
Automotive embedded software
architecture in the multi-core age

Massimo Violante
Politecnico di Torino

Torino, Italy

Paolo Gai
Evidence
Pisa, Italy

The big picture

Space Shuttle
~500.000 LOCs

Boeing 777
~3 Millions LOCs

Ref: Christopher Davey, MBSE Workshop 2013

High-end vehicle
~100 Millions LOCs
https://www.wired.com/2012/12/automotive-os-war/

“The car of the future will be the
most powerful computer you will

ever own”

The big picture

3

1880 1980 1990 2000 2010 2020

ECU for P/T, ABS, …
Networking (CAN, MOST, …)

ADAS

Infotainment
Telematics

Autonomous
driving

In-vehicle ICT

Vehicle-to-vehicle
Vehicle-to-infrastructure

Inter-vehicle ICT

No ICT

>70% of all new customer
features are ICT-enabled
and distributed in nature

>70% of all new customer
features are ICT-enabled
and distributed in nature

The big picture

 New features are challenging from the computing
point of view
 Pedestrian detection
 Autonomous emergency braking
 Autonomous driving
 …

 But also evolved traditional features are computing
demanding
 Powertrain
 Braking
 ...

4

An example taken from powertrain

5

Today: huge calibration effort
needed to define LUT content.
“Simple” control strategy with little
processing and many LUT accesses.

Tomorrow: little calibration
effort. “Complex” control
strategy with significant
processing  combustion
model run in real-time!

Designer wish list

 Computing capabilities for demanding vehicle
functions

 Platforms for consolidating multiple applications on
a single device

 Effort-free safety for critical vehicle functions

 Solutions to maximize reusability and scalability

6

Designer wish list

 Multi-core is most likely the computing platform of
choice

7

ECU

A reference use-case for the tutorial

 Typical Electronic Control Unit (ECU)

8

MCU
CPU

Main processor responsible
for the vehicle function A

(e.g, infotainment)

Secondary processor responsible
for the vehicle function B (e.g.,
vehicle network management)

ECU

Multicore
CPU

Simpler Bill-of-Materials
Simpler PCB

Simpler Assembly & Testing

OS1OS2

OS1OS2

The enabling technologies

 Multi-core architectures
 Computing can be distributed among several cores
 Same chip can accommodate multiple functions

 AUTOSAR
 Functions can be made independent from the execution

platform

 Virtualization
 Function can be segregated to dedicated resources to

avoid interferences

9

Outline

 Multicore architectures

 AUTOSAR

 Virtualization

 A use case

 Conclusions

10

Outline

 Multicore architectures

 AUTOSAR

 Virtualization

 A use case

 Conclusions

11

Multicore architectures (1)

Embedded systems used in automotive changed over
the years:

 1985 – Isolated embedded architectures
 1995 – Distributed architectures over CAN bus
 2005 – Integrated architectures based on AUTOSAR
 2015 – Distributed architectures based on

Multicore AUTOSAR + Infotainment solutions
 2025 – Zonal architectures

Multicore architectures (2)

 Nowadays we can identify three classes of
processors in the automotive market:

 System-On-Chip for control applications

 Microprocessors for graphical applications

 High-performance chips for ADAS applications

13

SoC for control applications (1)

 Low end microcontrollers, up to complex multicores

 Static workloads (often based on OSEK/AUTOSAR)

 Mostly single cores, multicores
 for high performance applications
 for integrating more applications in the same chip

14

SoC for control applications (2)

 Heterogeneous  two cores with “similar” ISA
 NXP MPC5668G Fado hosting a PPC z6 and a PPC z0
 2nd CPU dedicated to different subsystems (peripherals)

 Uniform memory address space across cores
 Safety  lockstep configuration

 As an example, NXP MPC5643L Leopard, AURIX Tricore

 RISC + MCU + DSP
 As an example, Infineon Tricore

 No external RAM and Flash
 Extended debug support with ETM macrocells

15

SoC for control applications (3)

 High number of peripherals
 often devoted to control and timing

(ADC, PWM, Encoders, Timers, …)
 lack of traditional desktop interfaces (no USB / Video / …)
 communication buses CAN/FlexRay/LIN, recently Ethernet.

 Complex co-processors (PowerPC eTPU , Bosch GTM)
 used to perform complex real-time-related features

 Cryptography subsystems isolated from main CPU
 Infineon Tricore HSM

 Scratchpad memories

16

MPU, not MMU

 Trend towards MPU, no MMU
 NXP MPC5674F Mamba has a MMU
 NXP MPC5777M Matterhorn has only the MPU

17

Hypervisor extensions with MPU

 Example: Cortex R52
 Hypervisor extensions

coupled with MPU
 Multicore and Safety together
 Use cases:

 Integration of different
legacy applications

 Safety/Security VMs

18

RISC V on the rise

 Open source architecture
 Multicore, Hypervisor support

19

Microchip PolarFire FPGA with hardcore RISC-V

RISC V on the rise (2)

 Open source architecture
 Multicore, Hypervisor support

20
https://pulp-platform.org/

Microprocessors for graphical apps

 Typically for infotainment subsystems
 general purpose microprocessors Intel/ARM/MIPS cores
 In the past hosted commercial operating systems

VxWorks, QNX, Windows CE
 Support for USB/Ethernet/Wifi/…

 Evolution towards low-power consumption
 migration to multi-cores
 video acceleration (video decoders, GPU for OpenGL)

 Evolution trend
 move to Linux (see Genivi/Tizen, now dead)
 hypervisors (INTEGRITY, PikeOS, Xen, JailHouse)
 Security and Safety with the hypervisors 21

Microprocessors and small cores

 Integration of small microcontrollers (Cortex M/R)
for hard real-time / safety features
 TI Jacinto
 NXP SoloX
 Xilinx Ultrascale+
 NXP i.MX 8M

22

High-performance processors (1)

 Used for ADAS Applications
 Video processing / Image recognition
 Intel / 64 bit ARM / VLIW
 Multi / Manycore
 Programmable GPUs
 Hypervisor extensions
 Ethernet in place of slower Buses

23

High-performance processors (2)

 Nvidia X1/Parker/Xavier/Orin

24

Nvidia Volta

25

NVIDIA TESLA V100 SPECIFICATIONS
7.5 TeraFLOPS (double)
15 TeraFLOPS (single)
120 TeraFLOPS (deep learning)
300 GB/s (NVLINK)
900 GB/s (memory bandwidth)
300 WATTS (power consumption)

High-performance processors (2)

 Kalray MPPA Bostan
 256 VLIW cores, cluster of 16
 There will be a new version (Coolridge) in 1 year!

26

High-performance processors (2)

 Renesas RCAR H3
 ARM64 Big-Little + Cortex R + Graphics processing

27

High-performance processors (3)

 Renesas RCAR H3

28

© Copyright 2018 Xilinx

Introducing the World’s First ACAP

>> 29

˃ Heterogeneous Acceleration

˃ For Any Application

˃ For Any Developer

Courtesy of Giulio Corradi, Xilinx

© Copyright 2018 Xilinx

Adaptable Architecture Connected Via NoC

˃ Scalar Engines
Arm® Cortex™-A72 APU

Arm Cortex-R5 RPU

˃ Adaptable Engines
CLBs

Internal Memory

˃ Intelligent Engines
AI Engine

DSP Engine

˃ Connectivity
PCIe w/CCIX

Ethernet

DDR Memory Controllers

Transceivers

I/O

˃ Platform Resources
Network-On-Chip

Platform Management Controller

>> 30 Courtesy of Giulio Corradi, Xilinx

© Copyright 2018 Xilinx

Scalar Engines in the Arm Processing System

˃ Dual-Core Arm® Cortex™-A72 Application Processors
Up to 1.7GHz for 2X single-threaded performance1

Cost and power optimized (half the power)

Code compatibility (ARMv8-A architecture)

Device boots without a bit stream

˃ Dual-Core Arm® Cortex™-R5 Real Processors
Up to 750MHz for 1.4X greater performance1

Low latency and deterministic

Flexible operation modes: Split-Mode and Lock-Step

Highest levels of functional safety (ASIL and SIL)

>> 31

Application Processing Unit

Arm®
Cortex™-A72

NEON™

Floating Point Unit

48 KB I-Cache
w/Parity

32 KB
D-Cache w/ECC

Memory
Management Unit

Embedded
Trace Macrocell

GIC-520 SCU 1MB L2 w/ECCCCI/SMMU

1
2

Real Time Processing Unit

Arm®
Cortex™-R5

(Split & Lockstep)

Vector Floating Point Unit

Memory Protection Unit

32 KB I-Cache w/ECC 32 KB D-Cache w/ECC

GIC 256KB TCM w/ECC

1
2

256KB OCM w/ECC

1: DMIPS vs. Zynq UltraScale+ MPSoCs

Courtesy of Giulio Corradi, Xilinx

© Copyright 2018 Xilinx

AI Engine ArrayPS PL

Unified Tool Chain for Device Programming

Xilinx SDK: Eclipse GUI

User-Directed System Partitioner

Array
CompilerARM C Compiler

System-C Virtual Simulation Platform

Core ISSQEMU

System-Level
Performance Analysis

(using core profiling)

System-Level
Debugger

(using core debugger)

Base Platform

Application
Performance &

Partitioning Constraints

Binaries &
Bitstream

Existing

Modified

New

Targets

SDK

Emulation RTL
Simulation Hardware

Vivado

HLS RTL
IP

>> 32 Courtesy of Giulio Corradi, Xilinx

Issues when integrating multicores

 2 categories of automotive applications
 Real-Time applications (powertrain, body and chassis)
 Non- real-time (infotainment)

 A one-to-one mapping exists between application
(either real- or non-real-time) and processor

 With multi-cores, different applications will coexist
 Temporal Interference

33

Temporal interference

 The execution time of a task varies depending on
the interference received from other tasks in the
same chip
 Caches, DRAM memories, scratchpad memories
 Parallel usage of the same resource by different actors

 Temporal interference makes the partitioning of the
application functionalities into cores very difficult
 20-30% overhead when moving to dual cores!

 PREM techniques to limit interference
 Requires changes in the application source code

34

PREM and scratchpad memories

 Example - PREM technique implemented using
Scratchpad memories

Predictable interval
 Memory prefetching in the first phase
 No cache misses in the execution phase
 Non-preemptive execution

35
Slide thanks to Michal Sojka, CTU Prague

Core-level Memory Interference
Drive PX2

36

From: Capodieci, Cavicchioli, Bertogna @ IEEE ETFA 2017

Combined Interference Drive PX2

37

From: Capodieci, Cavicchioli, Bertogna @ IEEE ETFA 2017

ECU

Considering our use case

 Multicores can be exploited to consolidate vehicle
functions A and B and on the same chip

 Problems:
 How can we port software from multi-chip to multi-core?
 How multiple Operating Systems can coexist?
 How can we guarantee isolations of tasks?

38

ECU

MCU
CPU

OS1OS2

Outline

 Multicore architectures

 AUTOSAR

 Virtualization

 A use case

 Conclusions

39

Automotive software architectures

 The automotive market has gone through waves of
standardization
 90s – OSEK/VDX
 2004-2014 – AUTOSAR Classic
 2015- AUTOSAR Adaptive

 Main ideas
 Standardize features
 Decouple application from execution platform
 Create a market of competitors
 Lower the costs

40

90s – OSEK/VDX

 OSEK/VDX is an effort to standardize
the RTOS for 8/16/32 microcontrollers
 Static approach (configured with the OIL language)
 Real time features

 Fixed Priority with immediate Priority ceiling
 Stack sharing between tasks
 Debugger Awareness through the ORTI standard
 Communication infrastructure (OSEK COM)

 Single core
 2-6 Kb flash footprint
 Certification procedure

41

From OSEK to AUTOSAR

 OSEK allowed the description of interconnected
ECUs through a communication bus

 In modern cars  tens of interconnected ECUs
 The need becomes more the integration of

features than the integration of hardware boxes

 AUTOSAR gives an answer to this need, providing
 A SW component model to ease the integration
 A standardized basic software implementation

42

AUTOSAR Classic Architecture

AUTOSAR Classic VFB & RTE

A
U

T
O

S
A

R

S
W

-C
 1

SW-C
Description

Virtual Functional Bus

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 1

ECU1

A
U

T
O

S
A

R

S
W

-C
 2

SW-C
Description

A
U

T
O

S
A

R

S
W

-C
 3

SW-C
Description

A
U

T
O

S
A

R

S
W

-C
 n

SW-C
Description

ECU
Descriptions

System
Constraint
Description

Deployment tools

Gateway

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 2

ECU1

A
U

T
O

S
A

R

S
W

-C
 3

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 n

ECU1

AUTOSAR important concepts

 AUTOSAR Components
 Communicate through ports
 Independent from their placement

 AUTOSAR OS
 Extension of OSEK/VDX

 Basic Software and MCAL
 Driver, Diagnostics and self test, …

 Supported by tools
 Using a common AUTOSAR XML format

45

AUTOSAR OS Main concepts

 OS Applications:
 containers of tasks used for memory protection and

multicore partitioning

 Multicore support
 Static partitioning of tasks to cores
 (non-FIFO) Spinlocks and remote activations

 Memory protection supporting MPU
 Timing protection and Stack Monitoring

46

ISO26262

AUTOSAR critiques

 Limited support for non-functional specifications
 Requirements / Execution time / …
 Enhancements through AMATHEA Project / EAST ADL

 Complexity
 Creates barriers to the entry of new players
 The market is mostly taken by 2-3 players

 Limited support for open-source … but …
 ERIKA Enterprise http://www.erika-enterprise.com
 COMASSO http://www.comasso.org

47

Something about ERIKA Enterprise

http://www.erika-enterprise.com

 ERIKA Enterprise is an RTOS OSEK/VDX certified
 ERIKA Enterprise implements the AUTOSAR OS API
 With a suitable open-source license allowing

static linking of closed source code
(GPL + Linking Exception)

 Typical footprint around 2-4KB Flash
 Used in automotive applications and research projects
 ERIKA3 supports now various automotive CPUs

Future of AUTOSAR

 Future support for ADAS, automatic driving, Car2X
 high performance, dependable systems,

distributed diagnostics
 cloud integration / support for non-AUTOSAR systems

 Adaptive AUTOSAR, based on POSIX PSE51
 coexistence in the same multicore system of both

AUTOSAR Classic and AUTOSAR Adaptive
 Thanks to the virtualization support

49

Considering our use case

 Software shall be redesigned according to the
AUTOSAR principle
 Software components are responsible for implementing

the needed functionalities
 The software components are execution-platform

agnostic

 AUTOSAR deployment tools are used to map
software components to the cores

 Problems:
 How can we port software from multi-chip to multi-core?
 How multiple Operating Systems can coexist?
 How can we guarantee isolations of tasks?

50

Outline

 Multicore architectures

 AUTOSAR

 Virtualization

 A use case

 Conclusions

51

Virtualization

 Virtualization is a technology to abstract a hardware
platform into virtual machines (VMs)
 A VM uses a sub-set of the available hardware
 VMs running on the same hardware are not aware that

they are sharing the platform with other VMs

 Old technology
 Introduced in the 1960 on mainframes
 Rediscovered in 2000s for embedded systems

52

Type-1 Hypervisors
 In embedded systems

virtualization is done
using type-1 hypervisors
 Based on Microkernel 

easy to validate
 They manage isolation of

VMs by intercepting all
privileged instructions

 They implement CPU
scheduling

 They supports inter-VM
communications

53

Core 1 Core 2

Core 3 Core n

Type 1 hypervisor

Application

OS

Application

OS

VM VM

Considering our use case

 Problems:
 How can we port software from multi-chip to multi-core?
 How multiple Operating Systems can coexist?
 How can we guarantee isolations of tasks? 54

Core 1 Core 2

Core 3 Core 4

Type 1 hypervisor

Function A

OS1

Function B

OS2

VM VM

ECU

MCU
CPU

OS1OS2

Considering our use case

 Hypervisor segregates
functions
 Microkernel guarantees

separations of hardware
resources between each VM

 Scheduling is used in case time
interference is critical

55

Core 1 Core 2

Core 3 Core 4

Type 1 hypervisor

Function A

OS1

Function B

OS2

VM VM

Core x

Core 4
time

Non critical Task

Non critical Task

Critical Task Non critical Task

Non critical Task

Non critical tasks can run
concurrently on the cores

When critical task runs,
other cores are idle

Outline

 Multicore architectures

 AUTOSAR

 Virtualization

 A use case

 Conclusions

56

Use Case: the HERCULES Project

H2020 project – http://hercules2020.eu/

 Main outcome
 Integrated framework to achieve predictable performance

on top of cutting-edge heterogeneous COTS multi-core
platforms

 Technological baseline
 Real-time scheduling techniques
 High-performance/Low-power embedded COTS
 Next generation real-time applications

57

Hardware Architecture

 Starting point: the hardware architecture

 Tegra-like platform for handling high performance
computational loads with low power budgets and
potentially low predictability

 Safety microcontroller for real-time safety applications up
to ASIL D

HERCULES IAB Meeting, Turin 11th May, 2016

Programming model abstractions
 Support for dynamic applications using Linux

 Support for legacy real-time applications using
AUTOSAR-like stacks

 Support an open-source OSEK/VDX implementation
named ERIKA Enterprise, extending it to support a
subset of the AUTOSAR RTE

 Pinning one OS per core to reduce overhead and
complexity, and guarantee better isolation

HERCULES IAB Meeting, Turin 11th May, 2016

Integrating different subsystems

 An application will be likely composed by
 A static part, implemented with an AUTOSAR RTE
 A dynamic part, implemented with Linux and the GPUs

 We want to integrate them together in the same
multicore CPU!

 Idea: use a Hypervisor
 Cores assigned statically to domains –

not like it happens in a Cloud environment!
 Need to share peripherals… and the GPU!
 Initial attempt based on JailHouse

HERCULES IAB Meeting, Turin 11th May, 2016

HERCULES Software architecture

Tegra-like SoC
Real-Time

Certified SoC

Programming model(s) abstraction

Hypervisor abstraction

Linux

RTE

Tricore
ASIL-D

EE EE Linux

“Big.LITTLE-like” core
4 cortex A57 + 4 cortex A53

big bigltl ltl

Big-little management GPU management / firmware

ISA subdomain #1 ISA subdomain #2 ISA subdomain #3

PREDICTABLE
EXTENSIONS

GPU

RUNTIME

*

RTE

Pass
through*

ERIKA3 + Hypervisor(s)

 We presented an integration of ERIKA3
on Tegra Parker @GTC Munich 2017

 We released a version of ERIKA3 working on top of
the JailHouse Hypervisor
 Check the new Virtual machine on the ERIKA3 website!

 We added support for ERIKA3 under Xen, with
EtherCAT support

62

Perf. measurements
on NVIDIA Drive PX2

Nvidia Vibrante configuration:
 We considered ERIKA3 pinned on one of the Cortex A57
 Linux on the other 3 A57 cores
 Other VMs moved to Denver when possible

We are interested in the following measurements
 ISR Latency with the CPU idle or «busy» doing

RTOS primitives
 AUTOSAR Task wakeup Latency
 Linux clock_nanosleep

periodic task latency
 Variability when other CPUs are executing

memory intensive tasks

Marko Bertogna, Paolo Gai,
Doming the Beast: achieving predictability on Drive PX2
GTC Munich October 2018

63

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

big bigltl ltl ltl ltl

Linux

Nvidia Vibrante Hypervisor

Linux

BPMP VM WDT

I2C

SYSMGR

VSC

SE

Linux

or

CPU under test

ISR Latency Timings
 Cumulative distribution

of the execution times

Marko Bertogna, Paolo Gai,
Doming the Beast: achieving predictability on Drive PX2
GTC Munich October 2018

64

ISR Latency,
ERIKA3 idle
9-10.5 µs

ISR Latency,
ERIKA3 «busy»

11-14 µs

ISR/Task Latency Timings
 Cumulative distribution

of the execution times

Marko Bertogna, Paolo Gai,
Doming the Beast: achieving predictability on Drive PX2
GTC Munich October 2018

65

ISR Latency,
ERIKA3 idle
9-10.5 µs

AUTOSAR
Task Latency,

26-28 µs

ISR/Task/Linux
 Cumulative distribution

of the execution times

66

ISR Latency,
ERIKA3 idle
9-10.5 µs

AUTOSAR
Task Latency,

26-28 µs

Linux
clock_nanosleep,

57-235 µs

Marko Bertogna, Paolo Gai,
Doming the Beast: achieving predictability on Drive PX2
GTC Munich October 2018

ISR Latency Timings
 Cumulative distribution

of the execution times

67

Degradation due
to memory

intensive load on
other CPUs

Marko Bertogna, Paolo Gai,
Doming the Beast: achieving predictability on Drive PX2
GTC Munich October 2018

A full AUTOSAR classic stack

Evidence RTE Generator

MCAL from
silicon vendor

AUTOSAR COM Layer
 Library on top of Jailhouse's mechanism

 Blocking and non-blocking calls

 Dynamic-size messages

 Similar to AUTOSAR COM API:

Com_StatusType Com_GetStatus();

uint8 Com_SendSignal(Com_SignalIdType SignalId, const void
*SignalDataPtr);

uint8 Com_ReceiveSignal(Com_SignalIdType SignalId, void*
SignalDataPtr);

 Developed by EVI in RETINA EU project

Linux
kernel

Jailhouse hypervisor

SWC

AUTOSAR Classic

App

Linux OS

ARM
Cortex-A

ARM
Cortex-A

ARM
Cortex-A

ARM
Cortex-A

Application SW architecture

JETSON TX2

LINUX and ERIKA
partitions by means

of Jailhouse

Predictable Caches: Page Colouring

 Neighbor cores cause
cache eviction on shared
L2 cache, hence
unpredictable memory
latency (hit/miss)

 Partition cache in isolated
regions with coloring support
in Jailhouse!

 [Kloda et al. RTAS2019]

© Copyright 2019 Xilinx

The partition problem

>> 72

PLC

(IEC61508)

PLC
Application

• User dependent
• Time sensitive
• Safety Critical

(IEC61508)

Motor + Motion Control
Application

• Time Critical
• Hard real time
• Safety Critical

(ISO13849)

Field bus
Application

• Protocol Dependent
• Time critical

400MHz…600MH
z 1GHz…1.5GHz

Multicore clusterRealtime cluster

LEGACY
Application
s

Memory
Controlle

r

Machine Learning
Application

• User dependent
• Data intensive
• Performance intensive

IoT Gateway
Application

• IT dependent
• Security critical

OT/IT Gateway
Application

• TSN dependent
• Security critical
• Time critical

(synchronization)

User’s
Application

• Sandbox
• Security critical
• Rich OS demand

• Linux

NEW
Application
s

Specialized
Processing Units
(DSP, FPGA, uP,

ML)

SoC

~ 1ms..100ms

~ 10us..10ms

~ 64ms..1ms

~ 10Gops…Tops

Gops = Giga operations/s
Tops = Tera operations/s

Main
Memory

I/O
Devices

System
Bus (switch)

L2 Cache

USB, Ethernet,

SPI, Uart, …

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

Conceptual allocation of applications in many core SoC

>> 73

App1 - RT Industrial Networking

App2 – IoT Gateway TSN

App3 SIL supervisor

RTOS Bare
Metal

L2 Cache

App4 – Streaming

App7 PLC

Linux RTOS

App5 – HMI
App6 – ML

Hypervisor

App9 Motor Control

Bare
Metal

App8 Motion

Memory Controller

TCM OCM

External Memory

App10 Safety Loop

Low Criticality Mid
Criticality

High
Criticality

High
Criticality

HMI = Human Machine Interface
ML = Machine Learning
TSN = Time Sensitive Network
SIL = Safety Integrity Level
OCM = On Chip Memory
TCM = Tightly Coupled Memory

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

Do we have absence of interference?

˃ Conditions
CPU3 executing a 48Kbyte code
every 256us as motor control task +
safety loop
CPU2 executing a “PLC” like 48K
byte code every 8ms
CPU1 executing streaming of 2
Megabytes of data
CPU0 executing DDR access for
data logging with 256 Kilo bytes
stream

˃ Measurements
CPU3 executing with response time
between ~400ns and ~12000ns a
30x deviation!
CPU2 executing with response time
between ~2000 and ~12000 ns
Clear and significant
interference!
Likely to be the L2 cache again

>> 74

R
e

sp
o

n
se

 ti
m

e
 in

 n
s

samples

Critical task

Interference from Linux
Interference to CPU2 and CPU3

8ms

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

How cache works on Zynq® UltraScale+™

˃ Cache organization
The size of Level 2 cache of the
Zynq UltraScale+ is 1 Mbyte.
It is subdivided in 16 chunks called
ways.
Each of the squares in the figure
represents one cache block (= one
cache line of 64 byte).
The cache controller divides the
address in three parts:

‒ The offset defines a byte within a
cache line.

‒ With 64 byte cache line size these
are the 6 LSB’s (64 = 26)

‒ The set index bits define in which
set the cache line gets stored.

‒ As there are 1024 sets, 10 address
bits are used for this purpose (1024
= 210).

‒ The rest of the address bits form a
unique tag.

>> 75

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <-- set 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1020 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1021 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1022 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1023 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <-- set 1023

<-- -->16 ways

se
t

in
d

ex
--

>
<

--

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tag set index offset

Address

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

Cache coloring

˃ Cache colouring is a software technique for cache partitioning without hardware
support.

Fragments the memory space into a set (colours)
Colours addresses are mapped to disjoint cache partitions.
Achieved dividing the whole memory space into sequential regions sizing as a way-size.

˃ For example 1G bytes of memory

>> 76

.

𝑁𝑢𝑚𝑏𝑒𝑟௢௙ೝ೐೒೔೚೙ೞ = ⌊
𝑚𝑒𝑚𝑜𝑟𝑦𝑠𝑖𝑧𝑒

𝑤𝑎𝑦𝑠𝑖𝑧𝑒
⌋ = ⌊

1𝐺𝑏𝑦𝑡𝑒

64𝐾𝑏𝑦𝑡𝑒
⌋ = 16384𝑟𝑒𝑔𝑖𝑜𝑛𝑠

C0 C1 C2 … C n-1 C0 C1 C2 … C n-1 C0 C1 C2 … C n-1 C0 C1 C2 … C n-1

Color 0 ……..
…
…
…
Color n-1 …….

Region 0 Region 1 Region …. Region n-1

Size of a sub-region assigned to a colour for example 4K byte

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

Colouring policy definition

>> 77

Extending the configuration of a new platform on the coloured version of Jailhouse is straightforward.
It suffices to define two parameters:

 Fragment size it must match the cache way size, hence 64 K byte on US+.

 Sub-colour size it must be a multiple of the page granularity, so let us assume the smallest on ARMv8-
A architecture value of 4 K byte.

From this two parameters we determine the number of available colours – 16.

𝑛𝑢𝑚𝑏𝑒𝑟௢௙೎೚೗೚ೠೝೞ = ⌊
𝐿2௠௘௠௢௥௬௦௜௭௘

𝑤𝑎𝑦𝑠𝑖𝑧𝑒 ȉ 𝑝𝑎𝑔𝑒𝑠𝑖𝑧𝑒
⌋ = ⌊

1𝑀𝑏𝑦𝑡𝑒

16 ȉ 4𝐾𝑏𝑦𝑡𝑒
⌋ = 16𝑐𝑜𝑙𝑜𝑢𝑟𝑠

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

Cache coloring + Jailhouse reincarnation

>> 78

App1 - RT Industrial Networking

App2 – IoT Gateway TSN

App3 SIL supervisor

RTOS Bare
Metal

App4 – Streaming

App7 PLC
Linu

x
RTOS

App5 – HMI

App6 –
ML

Hypervisor

App9 Motor Control

Bare
Metal

App8 Motion

Memory Controller

TCM OCM

External Memory

App10 Safety Loop

Low
Criticality Mid

Criticality
High
Criticality

High
Criticality

HMI = Human Machine Interface
ML = Machine Learning
TSN = Time Sensitive Network
SIL = Safety Integrity Level
OCM = On Chip Memory
TCM = Tightly Coupled Memory

Color #3-
#4

CPU3

Color #2
CPU2

L2 Cache L2 Cache

Color #3 #4Color #1 #2
Linux

˃ Results
Interference amongst Core 3
and Core 2 is eliminated

Contiguous memory map in
function of the number of
color assigned to CPU

Cache “lockdown” same size
of number assigned colors

˃ Predictability improved

˃ Separation improved

˃ Linux re-incarnated
Coloring no interference

CPU0 CPU1

128K128K

L2 Cache L2 Cache

64K

Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

© Copyright 2019 Xilinx

Cache coloring + Jailhouse reincarnation benchmark

˃ Improved predictability
Almost constant response
time ~2000ns in all
stressing conditions

˃ Minimal interference
Interference amongst cores
is eliminated
Still possible internal
interference, within threads
in a single CPU, but has to
be managed at application
level

>> 79 Courtesy of Giulio Corradi, Xilinx
webinar 5 March 2019

Outline

 Multicore architectures

 AUTOSAR

 Virtualization

 A use case

 Conclusions

80

Conclusions

 Multi-cores are the response to automotive needs,
but only in conjunction with other technologies
 AUTOSAR
 Hypervisors
 …

 Time interference limits the possibility to exploit
fully multi-core capabilities in real-time scenario
 Some hardware features available in the newest devices

could help (e.g., resource pre-allocation for quality of
service guarantee)

81

Contacts
Paolo Gai
pj@evidence.eu.com
http://www.evidence.eu.com

Massimo Violante
massimo.violante@polito.it
http://www.cad.polito.it

82

Content mostly taken from:

Massimo Violante, Paolo Gai,
Automotive embedded software architecture in the multicore age.
at 21st IEEE European Test Symposium, May 23 - 27, 2016, Amsterdam, The Netherlands

Plus additional content courtesy of Marko Bertogna and Giulio Corradi

Marko Bertogna
marko.bertogna@unimore.it
https://hipert.unimore.it/

Giulio Corradi
giulio.corradi@xilinx.com
https://www.linkedin.com/in/giulio-corradi-
860b71b/

