
Real-Time Kernels & Systems

Academic Year 2020/2021
Master Degree in Computer Science
Department of Mathematics
University of Padua
Tullio Vardanega, tullio.vardanega@unipd.it

Lecture topics

1. Introduction
2. Scheduling basics
3. Fixed-priority scheduling

a. Basic workload models
b. Task interactions and

blocking
c. Exercises and further model

extensions

4. Implementation issues
a. Programming real-time

systems (in Ada)
b. A look under the hood

5. Distributed systems
a. Worst case with offsets
b. End-to-end analysis

6. Execution-time analysis
7. Multicore systems

a. Initial reckoning
b. Seeking the lost optimality
c. Global resource sharing

8. Mixed-criticality systems
9. Predictable parallel

programming

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 2 of 550

Bibliography
• J. Liu, “Real-Time Systems”, Prentice Hall, 2000
• A. Burns and A. Wellings, “Analysable Real-Time Systems”

Amazon Books, 2016
• State-of-the-art literature

Protocol

 Learning outcomes
 Realize the existence and the needs of software systems whose

response time is critical to their use and consequently to their design
 Understand the principles, methods, techniques and technology

required to develop them so as to guarantee predictability
 Instructional methods

 Web resources in complement to slide desks and presentations
 Reciprocal feedback

 Instructor to student, about incremental (self-)assignments
 Student to instructor, about the progression of learning

 Interaction
 Posts in Moodle’s billboard for this class, for all that must be public
 Email otherwise

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 3 of 550

1. Introduction

Where we make some initial acquaintance
with what real-time systems are, and why
they came about, and then take a first look
at their abstract concept

Initial intuition /1

 Real-time system /1
 An aggregate of computers, I/O devices and application-specific

software, characterized by
 Continuous interaction with the external environment
 To control it after mission-specific goals
 Capturing the variations of the environment state and reacting to in a

timely fashion
 Comprised of system activities subject to timing constraints

 Reactivity, accuracy, duration, completion, responsiveness: all
dimensions of timeliness

 System activities inherently concurrent and increasingly parallel
 The satisfaction of all system constraints must be proved

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 5 of 550

Concurrency vs. parallelism

 Concurrent programming allows using multiple logical
threads of control to reflect cohesively the collaborative
structure of the solution
 I do “my” bit, you do “yours”; our respective waiting is not

wasteful
 Threads form the architecture: they are long-lived

 Parallel programming promotes a divide-and-conquer
logic to solve a problem, with multiple threads that
work independently on the problem space
 I work as fast as I can and know nothing about you
 Threads are mindful of throughput: they are short-lived

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 6 of 550

Initial intuition /2

 Real-time system /2
 Operational correctness does not solely depend on the logical

result but also on the time at which the result is produced
 The computed response has an application-specific utility
 Correctness is defined in the value domain and in the time domain
 A logically-correct response produced later than due may be bad

 Embedded system
 The computer and its software are fully immersed in an

engineering system comprised of the external environment
subject to its control
 Defined in terms of physical attributes that can be interacted with

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 7 of 550

Embedded systems vs. CPS

 Cyber-physical systems (CPS) are the new
frontier in real-time systems research: what is new
in them?
 Traditional embedded systems are closed

 Their interaction with the environment is bounded to selected
parameters only, and the system operation varies solely within a
fixed set of modes toward given mission objectives

 Cyber-physical systems are intrinsically open
 The environment that forms part of the system is highly

dynamic, has broad confines and cannot be reduced to few
bounded parameters

 The functional needs of the system may vary rapidly over time

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 8 of 550

Embedded system /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 9 of 550

Hardware

Operating

System

Application Programs

Typical General-Purpose Computing
Configuration

Hardware

including
Operating System

components

Application Program

Typical Embedded Computing
Configuration

PlantUser

Embedded system /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 10 of 550

A bounded external environement

Cyber-physical system

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 11 of 550

Image credits to www.designwordonline.com

The boundaries of this
“world” are much wider
and more dynamic than
for traditional embedded
systems

The interconnect is predominantly
sensor-based and wireless

Cybernetics: now and then

 Born in 1948 as the science of control systems, prerequisite to
the automation of control
 From Greek’s κυβερνητης (Latin’s “gubernator”), steersman

 Sensing the external (physical) environment
 Computing the distance from the expected status
 Actuating devices to effect the system or the environment, so as to

reduce that distance

 Every control action performed on the external environment
causes (positive or negative) feedback

 The goal of cybernetics is to calibrate control actions so that
the system objective is reached with bounded feedback

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 12 of 550

Automation of control /1

 A digital system comprised of sensors and actuators

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 13 of 550

A/D

A/D

Control law
computation D/A

Sensor Actuator
Physical
system
(plant)

𝒔ሺ𝒕ሻ

𝒓ሺ𝒕ሻ 𝒓𝒌

𝒔𝒌

𝒂𝒌

𝒂ሺ𝒕ሻ

Feedback control loop

Reference
values

𝒂𝒌 ൌ 𝒂𝒌ି𝟐 ൅ 𝜶 𝒓𝒌 െ 𝒔𝒌 ൅ 𝜷 𝒓𝒌ି𝟏 െ 𝒔𝒌ି𝟏 ൅ 𝜸ሺ𝒓𝒌ି𝟐 െ 𝒔𝒌ି𝟐ሻ
Gradient over time

Automation of control /2

 Factors of influence
 Quality of response (responsiveness)

 Sensor sampling is typically periodic with period 𝑇
 For the convenience of control theory

 Actuator commanding is produced at the time of the next sampling
 As part of feedback control mathematics

 System stability degrades with the width of the sampling period
 Plant capacity

 Good-quality control reduces oscillations
 A system that needs to react rapidly to environmental changes and is

capable of it within 𝑟𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑅 requires higher frequency of
actuation and thus faster sampling → hence shorter 𝑇

 A rule-of-thumb ோ ்⁄ ratio normally ranges [10 .. 20]

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 14 of 550

Automation of control /3

 Complex systems must support
multiple distinct periods ௜
 A harmonic relation among all 𝑇௜ does help

 This removes the need for concurrency of
execution in the relevant computations

 But it causes coupling between possibly
unrelated control actions which is a poor
architectural choice

 There may be diverse components of speed
 Forward, side slip, altitude

 As well as diverse components of rotation
 Roll, pitch, yaw

 Each of them requires separate control
activities each performed at a specific rate

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 15 of 550

Any three-dimensional rotation can be
described as a sequence of 𝑟𝑜𝑙𝑙 ሺ𝑥ሻ, 𝑝𝑖𝑡𝑐ℎ ሺ𝑦ሻ,
𝑦𝑎𝑤 ሺ𝑧ሻ rotations (Euler angles)

Automation of control /4

 180 Hz cycle
 Check all sensor data and select sources to sample
 Reconfigure system in case of read error

 90 Hz cycle
 Perform control law for pitch, roll, yaw (internal loop)
 Command actuators
 Perform sanity check

 30 Hz cycle
 Perform control law for pitch, roll, yaw (external loop) and integration

 30 Hz cycle
 Capture operator keyboard input and choice of operation model
 Normalize sensor data and transform coordinates; update reference data

 Can you figure how those activities can progress together?

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 16 of 550

(Artificially) harmonic multi-rate system

Automation of control /5

 Command and control systems are often organized
in a hierarchical fashion
 At the lowest level we place the digital control systems

that operate on the physical environment
 At the highest level we place the interface with the

human operator
 The output of higher-level controllers becomes a reference value

𝒓ሺ𝑡ሻ for lower-level controllers
 The more composite the hierarchy the more complex the

interdependence in the logic and timing of operation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 17 of 550

Example: hierarchical control system

Flight	control
system

State	
estimator

Air	
data

Physical	plant	L0

Virtual	
plant	L1

State	
estimator

Flight	mgmt
system

Navigation

Virtual	
plant	L2

Air	traffic
control

State	
estimator

Sensors

Operator
interface Commands

Responses

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 18 of 550

Application requirements

 A control system consists of (distributed) resources
governed by a real-time operating system, RTOS

 The system design overall must meet stringent
reliability requirements
 Measured in terms of maximum acceptable probability of

failure
 For example: 10-9/hour of flight for the Airbus A-3X0

control system
 One failure allowed in 109 hours of flight (൐ 114𝑘 years!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 19 of 550

RTS key characteristics /1

 Complexity
 In algorithms, mostly because of the need to apply discrete control

over analog and continuous physical phenomena
 In development, mostly owing to more demanding verification and

validation processes
 Heterogeneity of components and of processing activities

 Multi-disciplinary engineering (spanning control, SW, and system)
 Extreme variability in size and scope

 From tiny and pervasive (nanodevices) to very large (aircraft, plant)
 In all cases, finite in computational resources

 Proven dependability

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 20 of 550

Dependability attributes

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 21 of 550

Dependability

Availability Reliability Safety Confidentiality Integrity Maintainability

Readiness
for usage

Continuity of
service delivery

Non-occurrence
of catastrophic
consequences

Non-occurrence
of unauthorized disclosure

of information

Non-occurrence
of improper
alteration of
information

Aptitude to undergo
repairs or
evolutions

RTS key characteristics /2

 Must respond to events triggered by the external environment as
well as by the passing of time
 Double nature: event-driven and time-driven

 Continuity of operation
 A real-time embedded system must be capable of operating without

(constant) human supervision
 Nearly no keyboard-based interaction!

 Software architecture inherently concurrent and increasingly
parallel

 Must be temporally predictable
 Need for static (off-line) verification of correct temporal behaviour
 How does that relate to determinism?

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 22 of 550

Predictability vs. determinism

 Predictability (what can be established a priori) may be
regarded as a continuum
 Its highest end is full a-priori knowledge

 Which allows for deterministic reasoning, and yields absolute certainty
 Its lowest end is total absence of a-priori knowledge

 In the style of “See what happens …”
 Seeking predictability implies reasoning about kinds and

degrees of uncertainty, pursuing an acceptable balance
 We must reason conservatively

 Considering worst-case conditions, which may be difficult to capture, as
very rarely we have full a-priori knowledge of the factors of influence

 At the same time, we must avoid exceedingly pessimistic reasoning

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 23 of 550

Meeting real-time requirements

 Minimizing the application tasks’ average response time may
matter to general-purpose computing; it does not to RTS!
 Real-time computing is not equivalent to fast computing

 Given real-time requirements and a HW/SW implementation,
how can one show that those requirements are met?
 Testing and simulation are not sufficient (obviously!)
 Maiden flight of space shuttle, 12 April 1981: there was a 1 67⁄

probability of a transient overload occurring at system initialization
 It never showed up in testing; it did at launch

 The answer to that requires seeking system-level predictability
 This requires understanding the worst case
 Which in turn requires understanding how execution works …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 24 of 550

Understanding the processor /1

2020/2021 UniPD – T. Vardanega

Instruction
cache

Data
cache

Caches

Courtesy of

Real-Time Kernels and Systems 25 of 550

Understanding the processor /2

2020/2021 UniPD – T. Vardanega

Courtesy of

Core

Real-Time Kernels and Systems 26 of 550

Definitions /1

 Task
 Concurrent unit of functional architecture
 Issues one job at a time, until completion, to perform actual work

 One such task is said to be recurrent
 The tasks in a real-time system are typically recurrent: think of the

body a task as an endless loop
 Job

 Called into execution by a task, following a given law of activation
 Unit of work that competes for scheduler-controlled execution

 Think of a job as a top-level (always terminating) procedure, which does the
recurrent work of the issuing task …

 Needs physical and logical resources to execute

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 27 of 550

Definitions /2

 Release time
 When it occurs, a job becomes eligible for execution
 The corresponding trigger is called release event
 There may be some temporal delay between the arrival of

the release event and when the scheduler recognizes the
job as ready

 May be set at some offset from system start time
 For example to avoid congestion on access to the CPU
 The offset of the first job of task τ to the system start time

is named phase, , and it is one of the attributes of τ

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 28 of 550

Definitions /3

 Jitter
 Variability in the release time or in the time of input (data

freshness) or output (stability of control)
 Inter-arrival time

 Separation between the release time of successive jobs which
are not strictly periodic
 Job is sporadic if a guaranteed minimum such value exists
 Job is aperiodic otherwise

 Execution time,
 For any job ௜, ௜ may vary between a best-case (BCET) ௜

௕ and
a worst-case (WCET) ௜

௪

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 29 of 550

Definitions /4

 Deadline
 The (latest) time by which a job must complete its execution
 May be < (constrained), = (implicit), > (arbitrary) than the next job’s

release time
 Response time

 The time span between the job’s release and its actual completion

 The longest admissible response time for a job ௜ is termed
the job’s relative deadline, ௜

 The algebraic summation of release time and relative
deadline is termed absolute deadline, ௜

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 30 of 550

A timeline

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 31 of 550

Without loss of generality,
timelines have events occur
at integral points in time

Definitions /5

 Deadlines are said to be hard
 If the consequences of a job completing past its deadline are serious

and possibly intolerable
 Satisfaction of all deadlines must be proven off line

 Deadlines are said to be soft
 If the consequences of a job occasionally completing past the

assigned deadline are tolerable
 The quantitative interpretation of “occasional” may be established

in probabilistic terms or in terms of utility

 Deadlines are said to be firm
 When they are soft but have utility ൑ 0 past the deadline point, and

therefore may cause damage if missed

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 32 of 550

Time

Utility function

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 33 of 550

Usefulness

Tardiness	൐ 𝟎

This	is	an	interesting	notion	but	difficult	to	apply	and	verify

A	firm	deadline a	one	for	which	the	value	of	the	functional	
product	drops	to	0	at	the	expiry	of	the	deadline

Can be computed

Difficult to quantify

Laxity	൒ 𝟎

Deadline

Definitions /6

 Laxity (aka slack)
 is the slack at time of job with

deadline and remaining time of execution
 A job with non-negative laxity meets its deadline

 Tardiness
 The span between a job’s response time and its deadline

 A job with negative laxity has tardiness

 Usefulness
 Value of (residual) utility of the job’s computational

product as a function of its tardiness

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 34 of 550

𝑡

𝑑 െ 𝑡

𝒔ሺ𝒕ሻ
𝑟

𝑑

An initial taxonomy /1

 The prevailing classification stems from the traditional
standpoint of control algorithms

 Strictly periodic systems
 Harmonic multi-rate (artificially harmonized)
 Polling for not-periodic events

 Predominantly (but not exclusively) periodic systems
 Lower coupling
 Better responsiveness to not-periodic events

 Predominantly not-periodic systems but still predictable
 Events arrive at variable times but within bounded intervals

 Not-periodic and unpredictable systems
 Another ballgame!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 35 of 550

An initial taxonomy /2

 Periodic tasks
 Their jobs become ready at regular intervals of time,
 Their arrival is synchronous to some time reference

 Aperiodic tasks
 Recurrent but irregular
 Their arrival cannot be anticipated (asynchronous)

 Sporadic tasks
 Their jobs become ready at variable times but at bounded

minimum distance from one another

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 36 of 550

Periodic task and sporadic task

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 37 of 550

Abstract modelling /1

 Active resources (processor, server)
 They “do” what they have to

 Execute machine instructions, move data, process queries, etc.

 Jobs must acquire them to make progress toward completion
 Contention occurs on access to them

 Active resources have a type
 Those of the same type can be used interchangeably by a job
 Those of different types cannot

 For example, processors may have different speed, which affects the
rate of progress for the jobs that run on them

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 38 of 550

Abstract modelling /2

 Passive resources (memory, shared data,
semaphores, …)
 A passive resource doesn’t do anything per se, but jobs

may need it to make progress
 They may be reused if use does not exhaust them

 If always available in sufficient quantity to satisfy all needs, they
are said to be plentiful and can be ignored

 Passive resources that matter to real-time systems are
those that may cause bottlenecks
 Access to memory may matter more (owing to arbitration) than

memory itself (which may be considered plentiful)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 39 of 550

Abstract modelling /3

 Fixing design parameters
 Permissibility of job preemption

 May depend on the capabilities of the execution environment
(e.g., non-reentrancy) but also on the programming style

 Preemption causes time and space overhead
 Job criticality

 May be assimilated to a priority of execution eligibility
 In general, it indicates which activities must be guaranteed, perhaps even to

the detriment of others
 Permissibility of resource preemption

 Some resources are intrinsically preemptable
 Others do not permit it

2020/2021 UniPD – T. Vardanega

Which ones?

Real-Time Kernels and Systems 40 of 550

Abstract modelling /4

 Fixing execution parameters
 The time that elapses between when a periodic job

becomes ready and the next period is certainly
 Setting phase and deadline for a job may

help limit its output jitter (why?)
 The jobs of a system may be independent of one another

 Hence they can execute in any order

 Or they may be subject to precedence constraints
 As it is typically the case in collaborative architectural styles (e.g.,

producer – consumer)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 41 of 550

Task precedence graphs

Job of type OR (branch)
typically followed by
a join job

(0,7] (2,9] (4,11] (6,13] (8,15]

(2,5] (5,8] (8,11] (11,14] (14,17]

Independent jobs

Dependent jobs

Job of type AND (join)

Period	=	2Phase
Relative	deadline

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 42 of 550

Types of precedence constraints

 One job’s release time cannot follow that of a successor job
 Effective release time (ERT)

 For a job 𝐽௜ with predecessors 𝐽௞ୀଵ,…,௜ିଵ , 𝐸𝑅𝑇௜ is the latest value
between its own release time and the maximum effective release time of its
predecessors, 𝐸𝑅𝑇௞, plus 𝐶௞

 One job’s deadline cannot precede that of a predecessor job
 Effective deadline (ED)

 For a job 𝐽௜ with successors 𝐽௞ୀ௜ାଵ,…,௡ , 𝐸𝐷௜ is the earliest value between
𝐷௜ and the minimum effective deadline of its successors, 𝐸𝐷௞ , less 𝐶௞

 For single processors with preemptive scheduling, ERT and ED
are the only precedence constraints of consequence

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 43 of 550

Abstract modelling /5

 Periodic model
 Comprises periodic and sporadic jobs
 Accuracy of representation decreases with increasing jitter and

variability of execution time
 Hyperperiod ௌ of task set ௜

 Defined as LCM (least common multiple) of task periods 𝑝௜
 Utilization

 For every task 𝜏௜ : defined as the ratio between execution time and
period : 𝑈௜ ൌ

஼೔
௣೔
൑ 1

 For the system (total utilization) : 𝑈 ൌ ∑ 𝑈௜௜ ൑ 𝑚, where 𝑚 is the
number of CPUs (𝑚 ൌ 1, for now)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 44 of 550

Abstract modelling /6

 Selecting jobs for execution
 The scheduler assigns a job to the processor resource
 The resulting assignment is termed schedule

 A schedule is valid if
 Each processor is assigned to at most 1 job at a time
 Each job is assigned to at most 1 processor at a time
 No job is scheduled before its release time
 The scheduling algorithm ensures that the amount of

processor time assigned to a job is than its BCET and
than its WCET

 All precedence constraints in place among tasks as well as
among resources are satisfied

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 45 of 550

Recall
BCET: best-case
execution time
WCET: worst-
case execution

Abstract modelling /7

 A valid schedule is said to be feasible if it satisfies the temporal
constraints of every job

 A job set is said to be schedulable by a scheduling algorithm if
that algorithm always produces a valid schedule for that problem

 A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists

 Actual systems may include multiple schedulers that operate in
some hierarchical fashion
 E.g., some scheduler governs access to logical resources; some other

schedulers govern access to physical resources

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 46 of 550

Abstract modelling /8

 Two algorithms are of prime interests for real-time systems
 The scheduling algorithm, which we should like to be optimal

 Comparatively easy problem
 The analysis algorithm that tests the feasibility of applying a scheduling

algorithm to a given job set
 Much harder problem

 The scientific community, but not always in full
consistency, divides the analysis algorithms in
 Feasibility tests, which are exact (necessary and sufficient)
 Schedulability tests, which are only sufficient

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 47 of 550

Predictability of execution

 The execution of system under a given scheduling
algorithm is predictable if the actual start time and the
actual response time of every job in vary within the
bounds of the maximal schedule and minimal schedule
 Maximal schedule: the schedule created by under worst-case

conditions for contention and execution demands
 Minimal schedule: analogously for the best case

 Theorem: the execution of independent jobs with given
release times under preemptive priority-driven
scheduling on a single processor is predictable
 Good news: this enables us to understand what “worst case”

means …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 48 of 550

Cute teasers

 Björn Brandenburg’s post on SIGBED Blog
 https://sigbed.org/2020/09/05/liu-and-layland-and-linux-a-

blueprint-for-proper-real-time-tasks/
 … shows a cute way to reconcile the basic theory seen

so far and simple-but-sound conveniency programming
 Check it out

 Linux is certainly not what you would expect to find in
a real-world embedded real-time system
 Yet, lots of serious users like “convenience-development”
 https://www.zdnet.com/article/to-infinity-and-beyond-linux-

and-open-source-goes-to-mars/

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 49 of 550

Further characterization /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 50 of 550

Further characterization /2

 The design and development of a RTS mind the worst case
before considering the average case (if at all)
 Improving the average case is of no use and it may even be

counterproductive
 The cache addresses the average case and therefore operates adversarially to

the needs of real-time systems

 Stability of control prevails over fairness
 The former concern is selective the other general

 When feasibility is proven, starvation is of no consequence
 The non-critical part of the system may even experience starvation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 51 of 550

Summary /1

 From an initial intuition to a more solid definition of
real-time embedded systems

 Bird’s-eye survey of application requirements and key
characteristics

 Taxonomy of tasks
 Abstract models to help reason in general about real-

time systems

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 52 of 550

Summary /2

Real-Time

Temporal
Requirements

Deadline/
Latency

Input/output
jitter

Periodic/
Sporadic/
Aperiodic

Structure

Time-
triggered

Event-
triggered

Classificatio
n

Criticality

Hard

Soft

Firm

Role of
time

Time-aware

Reactive

Characteristics
(see next page)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 53 of 550

Summary /3

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency &
Predictability

Reliability &
Safety

Large &
Complex

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 54 of 550

