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Lecture topics

1. Introduction
2. Scheduling basics
3. Fixed-priority scheduling

a. Basic workload models
b. Task interactions and 

blocking
c. Exercises and further model 

extensions

4. Implementation issues
a. Programming real-time 

systems (in Ada)
b. A look under the hood

5. Distributed systems
a. Worst case with offsets
b. End-to-end analysis

6. Execution-time analysis
7. Multicore systems

a. Initial reckoning
b. Seeking the lost optimality
c. Global resource sharing

8. Mixed-criticality systems
9. Predictable parallel 

programming
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Protocol

 Learning outcomes
 Realize the existence and the needs of software systems whose 

response time is critical to their use and consequently to their design
 Understand the principles, methods, techniques and technology 

required to develop them so as to guarantee predictability
 Instructional methods

 Web resources in complement to slide desks and presentations
 Reciprocal feedback

 Instructor to student, about incremental (self-)assignments
 Student to instructor, about the progression of learning

 Interaction
 Posts in Moodle’s billboard for this class, for all that must be public
 Email otherwise
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1. Introduction

Where we make some initial acquaintance 
with what real-time systems are, and why 
they came about, and then take a first look 
at their abstract concept



Initial intuition /1

 Real-time system /1
 An aggregate of computers, I/O devices and application-specific 

software, characterized by
 Continuous interaction with the external environment
 To control it after mission-specific goals
 Capturing the variations of the environment state and reacting to in a 

timely fashion
 Comprised of system activities subject to timing constraints

 Reactivity, accuracy, duration, completion, responsiveness: all 
dimensions of timeliness

 System activities inherently concurrent and increasingly parallel
 The satisfaction of all system constraints must be proved
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Concurrency vs. parallelism

 Concurrent programming allows using multiple logical 
threads of control to reflect cohesively the collaborative 
structure of the solution
 I do “my” bit, you do “yours”; our respective waiting is not 

wasteful
 Threads form the architecture: they are long-lived

 Parallel programming promotes a divide-and-conquer 
logic to solve a problem, with multiple threads that 
work independently on the problem space
 I work as fast as I can and know nothing about you
 Threads are mindful of throughput: they are short-lived
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Initial intuition /2

 Real-time system /2
 Operational correctness does not solely depend on the logical 

result but also on the time at which the result is produced
 The computed response has an application-specific utility
 Correctness is defined in the value domain and in the time domain
 A logically-correct response produced later than due may be bad

 Embedded system
 The computer and its software are fully immersed in an 

engineering system comprised of the external environment 
subject to its control
 Defined in terms of physical attributes that can be interacted with
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Embedded systems vs. CPS

 Cyber-physical systems (CPS) are the new 
frontier in real-time systems research: what is new 
in them?
 Traditional embedded systems are closed

 Their interaction with the environment is bounded to selected 
parameters only, and the system operation varies solely within a 
fixed set of modes toward given mission objectives

 Cyber-physical systems are intrinsically open
 The environment that forms part of the system is highly 

dynamic, has broad confines and cannot be reduced to few 
bounded parameters

 The functional needs of the system may vary rapidly over time
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Embedded system /1
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Embedded system /2
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A bounded external environement



Cyber-physical system
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Image credits to www.designwordonline.com

The boundaries of  this 
“world” are much wider 
and more dynamic than 
for traditional embedded 
systems

The interconnect is predominantly 
sensor-based and wireless 



Cybernetics: now and then

 Born in 1948 as the science of control systems, prerequisite to 
the automation of control
 From Greek’s κυβερνητης (Latin’s “gubernator”), steersman

 Sensing the external (physical) environment
 Computing the distance from the expected status
 Actuating devices to effect the system or the environment, so as to 

reduce that distance

 Every control action performed on the external environment 
causes (positive or negative) feedback

 The goal of cybernetics is to calibrate control actions so that 
the system objective is reached with bounded feedback
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Automation of control /1

 A digital system comprised of sensors and actuators
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Automation of control /2

 Factors of influence
 Quality of response (responsiveness)

 Sensor sampling is typically periodic with period 𝑇
 For the convenience of control theory

 Actuator commanding is produced at the time of the next sampling
 As part of feedback control mathematics

 System stability degrades with the width of the sampling period
 Plant capacity

 Good-quality control reduces oscillations
 A system that needs to react rapidly to environmental changes and is 

capable of it within 𝑟𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑅 requires higher frequency of 
actuation and thus faster sampling → hence shorter 𝑇

 A rule-of-thumb ோ ்⁄ ratio normally ranges [10 .. 20]
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Automation of control /3

 Complex systems must support 
multiple distinct periods ௜
 A harmonic relation among all 𝑇௜ does help

 This removes the need for concurrency of 
execution in the relevant computations

 But it causes coupling between possibly 
unrelated control actions which is a poor 
architectural choice

 There may be diverse components of speed
 Forward, side slip, altitude

 As well as diverse components of rotation
 Roll, pitch, yaw

 Each of them requires separate control 
activities each performed at a specific rate
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Any three-dimensional rotation can be 
described as a sequence of  𝑟𝑜𝑙𝑙 ሺ𝑥ሻ, 𝑝𝑖𝑡𝑐ℎ ሺ𝑦ሻ, 
𝑦𝑎𝑤 ሺ𝑧ሻ rotations (Euler angles)



Automation of control /4

 180 Hz cycle
 Check all sensor data and select sources to sample
 Reconfigure system in case of read error

 90 Hz cycle
 Perform control law for pitch, roll, yaw (internal loop)
 Command actuators
 Perform sanity check

 30 Hz cycle
 Perform control law for pitch, roll, yaw (external loop) and integration

 30 Hz cycle
 Capture operator keyboard input and choice of operation model
 Normalize sensor data and transform coordinates; update reference data

 Can you figure how those activities can progress together?
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(Artificially) harmonic multi-rate system



Automation of control /5

 Command and control systems are often organized 
in a hierarchical fashion
 At the lowest level we place the digital control systems 

that operate on the physical environment
 At the highest level we place the interface with the 

human operator
 The output of higher-level controllers becomes a reference value 

𝒓ሺ𝑡ሻ for lower-level controllers
 The more composite the hierarchy the more complex the 

interdependence in the logic and timing of operation
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Example: hierarchical control system
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Application requirements

 A control system consists of (distributed) resources 
governed by a real-time operating system, RTOS

 The system design overall must meet stringent 
reliability requirements
 Measured in terms of maximum acceptable probability of 

failure
 For example: 10-9/hour of flight for the Airbus A-3X0 

control system
 One failure allowed in 109 hours of flight (൐ 114𝑘 years!)
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RTS key characteristics /1

 Complexity
 In algorithms, mostly because of the need to apply discrete control 

over analog and  continuous physical phenomena
 In development, mostly owing to more demanding verification and 

validation processes
 Heterogeneity of components and of processing activities

 Multi-disciplinary engineering (spanning control, SW, and system)
 Extreme variability in size and scope

 From tiny and pervasive (nanodevices) to very large (aircraft, plant)
 In all cases, finite in computational resources

 Proven dependability
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Dependability attributes
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Dependability
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RTS key characteristics /2

 Must respond to events triggered by the external environment as 
well as by the passing of time
 Double nature: event-driven and time-driven

 Continuity of operation
 A real-time embedded system must be capable of operating without 

(constant) human supervision
 Nearly no keyboard-based interaction!

 Software architecture inherently concurrent and increasingly 
parallel

 Must be temporally predictable
 Need for static (off-line) verification of correct temporal behaviour
 How does that relate to determinism?
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Predictability vs. determinism

 Predictability (what can be established a priori) may be 
regarded as a continuum
 Its highest end is full a-priori knowledge 

 Which allows for deterministic reasoning, and yields absolute certainty
 Its lowest end is total absence of a-priori knowledge 

 In the style of “See what happens …”
 Seeking predictability implies reasoning about kinds and 

degrees of uncertainty, pursuing an acceptable balance
 We must reason conservatively

 Considering worst-case conditions, which may be difficult to capture, as 
very rarely we have full a-priori knowledge of the factors of influence

 At the same time, we must avoid exceedingly pessimistic reasoning
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Meeting real-time requirements

 Minimizing the application tasks’ average response time may 
matter to general-purpose computing; it does not to RTS!
 Real-time computing is not equivalent to fast computing

 Given real-time requirements and a HW/SW implementation, 
how can one show that those requirements are met?
 Testing and simulation are not sufficient (obviously!)
 Maiden flight of space shuttle, 12 April 1981: there was a 1 67⁄

probability of a transient overload occurring at system initialization
 It never showed up in testing; it did at launch

 The answer to that requires seeking system-level predictability
 This requires understanding the worst case
 Which in turn requires understanding how execution works …
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Understanding the processor /1
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Understanding the processor /2
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Definitions /1

 Task
 Concurrent unit of functional architecture
 Issues one job at a time, until completion, to perform actual work

 One such task is said to be recurrent
 The tasks in a real-time system are typically recurrent: think of the 

body a task as an endless loop
 Job

 Called into execution by a task, following a given law of activation
 Unit of work that competes for scheduler-controlled execution

 Think of a job as a top-level (always terminating) procedure, which does the 
recurrent work of the issuing task …

 Needs physical and logical resources to execute
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Definitions /2

 Release time
 When it occurs, a job becomes eligible for execution
 The corresponding trigger is called release event
 There may be some temporal delay between the arrival of 

the release event and when the scheduler recognizes the 
job as ready

 May be set at some offset from system start time
 For example to avoid congestion on access to the CPU
 The offset of the first job of task τ to the system start time 

is named phase, , and it is one of the attributes of τ
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Definitions /3

 Jitter
 Variability in the release time or in the time of input (data 

freshness) or output (stability of control)
 Inter-arrival time

 Separation between the release time of successive jobs which 
are not strictly periodic
 Job is sporadic if a guaranteed minimum such value exists
 Job is aperiodic otherwise

 Execution time, 
 For any job ௜, ௜ may vary between a best-case (BCET) ௜

௕ and 
a worst-case (WCET) ௜

௪
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Definitions /4

 Deadline
 The (latest) time by which a job must complete its execution
 May be < (constrained), = (implicit), > (arbitrary) than the next job’s 

release time
 Response time

 The time span between the job’s release and its actual completion

 The longest admissible response time for a job ௜ is termed 
the job’s relative deadline, ௜

 The algebraic summation of release time and relative 
deadline is termed absolute deadline, ௜
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A timeline
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Without loss of  generality,
timelines have events occur
at integral points in time



Definitions /5

 Deadlines are said to be hard
 If the consequences of a job completing past its deadline are serious 

and possibly intolerable
 Satisfaction of all deadlines must be proven off line

 Deadlines are said to be soft
 If the consequences of a job occasionally completing past the 

assigned deadline are tolerable
 The quantitative interpretation of “occasional” may be established 

in probabilistic terms or in terms of utility

 Deadlines are said to be firm
 When they are soft but have utility ൑ 0 past the deadline point, and 

therefore may cause damage if missed
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Time

Utility function
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Usefulness

Tardiness	൐ 𝟎

This	is	an	interesting	notion	but	difficult	to	apply	and	verify

A	firm	deadline a	one	for	which	the	value	of	the	functional	
product	drops	to	0	at	the	expiry	of	the	deadline

Can be computed

Difficult to quantify

Laxity	൒ 𝟎

Deadline



Definitions /6

 Laxity (aka slack)
 is the slack at time of job with 

deadline and remaining time of execution 
 A job with non-negative laxity meets its deadline

 Tardiness
 The span between a job’s response time and its deadline

 A job with negative laxity has tardiness

 Usefulness
 Value of (residual) utility of the job’s computational 

product as a function of its tardiness
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An initial taxonomy /1

 The prevailing classification stems from the traditional 
standpoint of control algorithms

 Strictly periodic systems
 Harmonic multi-rate (artificially harmonized)
 Polling for not-periodic events 

 Predominantly (but not exclusively) periodic systems
 Lower coupling
 Better responsiveness to not-periodic events

 Predominantly not-periodic systems but still predictable
 Events arrive at variable times but within bounded intervals

 Not-periodic and unpredictable systems
 Another ballgame!
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An initial taxonomy /2

 Periodic tasks
 Their jobs become ready at regular intervals of time, 
 Their arrival is synchronous to some time reference

 Aperiodic tasks
 Recurrent but irregular 
 Their arrival cannot be anticipated (asynchronous)

 Sporadic tasks
 Their jobs become ready at variable times but at bounded 

minimum distance from one another
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Periodic task and sporadic task
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Abstract modelling /1

 Active resources (processor, server)
 They “do” what they have to 

 Execute machine instructions, move data, process queries, etc.

 Jobs must acquire them to make progress toward completion
 Contention occurs on access to them

 Active resources have a type 
 Those of the same type can be used interchangeably by a job
 Those of different types cannot

 For example, processors may have different speed, which affects the 
rate of progress for the jobs that run on them
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Abstract modelling /2

 Passive resources (memory, shared data, 
semaphores, …)
 A passive resource doesn’t do anything per se, but jobs 

may need it to make progress
 They may be reused if use does not exhaust them

 If always available in sufficient quantity to satisfy all needs, they 
are said to be plentiful and can be ignored

 Passive resources that matter to real-time systems are 
those that may cause bottlenecks
 Access to memory may matter more (owing to arbitration) than 

memory itself (which may be considered plentiful)
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Abstract modelling /3

 Fixing design parameters
 Permissibility of job preemption

 May depend on the capabilities of the execution environment 
(e.g., non-reentrancy) but also on the programming style 

 Preemption causes time and space overhead
 Job criticality

 May be assimilated to a priority of execution eligibility
 In general, it indicates which activities must be guaranteed, perhaps even to 

the detriment of others
 Permissibility of resource preemption 

 Some resources are intrinsically preemptable
 Others do not permit it
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Abstract modelling /4

 Fixing execution parameters
 The time that elapses between when a periodic job 

becomes ready and the next period is certainly 
 Setting phase and deadline for a job may 

help limit its output jitter (why?)
 The jobs of a system may be independent of one another

 Hence they can execute in any order

 Or they may be subject to precedence constraints
 As it is typically the case in collaborative architectural styles (e.g., 

producer – consumer)
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Task precedence graphs

Job of  type OR (branch)
typically followed by
a join job

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

Independent jobs

Dependent jobs

Job of  type AND (join)

Period	=	2Phase
Relative	deadline
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Types of precedence constraints

 One job’s release time cannot follow that of a successor job
 Effective release time (ERT)

 For a job 𝐽௜ with predecessors 𝐽௞ୀଵ,…,௜ିଵ , 𝐸𝑅𝑇௜ is the latest value 
between its own release time and the maximum effective release time of its 
predecessors, 𝐸𝑅𝑇௞, plus 𝐶௞

 One job’s deadline cannot precede that of a predecessor job
 Effective deadline (ED)

 For a job 𝐽௜ with successors 𝐽௞ୀ௜ାଵ,…,௡ , 𝐸𝐷௜ is the earliest value between 
𝐷௜ and the minimum effective deadline of its successors, 𝐸𝐷௞ , less 𝐶௞

 For single processors with preemptive scheduling, ERT and ED 
are the only precedence constraints of consequence
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Abstract modelling /5

 Periodic model
 Comprises periodic and sporadic jobs
 Accuracy of representation decreases with increasing jitter and 

variability of execution time
 Hyperperiod ௌ of task set ௜

 Defined as LCM (least common multiple) of task periods 𝑝௜
 Utilization

 For every task 𝜏௜ : defined as the ratio between execution time and 
period : 𝑈௜ ൌ

஼೔
௣೔
൑ 1

 For the system (total utilization) : 𝑈 ൌ ∑ 𝑈௜௜ ൑ 𝑚, where 𝑚 is the 
number of CPUs (𝑚 ൌ 1, for now)
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Abstract modelling /6

 Selecting jobs for execution
 The scheduler assigns a job to the processor resource
 The resulting assignment is termed schedule

 A schedule is valid if
 Each processor is assigned to at most 1 job at a time
 Each job is assigned to at most 1 processor at a time
 No job is scheduled before its release time
 The scheduling algorithm ensures that the amount of 

processor time assigned to a job is than its BCET and 
than its WCET

 All precedence constraints in place among tasks as well as 
among resources are satisfied
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execution time
WCET: worst-
case execution



Abstract modelling /7

 A valid schedule is said to be feasible if it satisfies the temporal 
constraints of every job

 A job set is said to be schedulable by a scheduling algorithm if 
that algorithm always produces a valid schedule for that problem

 A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists

 Actual systems may include multiple schedulers that operate in 
some hierarchical fashion
 E.g., some scheduler governs access to logical resources; some other 

schedulers govern access to physical resources
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Abstract modelling /8

 Two algorithms are of prime interests for real-time systems
 The scheduling algorithm, which we should like to be optimal

 Comparatively easy problem
 The analysis algorithm that tests the feasibility of applying a scheduling 

algorithm to a given job set
 Much harder problem

 The scientific community, but not always in full 
consistency, divides the analysis algorithms in
 Feasibility tests, which are exact (necessary and sufficient)
 Schedulability tests, which are only sufficient
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Predictability of execution

 The execution of system under a given scheduling 
algorithm is predictable if the actual start time and the 
actual response time of every job in vary within the 
bounds of the maximal schedule and minimal schedule
 Maximal schedule: the schedule created by under worst-case 

conditions for contention and execution demands
 Minimal schedule: analogously for the best case

 Theorem: the execution of independent jobs with given 
release times under preemptive priority-driven 
scheduling on a single processor is predictable
 Good news: this enables us to understand what “worst case” 

means …
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Cute teasers

 Björn Brandenburg’s post on SIGBED Blog 
 https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-

blueprint-for-proper-real-time-tasks/
 … shows a cute way to reconcile the basic theory seen 

so far and simple-but-sound conveniency programming 
 Check it out

 Linux is certainly not what you would expect to find in 
a real-world embedded real-time system
 Yet, lots of serious users like “convenience-development”
 https://www.zdnet.com/article/to-infinity-and-beyond-linux-

and-open-source-goes-to-mars/
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Further characterization /1
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Further characterization /2

 The design and development of a RTS mind the worst case 
before considering the average case (if at all)
 Improving the average case is of no use and it may even be 

counterproductive
 The cache addresses the average case and therefore operates adversarially to 

the needs of real-time systems

 Stability of control prevails over fairness
 The former concern is selective the other general

 When feasibility is proven, starvation is of no consequence
 The non-critical part of the system may even experience starvation
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Summary /1

 From an initial intuition to a more solid definition of 
real-time embedded systems

 Bird’s-eye survey of application requirements and key 
characteristics

 Taxonomy of tasks
 Abstract models to help reason in general about real-

time systems
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Summary /2

Real-Time

Temporal
Requirements

Deadline/
Latency

Input/output
jitter

Periodic/
Sporadic/
Aperiodic

Structure

Time-
triggered

Event-
triggered

Classificatio
n

Criticality

Hard

Soft 

Firm 

Role of
time

Time-aware

Reactive

Characteristics
(see next page)
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Summary /3

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency &
Predictability

Reliability &
Safety

Large &
Complex
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