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6.b WCET analysis

Credits to Enrico Mezzetti, PhD
(enrico.mezzetti@bsc.es)

Where we learn how the worst-case
execution-time (WCET) value used in
response-time analysis can be determined,
and explore the taxonomy of WCET analysis
techniques

‘ Worst-case execution time (WCET)

For any input data and for all initial logical states

0 So that all execution paths of the program are covered

For any hardware state

0 So that the worst-case execution conditions are in effect

= Measurement-based WCET analysis

0 On either the real HW or a cycle-accurate simulator of it
a Caution: the bigh-watermark value can be K WCET
Static WCET analysis

o Uses an abstract model of the HW and of the program
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'Computing the WCET /1

= Why not measure the task’s WCET on its real target HW?

Worst-case input ———, (e 5
" » Logic analyser, WCET ?
Target Hardware oscilloscope, °
Worst-case HW state =—> (black b etc.

= Triggering the WCET by test is exceedingly difficult
o Supplying input data that cover all possible program executions is
intractable in practice
o Worst-case initial state on modern HW is very hard to determine
= Complex pipelines (out-of-order execution)
= Caches

= Branch predictors and speculative execution
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' Computing the WCET /2

= Exact WCET not generally computable (~ the halting problen)
5 Yet, WCET bounds are essential to feasibility analysis
0 Which must be saft, to upper bound all possible executions

0 Which must be #ght, to avoid costly over-dimensioning

distriteion of Himes

M————————————————— fiming predic tability ————————————————————
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‘ Static WCET analysis /1 ‘ Static WCET analysis /2
_ _

= To analyze a program without executing it
0 Needs an abstract model of the target HW

0 As well as the binary executable of the program

u Execution time depends on the program’s control flow
and on the HW fine-grained behavior
0 High-level analysis addresses program execution
w Control flow analysis builds a control flow graph (CFG) for it
0 Low-level analysis determines the timing cost of individual
processor instructions on the abstract model of the HW

= Not constant in modern HW

= Must be awate of the HW inner workings (pipeline, caches, etc.) IPET (Implicit Path Enumeration Technique)
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‘ Implicit path enumeration technique ‘ Static WCET analysis /3
= The program’s CFG is augmented » High-level analysis /1
with flow graph constraints CFG Flo"‘fl graph_c1onstraints 0 Must analyze all possible execution paths of the program
= The WCET is computed with :1 8 :x2 = Builds the CFG as a superset of all possible execution paths
Integer .hnear prograntlmlng or 0 =33+ xd = The unit of that analysis is the basic block
constraint programming t, X3 =x5 0 The longest sequence of program instructions with
_ . . - single entry and single exit (no branches, no loops)
= WCET = max{zi Xi X tl} E x4 =x6 0 Path analysis faces multiple challenges
0 x; is the execution frequency of CFG t x5 +x6 = x7 Y TP 8
edge i 7 =x8+x9 w  Input-data dependency
0 t; the execution time of CFG edge i X2 <=LB*x1 = Infeasible paths
u Loop bounds and recursion depth
u  Dynamic calls through pointers
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Static WCET analysis /4

» High-level analysis /2

a Several techniques are employed to enable the use of IPET
u Control-flow analysis to construct the CFG
w  Data-flow analysis to find loop bounds

w [alue analysis to resolve memory accesses B

-
0 Automated information extraction is insufficient [ m »
= User annotation of flow facts is needed
0 To help detect infeasible paths
0 To refine loop bounds
0 To define frequency relations between basic blocks
Q

To specify the target of dynamic calls and memory references
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Static WCET analysis /5

u Low-level analysis /1

0 Requires abstract modeling of all HW features
= Processor, memory subsystem, buses, peripherals, ...
w Itis conservative : it must never underestimate actual costs
= All possible HW states should be accounted for
0 HW modeling faces multiple challenges
u Precise modeling of complex hardware is difficult
0 Inherent complexity (e.g., out-of-order pipelines)
0 Lack of comprehensive information (intellectual property, patents, ...)

0 Differences between specification and implementation (!)

u  Exhanstive representation of all HW states is computationally infeasible
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Static WCET analysis /6

u Low-level analysis /2

0 Concrete HW states
= Determined by the history of execution
= Cannot compute all HW states for all possible executions
0 Invariant HW states are grouped into execution contexts

0 Conservative overestimations are made to reduce the research space
Q Abstract interpretation
= Computes abstract states and specific operators in the abstract domain

QO Update function to keep the abstract state current along the exec path

Q  Join function to merge control flows after a branch

a Some techniques are specific to each HW feature
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| Understanding the cache

= The cache memory is much smaller than the RAM
0 Chunks of the latter map to individual units of the former
= Three such mappings (called cache associativity) are used
0 Direct mapping
= The cache holds K lines (16-128 bytes each, to leverage locality)
= The RAM of size M bytes is divided in K blocks sized u bytes each: access conflicts
occur within blocks for addresses more distant than a single cache line
0 Fully associative
= Any RAM address can map to any cache line
= Much reduced chance of conflict but massively more complex mapping
a  N-way set associative
= The cache is divided into S = % sets, each holding N = 2 or 4 lines

= The RAM of size M bytes is divided in § blocks: as each cache set holds N lines,
the chance of access conflict is reduced accordingly
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= <k

Cache Associativity

Tust as bookshekwes come in different shapes and sizes. caches canalsa take an a variety of farms
and copacities. But nomatter how large or small they are. caches Fail into cre of three caf egories.
direct mopped, noway set assaciaf e, and Fully associal e
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Direct Mapped
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Tag Irdex Offset

This cache is made up of sets that can fit
twa blacks each. The index is row wed ta
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4-Way Set Assaciative
Tag Indesx Offset
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| Understanding the cache

3L ¢------omoeoo oo +>0 31 ¢------ommeo oo +>0
I tag index (set) | offset I memory | tag l set | offset I
T T
2.look-up 1. closure 2.look-up | 1. closure
i i
tag data v tag data v
Direct mapping (by index) Set-associative mapping (by set)
Each memory address maps to a single cache block: Each memory address maps to a set of cache blocks:
the (hash of the) tag field gives it placement the index field tells the set and the tag the placement in it
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' Static WCET analysis: the big picture

Ll Safe

Program 7 Analysis framework
(exec, disassembly,...) Q o) [ =) [ \_.h WCET bounds

and

i Abstract HW model / -
User annotations : S

= Open problems
o Can we always trust the abstract model of the HW?
o How much overestimation do we incur?
= Inclusion of infeasible paths
= Overestimation is inevitable in abstract state computation
o Intrinsic weakness of user annotations

= Labor intensive and error prone
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Static WCET analysis /7

m Safeness is at risk

0 When /ocal worst case in our processing resource may not
always lead to global worst case at program level

0 This reflects timing anomalies that originate from
= Complex hardware architectures (e.g., out-of-order pipelines)
= Improper design choices (e.g., inept cache replacement policies)
u  Counter-intuitive timing behavior
= Faster execution of a single instruction with /ong-ferm negative effects

0 Very difficult to account for in static analysis
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| Timing anomaly: example

= Assume there is dependency between (some) instructions
because of shared HW resources (as in pipeline stages)

= And opportunistic scheduling is made of individual requests

(cache hit e
o 5

Resource 2

Resouree 3

cache miss
Resource |

Resource

Resource ] E

= Faster execution of A leads to worse overall execution, owing to
the order in which the instructions are executed
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| Hybrid analysis /1

u To obtain realistic (less pessimistic) WCET estimates

0 On the real target processor and on the final executable

= WCET analysis helps software design before coding: analysis loses
value if the program is modified ())

0 Yet, understanding that safeness is not guaranteed (!)
= Hybrid approaches leverage
0 The measurement of basic blocks on the real HW
= To avoid pessimism from abstract modeling
0 Static analysis techniques to combine the obtained measures

= Knowledge of the program execution paths

u Newer approaches explore probabilistic properties (%)
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| Hybrid analysis /2

= Approaches to collect timing information
a  Software instrumentation
= The program is augmented with instrumentation code

= Instrumentation affects the timing behavior of the program (aka the
probe ¢ffect) and causes problems to deciding what’s the final system

a  Hardware instrumentation

= Depends on specialized HW features (e.g., debug interface)
u_ Confidence in the results is contingent on the coverage of
the executions and on the exploration of worst-case states
0 Exposed to the same problems as static analysis and measurement_

a  Worst-case state dependence is gone if FIW response time is randomized | P

F'? "
=
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Hybrid analysis: the big picture

Execution a
b A traces info

Program Q ) Target Hardware & N5
executable l (black box)
Opt. User annotations N WCET

U estimates

= Open problems
o Can we trust the resulting estimates?
= Contingent on worst-case input and worst-case HW state
= Consideration of infeasible paths
o Needs the real execution environment or an identical copy of it

= May cause serious cost impact and inherent difficulty of exactness
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Summary

We have reckoned with the challenge of computing
the WCET

We have seen how stazic WCET analysis works and
where its weaknesses are

0 We have learned what high-level analysis is

0 And what low-level analysis does

We have seen how hybrid analysis (measurement-
based) is more pragmatic, but also riskier
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Selected readings

R. Wilhelm et al. (2008), The worst-case execution-time
problem—overview of methods and survey of tools

DOI: 10.1145/1347375.1347389

F.J. Cazotla et al. (2019), Probabilistic worst-case timing

analysis: taxonomy and comprebensive survey
DOI: 10.1145/3301283
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