

0 1 2 3 4 5 6

𝝉𝟏

𝝉𝟑

Deadline miss

Release
at tick

yield𝝉𝟐

𝝉𝟑

𝝉𝟏, 𝝉𝟐 𝝉𝟏 𝝉𝟐

1-tick delay

2019/2020 UniPD – T. Vardanega

ሺ𝜑௜ ,𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Real-Time Systems 299 of 533

Tick scheduling /3

 The effect of tick scheduling is captured in RTA for job 𝐽௜ by
 Introducing a notional task 𝜏଴ ൌ ሺ𝑝଴, 𝑒଴ሻ with highest priority, to

account for the 𝑒଴ cost of handling clock interrupts with period 𝑝଴
 For every job 𝐽௞ ∶ 𝜋௞ ൒ 𝜋௜ , adding to 𝑒௞ the time overhead 𝑚଴ due to

moving 𝐽௞ to the ready queue
 ሺ𝐾௞ ൅ 1ሻ times for the 𝐾௞ times that job 𝐽௞ may self suspend

 For every job 𝐽௟:𝜋௟ ൏ 𝜋௜ , introducing a distinct notional task 𝜏ఊ ൌ
ሺ𝑝௟,𝑚଴ሻ to account for the time cost of moving 𝐽௟ to the ready queue

 Computing 𝐵௜ሺ𝑛𝑝ሻ as function of 𝑝଴: 𝐽௜ may suffer up to 𝑝଴ units of
delay after becoming ready even without not-preemptive execution

 𝐵௜ሺ𝑛𝑝ሻ ൌ ሺ 𝑚𝑎𝑥௞ሺ
ఏೖ
௣బ
ሻ ൅ 1ሻ𝑝଴ before including non-preemption

 Where 𝜃௞ is the maximum time of non-preemptive execution by any job 𝐽௞

2019/2020 UniPD – T. Vardanega Real-Time Systems 300 of 533

I/O subsystems

 When the I/O subsystem is an active resource (in
the taxonomy seen in the introduction material), it
would need its own scheduler

 Methods to serve I/O access requests may employ
 Run-to-completion non-preemptive FIFO semantics
 Non-preemptive time-division (quantized) schemes
 Priority-driven scheduling as seen for CPU scheduling,

such as FPS, EDF, LLF

2019/2020 UniPD – T. Vardanega Real-Time Systems 301 of 533

Interrupt handling /1

 HW interrupts are the most efficient manner for the
processor to notify the application about the
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated

to external units like DMA (direct memory access)
 Frequency and load of the interrupt handling

service vary with the source of the interrupt

2019/2020 UniPD – T. Vardanega Real-Time Systems 302 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 9

Interrupt handling /2

 For better efficiency, the interrupt handling service
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which
code to associate to either part
 Interrupt service can also have a device-independent part and

a device-specific part

2019/2020 UniPD – T. Vardanega Real-Time Systems 303 of 533

Interrupt handling /3

 When the HW interface asserts an interrupt, the
processor saves state registers (e.g., PC, PSW) in the
interrupt stack and jumps to the address of the needed
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending

(depending on the HW)

 Interrupts operate at an assigned level of priority so
that interrupt service incurs scheduling if interrupts nest

2019/2020 UniPD – T. Vardanega Real-Time Systems 304 of 533

Interrupt handling /4

 Depending on the HW, the interrupt source is
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers
are restored and interrupts are enabled again

2019/2020 UniPD – T. Vardanega Real-Time Systems 305 of 533

Interrupt handling /5

 The worst-case latency incurred on interrupt handling is
determined by the time needed to
1. Complete the current instruction
2. Save the processor registers and the general context of the task

being interrupted
3. Clear the processor pipeline
4. Acquire the interrupt vector
5. Activate the trap to kernel mode
6. Disable interrupts, so that the immediate part of the ISR can

execute at the highest priority
7. Identify the interrupt source and jump to the corresponding ISR
8. Begin execution of the selected ISR

2019/2020 UniPD – T. Vardanega Real-Time Systems 306 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 10

Interrupt handling /6

 To reduce distributed overhead, the deferred part of
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to

spawn its own tasks for deferred interrupt handling
 We can do that in Ada …

2019/2020 UniPD – T. Vardanega Real-Time Systems 307 of 533

Interrupt handling /7

 Using the OOD patterns we saw earlier, the deferred
part of the ISR would map to a sporadic task released by
the immediate part of the ISR

 For better responsiveness, schemes such as slack stealing
or bandwidth preservation could be used
 So that total interference from interrupts is bounded, but a

given quota of them may receive full service within
replenishment intervals

 During those intervals, bandwidth preservation retains the
unused reserve of execution budget, which can help serve
occasional bursts

 These solutions need specialized support from the RTOS

2019/2020 UniPD – T. Vardanega Real-Time Systems 308 of 533

2019/2020 UniPD – T. Vardanega

Putting it all together

IICSTSCCS
T

JRCCSBR R
extInt

R
clock

ihpj

j
j

A
j

n
i

ii
n
i

n
i

n
i 







 
 





)(

1)21(1

Blocking time
(resource access
protocol or kernel)

“In” context switch “Out” context switch
Interference from
the clock

Interference from
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a
suspension call𝑅௜଴ ൌ 𝐵௜ ൅ 𝐶𝑆1 ൅ 𝐶௜

𝑅௜ ൌ 𝑅௜௡ ൅ 𝐽ௐ

𝑅௜ is a compositional term Its RHS benefits from composable terms

Real-Time Systems 309 of 533

Summary

 We have seen how an RTOS (or runtime) supports
the application-level abstractions that recur in the
real-time systems theory

 We have appreciated how complex those abstraction
services may be

 We have understood that they may cause latency in
the occurrence of scheduling and dispatching events

 We have realized that their impact should be captured
in the Response-Time Analysis equations

2019/2020 UniPD – T. Vardanega Real-Time Systems 310 of 533

2019/2020 UniPD - T. Vardanega 20/04/2020

Real-Time Systems 11

Selected readings

 T. Vardanega, J. Zamorano, J.A. de la Puente
(2005), On the Dynamic Semantics and the Timing
Behavior of Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2b
 Again …

 P. Carletto, T. Vardanega (2017), Ravenscar-EDF:
Comparative Benchmarking of an EDF Variant of a
Ravenscar Runtime
DOI: 10.1007/978-3-319-60588-3_2

2019/2020 UniPD – T. Vardanega Real-Time Systems 311 of 533

