
2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 1

6.b WCET analysis

Where we learn how the worst-case
execution-time (WCET) value used in
response-time analysis can be determined,
and explore the taxonomy of WCET analysis
techniques

Worst-case execution time (WCET)

 For any input data and for all initial logical states
 So that all execution paths of the program are covered

 For any hardware state
 So that the worst-case execution conditions are in effect

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator of it
 Caution: the high-watermark value can be ≪ WCET

 Static WCET analysis
 Uses an abstract model of the HW and of the program

2019/2020 UniPD – T. Vardanega Real-Time Systems 332 of 533

2019/2020 UniPD – T. Vardanega

Computing the WCET /1

 Why not measure the task’s WCET on its real target HW?

 Triggering the WCET by test is exceedingly difficult
 Supplying input data that cover all possible program executions is

intractable in practice
 Worst-case initial state on modern HW is very hard to determine

 Complex pipelines (out-of-order execution)
 Caches
 Branch predictors and speculative execution

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state
Logic analyser,
oscilloscope,

etc.
WCET ?

Real-Time Systems 333 of 533 2019/2020 UniPD – T. Vardanega

Computing the WCET /2

 Exact WCET not generally computable (~ the halting problem)
 Yet, WCET bounds are essential to feasibility analysis

 Which must be safe, to upper bound all possible executions
 Which must be tight, to avoid costly over-dimensioning

Real-Time Systems 334 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 2

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control flow
and on the HW fine-grained behavior
 High-level analysis addresses program execution

 Control flow analysis builds a control flow graph (CFG) for it

 Low-level analysis determines the timing cost of individual
processor instructions on the abstract model of the HW
 Not constant in modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

2019/2020 UniPD – T. Vardanega Real-Time Systems 335 of 533

Static WCET analysis /2

2019/2020 UniPD – T. Vardanega Real-Time Systems 336 of 533

Implicit path enumeration technique

 The program’s CFG is augmented
with flow graph constraints

 The WCET is computed with
integer linear programming or
constraint programming

 𝑊𝐶𝐸𝑇 ൌ 𝑚𝑎𝑥 ∑ 𝑥 ൈ 𝑡
 𝑥 is the execution frequency of CFG

edge 𝑖
 𝑡 the execution time of CFG edge 𝑖

2019/2020 UniPD – T. Vardanega Real-Time Systems 337 of 533

CFG Flow graph constraints
 High-level analysis /1

 Must analyze all possible execution paths of the program
 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers

2019/2020 UniPD – T. Vardanega

Static WCET analysis /3

Real-Time Systems 338 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 3

Static WCET analysis /4

 High-level analysis /2
 Several techniques are employed to enable the use of IPET

 Control-flow analysis to construct the CFG
 Data-flow analysis to find loop bounds
 Value analysis to resolve memory accesses

 Automated information extraction is insufficient
 User annotation of flow facts is needed

 To help detect infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and memory references

2019/2020 UniPD – T. Vardanega Real-Time Systems 339 of 533 2019/2020 UniPD – T. Vardanega

Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Real-Time Systems 340 of 533

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature

2019/2020 UniPD – T. Vardanega Real-Time Systems 341 of 533

Understanding the cache

 The cache memory is much smaller than the RAM
 Chunks of the latter map to individual units of the former

 Three such mappings (called cache associativity) are used
 Direct mapping

 The cache holds 𝐾 lines (16-128 bytes each, to leverage locality)
 The RAM of size 𝑀 bytes is divided in 𝐾 blocks sized ெ

bytes each: access conflicts

occur within blocks for addresses more distant than a single cache line
 Fully associative

 Any RAM address can map to any cache line
 Much reduced chance of conflict but massively more complex mapping

 N-way set associative
 The cache is divided into S ൌ

ே
sets, each holding 𝑁 ൌ 2 or 4 lines

 The RAM of size 𝑀 bytes is divided in 𝑆 blocks: as each cache set holds 𝑁 lines,
the chance of access conflict is reduced accordingly

2019/2020 UniPD – T. Vardanega Real-Time Systems 342 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 4

2019/2020 UniPD – T. Vardanega Real-Time Systems 343 of 533

Understanding the cache

2019/2020 UniPD – T. Vardanega Real-Time Systems 344 of 533

Direct	mapping	(by	index)
Each memory address maps to a single cache block:

the (hash of the) tag field gives it placement

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache blocks:

the index field tells the set and the tag the placement in it

offsetindex (set)tag
031

datatag V

offsetsettag
031

datatag V

1. closure2. look-up 1. closure2. look-up

memory

2019/2020 UniPD – T. Vardanega

Static WCET analysis: the big picture

 Open problems
 Can we always trust the abstract model of the HW?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

Analysis framework
and

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

Real-Time Systems 345 of 533 2019/2020 UniPD – T. Vardanega

Static WCET analysis /7

 Safeness is at risk
 When local worst case in our processing resource may not

always lead to global worst case at program level
 This reflects timing anomalies that originate from

 Complex hardware architectures (e.g., out-of-order pipelines)
 Improper design choices (e.g., inept cache replacement policies)
 Counter-intuitive timing behavior
 Faster execution of a single instruction with long-term negative effects

 Very difficult to account for in static analysis

Real-Time Systems 346 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 5

2019/2020 UniPD – T. Vardanega

Timing anomaly: example

 Assume there is dependency between (some) instructions
because of shared HW resources (as in pipeline stages)

 And opportunistic scheduling is made of individual requests

 Faster execution of A leads to worse overall execution, owing to
the order in which the instructions are executed

Real-Time Systems 347 of 533

Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor and on the final executable

 WCET analysis helps software design before coding: analysis loses
value if the program is modified (!)

 Yet, understanding that safeness is not guaranteed (!)
 Hybrid approaches leverage

 The measurement of basic blocks on the real HW
 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

2019/2020 UniPD – T. Vardanega Real-Time Systems 348 of 533

2019/2020 UniPD – T. Vardanega

Hybrid analysis /2

 Approaches to collect timing information
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation affects the timing behavior of the program (aka the

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results is contingent on the coverage of
the executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement
 Worst-case state dependence is gone if HW response time is randomized

Real-Time Systems 349 of 533 2019/2020 UniPD – T. Vardanega

Hybrid analysis: the big picture

 Open problems
 Can we trust the resulting estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May cause serious cost impact and inherent difficulty of exactness

Program
executable

Opt. User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces

Path
info

Real-Time Systems 350 of 533

2019/2020 UniPD - T. Vardanega 27/04/2020

Real-Time Systems 6

2019/2020 UniPD – T. Vardanega

Summary

 We have reckoned with the challenge of computing
the WCET

 We have seen how static WCET analysis works and
where its weaknesses are
 We have learned what high-level analysis is
 And what low-level analysis does

 We have seen how hybrid analysis (measurement-
based) is more pragmatic, but also riskier

Real-Time Systems 351 of 533

Selected readings

 R. Wilhelm et al. (2008), The worst-case execution-time
problem—overview of methods and survey of tools
DOI: 10.1145/1347375.1347389

 F.J. Cazorla et al. (2019), Probabilistic worst-case timing
analysis: taxonomy and comprehensive survey
DOI: 10.1145/3301283

2019/2020 UniPD – T. Vardanega Real-Time Systems 352 of 533

