2019/2020 UniPD - T. Vardanega

6.b WCET analysis

Credits to Enrico Mezzetti, PhD
(enrico.mezzetti@bsc.es)

Where we learn how the worst-case
execution-time (WCET) value used in
response-time analysis can be determined,
and explore the taxonomy of WCET analysis
techniques

‘ Worst-case execution time (WCET)

For any input data and for all initial logical states

0 So that all execution paths of the program are covered

For any hardware state

0 So that the worst-case execution conditions are in effect

= Measurement-based WCET analysis

0 On either the real HW or a cycle-accurate simulator of it
a Caution: the bigh-watermark value can be K WCET
Static WCET analysis

o Uses an abstract model of the HW and of the program

2019/2020 UniPD - T. Vardanega Real-Time Systems 332 0f 533

'Computing the WCET /1

= Why not measure the task’s WCET on its real target HW?

Worst-case input ———, (e 5
" » Logic analyser, WCET ?
Target Hardware oscilloscope, °
Worst-case HW state =—> (black b etc.

= Triggering the WCET by test is exceedingly difficult
o Supplying input data that cover all possible program executions is
intractable in practice
o Worst-case initial state on modern HW is very hard to determine
= Complex pipelines (out-of-order execution)
= Caches

= Branch predictors and speculative execution

2019/2020 UniPD - T. Vardanega Real-Time Systems 333 of 533

Real-Time Systems

' Computing the WCET /2

= Exact WCET not generally computable (~ the halting problen)
5 Yet, WCET bounds are essential to feasibility analysis
0 Which must be saft, to upper bound all possible executions

0 Which must be #ght, to avoid costly over-dimensioning

distriteion of Himes

M————————————————— fiming predic tability ————————————————————

2019/2020 UniPD —T. Vardanega Real-Time Systems 334 of 533

27/04/2020

2019/2020 UniPD - T. Vardanega 27/04/2020

‘ Static WCET analysis /1 ‘ Static WCET analysis /2
_ _

= To analyze a program without executing it
0 Needs an abstract model of the target HW

0 As well as the binary executable of the program

u Execution time depends on the program’s control flow
and on the HW fine-grained behavior
0 High-level analysis addresses program execution
w Control flow analysis builds a control flow graph (CFG) for it
0 Low-level analysis determines the timing cost of individual
processor instructions on the abstract model of the HW

= Not constant in modern HW

= Must be awate of the HW inner workings (pipeline, caches, etc.) IPET (Implicit Path Enumeration Technique)

2019/2020 UniPD — T. Vardanega Real-Time Systems 3350f 533 2019/2020 UniPD - T. Vardanega Real-Time Systems 336 of 533

‘ Implicit path enumeration technique ‘ Static WCET analysis /3
= The program’s CFG is augmented » High-level analysis /1
with flow graph constraints CFG Flo"‘fl graph_c1onstraints 0 Must analyze all possible execution paths of the program
= The WCET is computed with :1 8 :x2 = Builds the CFG as a superset of all possible execution paths
Integer .hnear prograntlmlng or 0 =33+ xd = The unit of that analysis is the basic block
constraint programming t, X3 =x5 0 The longest sequence of program instructions with
_ . . - single entry and single exit (no branches, no loops)
= WCET = max{zi Xi X tl} E x4 =x6 0 Path analysis faces multiple challenges
0 x; is the execution frequency of CFG t x5 +x6 = x7 Y TP 8
edge i 7 =x8+x9 w Input-data dependency
0 t; the execution time of CFG edge i X2 <=LB*x1 = Infeasible paths
u Loop bounds and recursion depth
u Dynamic calls through pointers
2019/2020 UniPD —T. Vardanega Real-Time Systems 337 of 533 2019/2020 UniPD —T. Vardanega Real-Time Systems 338 of 533

Real-Time Systems 2

2019/2020 UniPD - T. Vardanega

Static WCET analysis /4

» High-level analysis /2

a Several techniques are employed to enable the use of IPET
u Control-flow analysis to construct the CFG
w Data-flow analysis to find loop bounds

w [alue analysis to resolve memory accesses B

-
0 Automated information extraction is insufficient [m »
= User annotation of flow facts is needed
0 To help detect infeasible paths
0 To refine loop bounds
0 To define frequency relations between basic blocks
Q

To specify the target of dynamic calls and memory references

2019/2020 UniPD — T. Vardanega Real-Time Systems 339 of 533

Static WCET analysis /5

u Low-level analysis /1

0 Requires abstract modeling of all HW features
= Processor, memory subsystem, buses, peripherals, ...
w Itis conservative : it must never underestimate actual costs
= All possible HW states should be accounted for
0 HW modeling faces multiple challenges
u Precise modeling of complex hardware is difficult
0 Inherent complexity (e.g., out-of-order pipelines)
0 Lack of comprehensive information (intellectual property, patents, ...)

0 Differences between specification and implementation (!)

u Exhanstive representation of all HW states is computationally infeasible

2019/2020 UniPD - T. Vardanega Real-Time Systems 340 of 533

Static WCET analysis /6

u Low-level analysis /2

0 Concrete HW states
= Determined by the history of execution
= Cannot compute all HW states for all possible executions
0 Invariant HW states are grouped into execution contexts

0 Conservative overestimations are made to reduce the research space
Q Abstract interpretation
= Computes abstract states and specific operators in the abstract domain

QO Update function to keep the abstract state current along the exec path

Q Join function to merge control flows after a branch

a Some techniques are specific to each HW feature

2019/2020 UniPD - T. Vardanega Real-Time Systems 341 of 533

Real-Time Systems

| Understanding the cache

= The cache memory is much smaller than the RAM
0 Chunks of the latter map to individual units of the former
= Three such mappings (called cache associativity) are used
0 Direct mapping
= The cache holds K lines (16-128 bytes each, to leverage locality)
= The RAM of size M bytes is divided in K blocks sized u bytes each: access conflicts
occur within blocks for addresses more distant than a single cache line
0 Fully associative
= Any RAM address can map to any cache line
= Much reduced chance of conflict but massively more complex mapping
a N-way set associative
= The cache is divided into S = % sets, each holding N = 2 or 4 lines

= The RAM of size M bytes is divided in § blocks: as each cache set holds N lines,
the chance of access conflict is reduced accordingly

2019/2020 UniPD —T. Vardanega Real-Time Systems 342 of 533

27/04/2020

2019/2020 UniPD - T. Vardanega

= <k

Cache Associativity

Tust as bookshekwes come in different shapes and sizes. caches canalsa take an a variety of farms
and copacities. But nomatter how large or small they are. caches Fail into cre of three caf egories.
direct mopped, noway set assaciaf e, and Fully associal e

)

Direct Mapped

Toa Irde Ottset

4 cache blode can anly g in cne spot in the
Cache Tt moles o oache black ety saty 1o
Firel b 1s ruch wery Hlesdible oot where
10 pin the blodss

2-Way Set Associative

Tag Irdex Offset

This cache is made up of sets that can fit
twa blacks each. The index is row wed ta
Fird the set. ard the tag helps find the

b ladk within the set

4-Way Set Assaciative
Tag Indesx Offset

Each set here fits four blacks, sothere are
cwer sets. As such. fewer irdexbits are

Fully Associative
Tag Offset

I index i< nesded, since a cache black
S o o ot ma et b
Zempired when Finding a biagk inhe cache.
B0 Blod placement 15 ve ry Flosdit 1
Ty
sscciativs o me assacial ive coche,
fully cxcocicl foe codne o
tcasiar e cach

Fta

2019/2020 UniPD — T. Vardanega Real-Time Systems 343 of

o

| Understanding the cache

3L ¢------omoeoo oo +>0 31 ¢------ommeo oo +>0
I tag index (set) | offset I memory | tag l set | offset I
T T
2.look-up 1. closure 2.look-up | 1. closure
i i
tag data v tag data v
Direct mapping (by index) Set-associative mapping (by set)
Each memory address maps to a single cache block: Each memory address maps to a set of cache blocks:
the (hash of the) tag field gives it placement the index field tells the set and the tag the placement in it
2019/2020 UniPD — T. Vardanega Real-Time Systems 344 0f 533

' Static WCET analysis: the big picture

Ll Safe

Program 7 Analysis framework
(exec, disassembly,...) Q o) [=) [_.h WCET bounds

and

i Abstract HW model / -
User annotations : S

= Open problems
o Can we always trust the abstract model of the HW?
o How much overestimation do we incur?
= Inclusion of infeasible paths
= Overestimation is inevitable in abstract state computation
o Intrinsic weakness of user annotations

= Labor intensive and error prone

2019/2020 UniPD —T. Vardanega Real-Time Systems 345 of 533

Real-Time Systems

Static WCET analysis /7

m Safeness is at risk

0 When /ocal worst case in our processing resource may not
always lead to global worst case at program level

0 This reflects timing anomalies that originate from
= Complex hardware architectures (e.g., out-of-order pipelines)
= Improper design choices (e.g., inept cache replacement policies)
u Counter-intuitive timing behavior
= Faster execution of a single instruction with /ong-ferm negative effects

0 Very difficult to account for in static analysis

2019/2020 UniPD —T. Vardanega Real-Time Systems 346 of 533

27/04/2020

2019/2020 UniPD - T. Vardanega

| Timing anomaly: example

= Assume there is dependency between (some) instructions
because of shared HW resources (as in pipeline stages)

= And opportunistic scheduling is made of individual requests

(cache hit e
o 5

Resource 2

Resouree 3

cache miss
Resource |

Resource

Resource] E

= Faster execution of A leads to worse overall execution, owing to
the order in which the instructions are executed

2019/2020 UniPD — T. Vardanega Real-Time Systems 347 of 533

| Hybrid analysis /1

u To obtain realistic (less pessimistic) WCET estimates

0 On the real target processor and on the final executable

= WCET analysis helps software design before coding: analysis loses
value if the program is modified ())

0 Yet, understanding that safeness is not guaranteed (!)
= Hybrid approaches leverage
0 The measurement of basic blocks on the real HW
= To avoid pessimism from abstract modeling
0 Static analysis techniques to combine the obtained measures

= Knowledge of the program execution paths

u Newer approaches explore probabilistic properties (%)

2019/2020 UniPD - T. Vardanega Real-Time Systems 348 of 533

| Hybrid analysis /2

= Approaches to collect timing information
a Software instrumentation
= The program is augmented with instrumentation code

= Instrumentation affects the timing behavior of the program (aka the
probe ¢ffect) and causes problems to deciding what’s the final system

a Hardware instrumentation

= Depends on specialized HW features (e.g., debug interface)
u_ Confidence in the results is contingent on the coverage of
the executions and on the exploration of worst-case states
0 Exposed to the same problems as static analysis and measurement_

a Worst-case state dependence is gone if FIW response time is randomized | P

F'? "
=

2019/2020 UniPD - T. Vardanega Real-Time Systems 349 of 533

Real-Time Systems

Hybrid analysis: the big picture

Execution a
b A traces info

Program Q) Target Hardware & N5
executable l (black box)
Opt. User annotations N WCET

U estimates

= Open problems
o Can we trust the resulting estimates?
= Contingent on worst-case input and worst-case HW state
= Consideration of infeasible paths
o Needs the real execution environment or an identical copy of it

= May cause serious cost impact and inherent difficulty of exactness

2019/2020 UniPD —T. Vardanega Real-Time Systems 350 of 533

27/04/2020

2019/2020 UniPD - T. Vardanega

Summary

We have reckoned with the challenge of computing
the WCET

We have seen how stazic WCET analysis works and
where its weaknesses are

0 We have learned what high-level analysis is

0 And what low-level analysis does

We have seen how hybrid analysis (measurement-
based) is more pragmatic, but also riskier

2019/2020 UniPD — T. Vardanega Real-Time Systems 351 of 533

Real-Time Systems

Selected readings

R. Wilhelm et al. (2008), The worst-case execution-time
problem—overview of methods and survey of tools

DOI: 10.1145/1347375.1347389

F.J. Cazotla et al. (2019), Probabilistic worst-case timing

analysis: taxonomy and comprebensive survey
DOI: 10.1145/3301283

2019/2020 UniPD —T. Vardanega Real-Time Systems 352 0f 533

27/04/2020

