
2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 1

6.b WCET analysis

Where we learn how the worst-case
execution-time (WCET) value used in
response-time analysis can be determined,
and explore the taxonomy of WCET analysis
techniques

Worst-case execution time (WCET)

 For any input data and for all initial logical states
 So that all execution paths of the program are covered

 For any hardware state
 So that the worst-case execution conditions are in effect

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator of it
 Caution: the high-watermark value can be ≪ WCET

 Static WCET analysis
 Uses an abstract model of the HW and of the program

2019/2020 UniPD – T. Vardanega Real-Time Systems 332 of 533

2019/2020 UniPD – T. Vardanega

Computing the WCET /1

 Why not measure the task’s WCET on its real target HW?

 Triggering the WCET by test is exceedingly difficult
 Supplying input data that cover all possible program executions is

intractable in practice
 Worst-case initial state on modern HW is very hard to determine

 Complex pipelines (out-of-order execution)
 Caches
 Branch predictors and speculative execution

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state
Logic analyser,
oscilloscope,

etc.
WCET ?

Real-Time Systems 333 of 533 2019/2020 UniPD – T. Vardanega

Computing the WCET /2

 Exact WCET not generally computable (~ the halting problem)
 Yet, WCET bounds are essential to feasibility analysis

 Which must be safe, to upper bound all possible executions
 Which must be tight, to avoid costly over-dimensioning

Real-Time Systems 334 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 2

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control flow
and on the HW fine-grained behavior
 High-level analysis addresses program execution

 Control flow analysis builds a control flow graph (CFG) for it

 Low-level analysis determines the timing cost of individual
processor instructions on the abstract model of the HW
 Not constant in modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

2019/2020 UniPD – T. Vardanega Real-Time Systems 335 of 533

Static WCET analysis /2

2019/2020 UniPD – T. Vardanega Real-Time Systems 336 of 533

Implicit path enumeration technique

 The program’s CFG is augmented
with flow graph constraints

 The WCET is computed with
integer linear programming or
constraint programming

 𝑊𝐶𝐸𝑇 ൌ 𝑚𝑎𝑥 ∑ 𝑥௜ ൈ 𝑡௜௜
 𝑥௜ is the execution frequency of CFG

edge 𝑖
 𝑡௜ the execution time of CFG edge 𝑖

2019/2020 UniPD – T. Vardanega Real-Time Systems 337 of 533

CFG Flow graph constraints
 High-level analysis /1

 Must analyze all possible execution paths of the program
 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers

2019/2020 UniPD – T. Vardanega

Static WCET analysis /3

Real-Time Systems 338 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 3

Static WCET analysis /4

 High-level analysis /2
 Several techniques are employed to enable the use of IPET

 Control-flow analysis to construct the CFG
 Data-flow analysis to find loop bounds
 Value analysis to resolve memory accesses

 Automated information extraction is insufficient
 User annotation of flow facts is needed

 To help detect infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and memory references

2019/2020 UniPD – T. Vardanega Real-Time Systems 339 of 533 2019/2020 UniPD – T. Vardanega

Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Real-Time Systems 340 of 533

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature

2019/2020 UniPD – T. Vardanega Real-Time Systems 341 of 533

Understanding the cache

 The cache memory is much smaller than the RAM
 Chunks of the latter map to individual units of the former

 Three such mappings (called cache associativity) are used
 Direct mapping

 The cache holds 𝐾 lines (16-128 bytes each, to leverage locality)
 The RAM of size 𝑀 bytes is divided in 𝐾 blocks sized ெ

௄
bytes each: access conflicts

occur within blocks for addresses more distant than a single cache line
 Fully associative

 Any RAM address can map to any cache line
 Much reduced chance of conflict but massively more complex mapping

 N-way set associative
 The cache is divided into S ൌ ௄

ே
sets, each holding 𝑁 ൌ 2 or 4 lines

 The RAM of size 𝑀 bytes is divided in 𝑆 blocks: as each cache set holds 𝑁 lines,
the chance of access conflict is reduced accordingly

2019/2020 UniPD – T. Vardanega Real-Time Systems 342 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 4

2019/2020 UniPD – T. Vardanega Real-Time Systems 343 of 533

Understanding the cache

2019/2020 UniPD – T. Vardanega Real-Time Systems 344 of 533

Direct	mapping	(by	index)
Each memory address maps to a single cache block:

the (hash of the) tag field gives it placement

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache blocks:

the index field tells the set and the tag the placement in it

offsetindex (set)tag
031

datatag V

offsetsettag
031

datatag V

1. closure2. look-up 1. closure2. look-up

memory

2019/2020 UniPD – T. Vardanega

Static WCET analysis: the big picture

 Open problems
 Can we always trust the abstract model of the HW?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

Analysis framework
and

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

Real-Time Systems 345 of 533 2019/2020 UniPD – T. Vardanega

Static WCET analysis /7

 Safeness is at risk
 When local worst case in our processing resource may not

always lead to global worst case at program level
 This reflects timing anomalies that originate from

 Complex hardware architectures (e.g., out-of-order pipelines)
 Improper design choices (e.g., inept cache replacement policies)
 Counter-intuitive timing behavior
 Faster execution of a single instruction with long-term negative effects

 Very difficult to account for in static analysis

Real-Time Systems 346 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 5

2019/2020 UniPD – T. Vardanega

Timing anomaly: example

 Assume there is dependency between (some) instructions
because of shared HW resources (as in pipeline stages)

 And opportunistic scheduling is made of individual requests

 Faster execution of A leads to worse overall execution, owing to
the order in which the instructions are executed

Real-Time Systems 347 of 533

Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor and on the final executable

 WCET analysis helps software design before coding: analysis loses
value if the program is modified (!)

 Yet, understanding that safeness is not guaranteed (!)
 Hybrid approaches leverage

 The measurement of basic blocks on the real HW
 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

2019/2020 UniPD – T. Vardanega Real-Time Systems 348 of 533

2019/2020 UniPD – T. Vardanega

Hybrid analysis /2

 Approaches to collect timing information
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation affects the timing behavior of the program (aka the

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results is contingent on the coverage of
the executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement
 Worst-case state dependence is gone if HW response time is randomized

Real-Time Systems 349 of 533 2019/2020 UniPD – T. Vardanega

Hybrid analysis: the big picture

 Open problems
 Can we trust the resulting estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May cause serious cost impact and inherent difficulty of exactness

Program
executable

Opt. User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces

Path
info

Real-Time Systems 350 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 6

2019/2020 UniPD – T. Vardanega

Summary

 We have reckoned with the challenge of computing
the WCET

 We have seen how static WCET analysis works and
where its weaknesses are
 We have learned what high-level analysis is
 And what low-level analysis does

 We have seen how hybrid analysis (measurement-
based) is more pragmatic, but also riskier

Real-Time Systems 351 of 533

Selected readings

 R. Wilhelm et al. (2008), The worst-case execution-time
problem—overview of methods and survey of tools
DOI: 10.1145/1347375.1347389

 F.J. Cazorla et al. (2019), Probabilistic worst-case timing
analysis: taxonomy and comprehensive survey
DOI: 10.1145/3301283

2019/2020 UniPD – T. Vardanega Real-Time Systems 352 of 533

