2. Scheduling basics

Where we commence our familiarization with real-time scheduling, that is, the algorithms that decide how the CPU is assigned to the jobs that contend for it

Common approaches /1

Clock-driven (time-driven) scheduling

- Scheduling decisions are made beforehand (at system design) and actuated at fixed time instants during execution
 - Such time instants occur at intervals signaled by clock via interrupts
- The scheduler dispatches to execution the job due in the current time interval and then suspends itself until the next schedule time
 - The scheduler is the prime actor: the jobs are mere called procedures
- □ Jobs must complete within the assigned time intervals
 - Consequently, this scheduling does not require preemption
 - All scheduling parameters must be known in advance
 - The schedule, computed offline, is fixed forever
 - The scheduling overhead incurred at run time is very small

Common approaches /2

Weighted round-robin scheduling

- With basic round-robin (which requires preemption)
 - All ready jobs are placed in a FIFO queue
 - CPU time is quantized, i.e., assigned in slices
 - The job at head of queue is dispatched to execution for one quantum
 - ☐ If not complete by end of quantum, it goes to tail of queue
 - □ All jobs in queue are given one quantum per round
 - Not good for jobs with precedence relations, but fine for producerconsumer pipelines that proceed in continual increments
- With weighted correction to it (used in network scheduling)
 - Jobs are assigned CPU time according a (fractional) 'weight' attribute
 - Job J_i gets ω_i time slices per round (full traversal of the queue)
 - \square One full round corresponds to $\sum_i \omega_i$ progress for the ready jobs

Common approaches /3

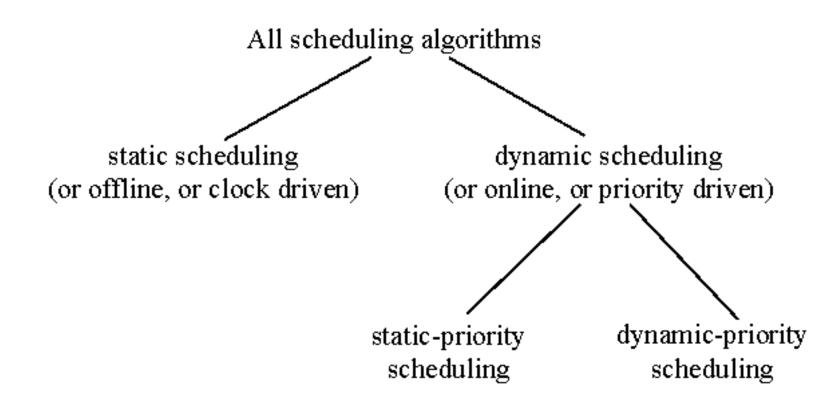
Priority-driven (event-driven) scheduling

- □ This class of algorithms is *greedy*
 - Never leave available processing resources unused if they are wanted
 - An available resource may stay unused only if no job ready to use it
 - □ *Clairvoyant* schedulers may prefer deferring assignment of CPU to improve response time
 - Anomalies may occur when job parameters change dynamically
- □ The jobs that contend for execution are kept in a *ready queue*
- Scheduling takes place when the ready queue changes
 - Such events are called *dispatching points*
 - Scheduling decisions are made online, based on present knowledge
 - Dispatching employs preemption

Preemption vs. non preemption

- Can we compare the performance of preemptive scheduling against non-preemptive scheduling?
 - □ There is no single response that be valid in general
 - When all jobs have same release time, and preemption overhead is negligible (!?), then preemptive scheduling is *provably better*
- Does the improvement in the last finishing time (*minimum makespan*) under preemptive scheduling pay off the time overhead of preemption?
 - We do *not* know in general ...
 - We do know that, for 2 CPUs, the minimum makespan for non-preemptive scheduling is *never worse* than 4/3 of that for preemptive

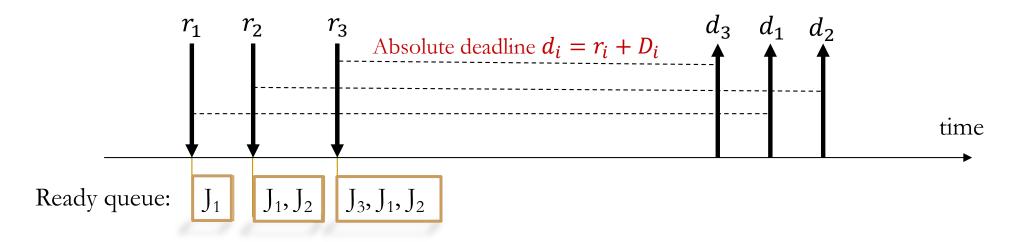
Classification of Scheduling Algorithms



Jim Anderson Real-Time Systems Introduction - 30

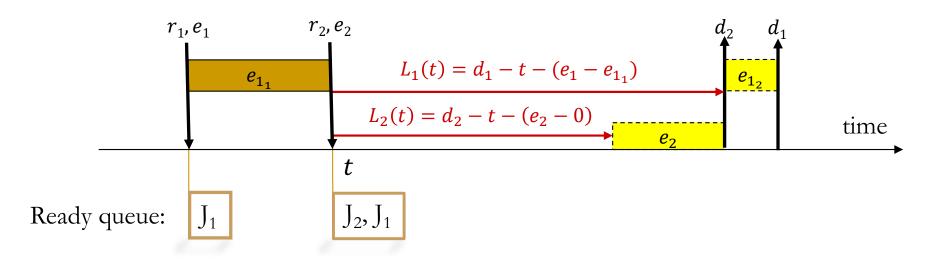
Ways to optimality /1

- Priorities assigned dynamically to reflect absolute deadlines
 - Ready queue reordering occurs on job release
- [Liu & Layland: 1973] Earliest Deadline First (EDF) scheduling is optimal for single-CPU systems with independent jobs and preemption
 - □ For any job set, EDF produces a feasible schedule if one exists
 - □ The optimality of EDF breaks otherwise (e.g., no preemption, parallelism)



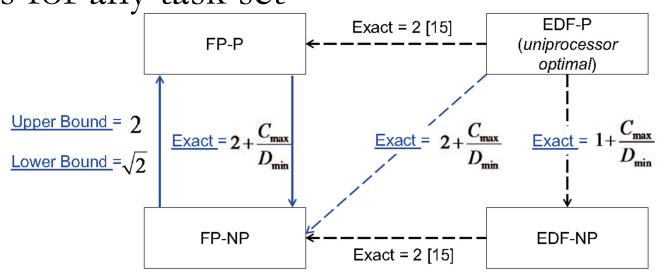
Ways to optimality /2

- Priorities assigned dynamically according to *laxity* L(t)
 - $L_i(t) = d_i t Y_i(t)$, where $Y_i(t)$ is the residual execution time needed for τ_i at time t, with release time r_i and relative deadline D_i
 - Ready queue reordering occurs on job release and job completion
 - \Box Jobs' priority, L(t), varies with t: more dynamic and costly than EDF
- [Liu & Layland: 1973] Least Laxity First (LLF) scheduling is optimal under the same hypotheses as for EDF optimality



Optimality and sub-optimality

The *processor speed-up factor* determines the increase in processor speed that a scheduling algorithm would require to equalize an *optimal* algorithm of the same class for any task set

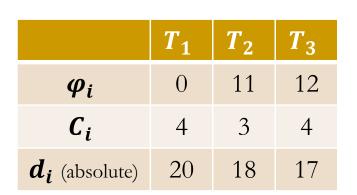


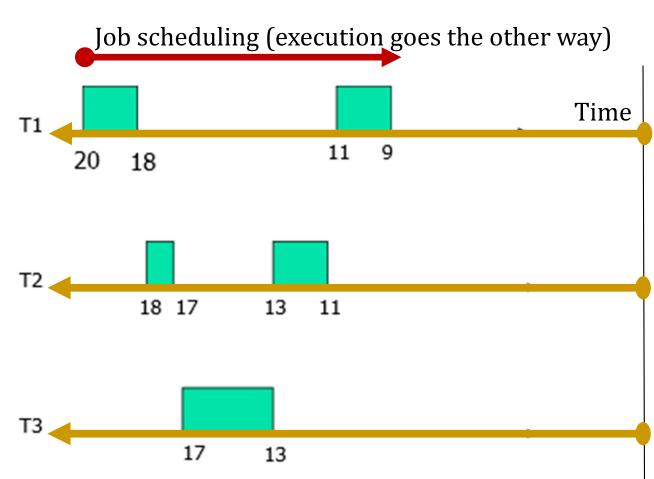
Davis et al., "Quantifying the Exact Sub-Optimality of Non-Preemptive Scheduling", RTSS 2015

Ways to optimality /3

- If one's goal were solely that jobs meet their deadlines, there would be no value in having jobs complete any earlier
 - □ The *Latest Release Time* (LRT) algorithm the converse of EDF follows this logic, scheduling jobs *backward* from the latest deadline, treating deadlines as release times and release times as deadlines
 - LRT is *not* greedy: it may leave the CPU unused with ready tasks
- The wisdom of this algorithm is the knowledge that greedy scheduling algorithms may cause jobs to suffer larger interference

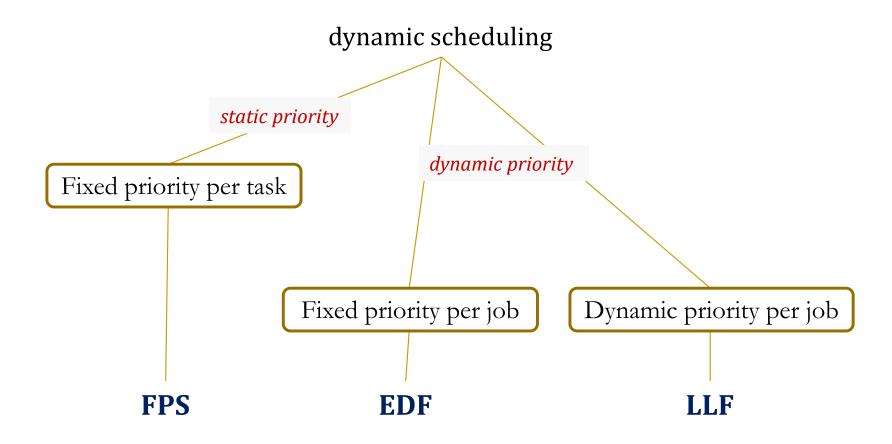
Latest Release Time scheduling





LRT needs preemption and off line decisions

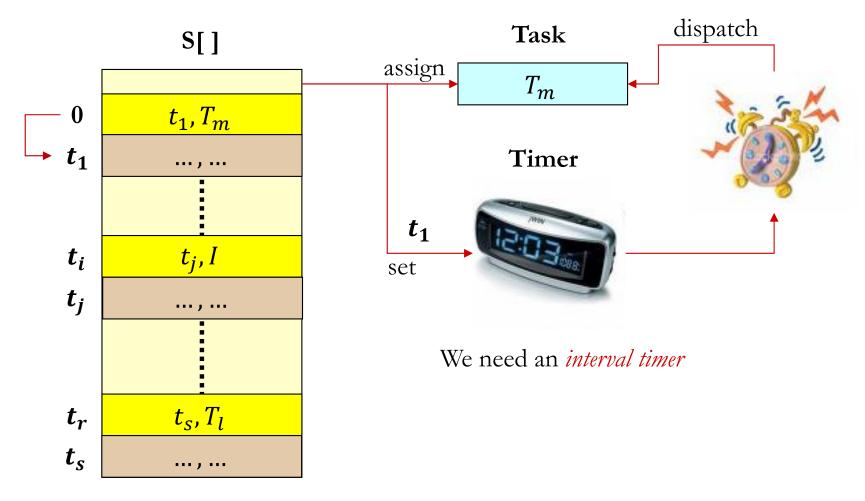
Taxonomy of dynamic scheduling



Workload model

- N periodic tasks, for N constant and statically defined
- The $(\varphi_i, p_i, e_i, D_i)$ parameters of every task τ_i are constant and statically known
- The schedule is static and committed at design to a table $\bf S$ of decision times t_k where
 - \square $S[t_k] = \tau_i$ if a job of task τ_i must be dispatched at time t_k
 - \square $S[t_k] = I$ (idle) if no job is due at time t_k
 - Schedule computation can be as sophisticated as we like since we pay for it only at design time
 - □ Jobs *cannot overrun* otherwise the system is in error

```
Input: stored schedule S[t_k], k = \{0, ..., N-1\}; H (hyperperiod)
SCHEDULER:
 i := 0;
  k := 0;
 set timer to expire at t_k;
 do forever:
    sleep until timer interrupt;
   if an aperiodic job is executing then preempt; end if;
    current task T := S[t_k];
   i := i + 1;
   k := i \mod N;
    set timer to expire at t_k + \lfloor i/N \rfloor \times H;
   if current task T = I
     then execute job at head of aperiodic queue;
     else execute job of task T;
    end if:
 end do;
end SCHEDULER
```



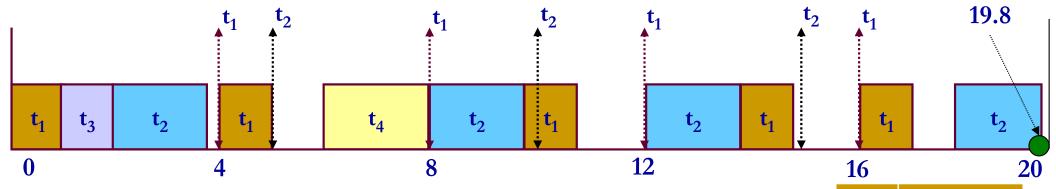
Where the t_j values need *not* be equally spaced

Example

$$(\varphi_i, p_i, e_i, D_i)$$

$$J = \{t_1 = (0, 4, 1, 4), t_2 = (0, 5, 1, 8, 5), t_3 = (0, 20, 1, 20), t_4 = (0, 20, 2, 20)\}$$

$$U = \sum_i \frac{e_i}{p_i} = 0.76, H = 20$$



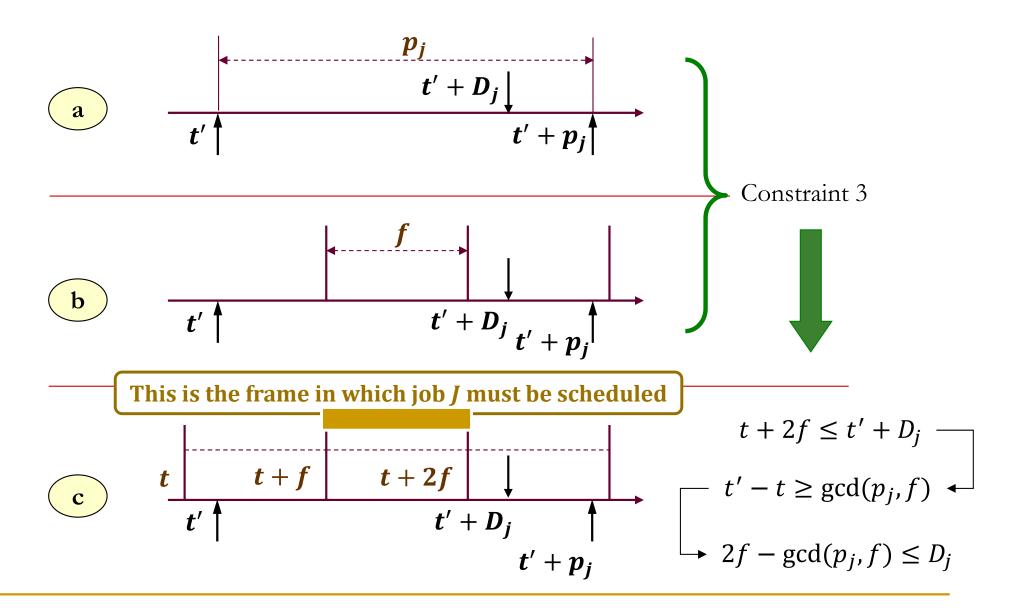
- The schedule table S for J would need 17 entries
 - □ That's too many and the schedule too fragmented!
- Why 17?

Time	Schedule
0	t_1
1	t_3
2	t_2
3.8	I
4	t_1
19.8	I
20	Goto t mod(H)

- Reasons of complexity control suggest *minimizing* the size of the cyclic schedule (table S)
 - \Box The scheduling point t_k should occur at <u>regular intervals</u>
 - Each such interval is termed $minor\ cycle$ (frame) and has duration f
 - We need a (cheaper, more standard) *periodic timer* instead of a (more costly) interval timer
 - Within minor cycles there is no preemption, but a single frame may allow the execution of multiple (run-to-completion) jobs
 - \Box For every task τ_i , φ_i must be a non-negative integer multiple of f
 - Forcedly, the first job of every task has its release time set at the start edge of a minor cycle
- To build such a schedule, we must enforce some constraints

- Constraint 1: Every job *J* must complete within *f*
 - $f \geq max_{i=\{1,..n\}}(e_i)$ so that overruns can be detected
- **Constraint 2**: *f* must be an integer divisor of the hyperperiod
 - \blacksquare H: H = Nf where $N \in \mathbb{N}$
 - ullet It suffices that f be an integer divisor of at least one task period p_i
 - □ The hyperperiod beginning at minor cycle kf for k = 0, N 1, 2N 1 is termed *major cycle*
- **Constraint 3**: There must be one *full* frame f between J's release time t' and its deadline: $t' + D_i \ge t + 2f$
 - So that *J* can be set to be scheduled in that frame
 - $exttt{ } exttt{ }$

Understanding constraint 3



Example

```
T = \{(0, 4, 1, 4), (0, 5, 2, 5), (0, 20, 2, 20)\}
= H = 20
■ [c1] : f \ge \max(e_i) : f \ge 2
[c2]: [p_i/f] - p_i/f = 0: f = \{2, 4, 5, 10, 20\}
[c3]: 2f - \gcd(p_i, f) \leq D_i: f \leq 2
      f = 2:4 - \gcd(4,2) \le 4 OK
                                     f = 5: 10 - \gcd(4,2) \le 4 KO
            4 - \gcd(5,2) \le 5 OK
                                     f = 10: 20 - \gcd(4,2) \le 4 KO
            4 - \gcd(20,2) \le 20 OK
                                     f = 20:40 - \gcd(4,2) \le 4 KO
      f = 4:8 - \gcd(4,4) \le 4 OK
```

 $8 - \gcd(5,4) \le 5$ **KO**

- It is very likely that the original parameters of some task set T may prove unable to satisfy all three constraints for any given f simultaneously
- In that case we must decompose task τ_i 's jobs by *slicing* their (WCET) e_i^w into fragments small enough to artificially yield a "good" f

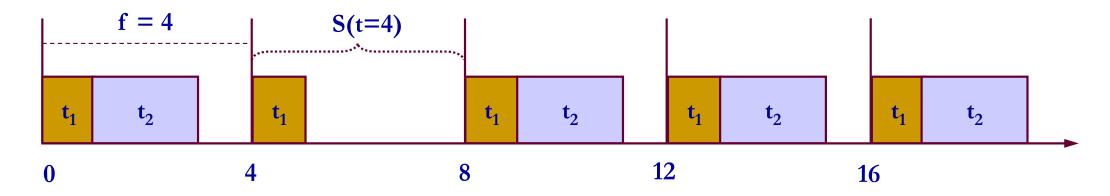
- To construct a cyclic schedule we must make three design decisions
 - \Box Fix an f
 - □ Slice (the large) jobs
 - □ Assign (jobs and) slices to minor cycles
- Sadly, these decisions are very tightly coupled
 - This defect makes cyclic scheduling *very* fragile to any change in system parameters

```
Input: stored schedule S[k], k in 0 ... F - 1
CYCLIC_EXECUTIVE:
 t \coloneqq 0; k \coloneqq 0;
  do forever
    sleep until clock interrupt at time t \times f;
   currentBlock = S[k];
    t \coloneqq t + 1; k \coloneqq t \mod F;
   if last job not completed then take action;
    end if;
    execute all slices in currentBlock;
    while aperiodic job queue not empty do
     execute aperiodic job at top of queue;
    end do;
  end do;
end SCHEDULER
```

Example (slicing) -1/2

$$(\varphi_i, p_i, e_i, D_i)$$

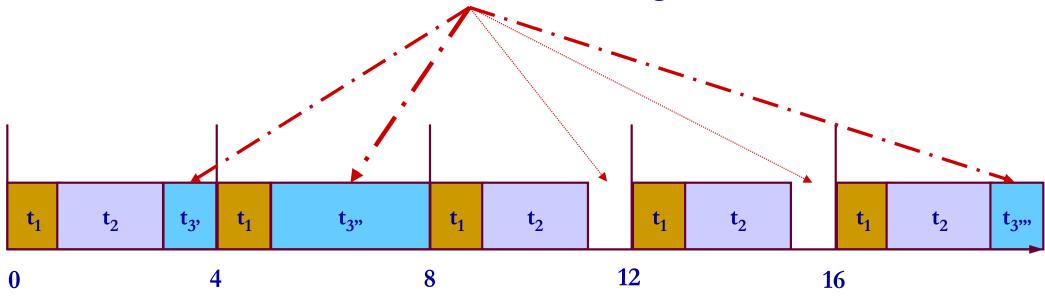
 $J = \{\tau_1 = (0, 4, 1, 4), \tau_2 = (0, 5, 2, 5), \tau_3 = (0, 20, 5, 20)\}, H = 20$ τ_3 causes disruption since we need $e_3 \le f \le 4$ to satisfy c3 We must therefore slice e_3 : how many slices do we need?



We first look at the schedule with f = 4 and $F = \left(\frac{H}{f}\right) = 5$ without τ_3 , to see what least-disruptive opportunities we have ...

Example (slicing) -2/2

... then we observe that $e_3 = \{1, 3, 1\}$ is a good choice



$$\tau_3 = \{\tau_3' = (0, 20, 1, x), \tau_3'' = (0, 20, 3, y), \tau_3''' = (0, 20, 1, 20)\}$$

where $x < y \le 20$ represent the precedence constraints that must hold between the slices (could have used phases instead)

Design issues /1

- Completing a job much ahead of its deadline is of no use
- Any spare time in time slices should be given to *aperiodic jobs*, thus allowing the system to produce more value added
- The principle of *slack stealing* allows aperiodic jobs to execute *in preference* to periodic jobs when possible
 - Each minor cycle may include some amount of slack time not used for scheduling periodic jobs
 - The slack is a *static* attribute of each minor cycle
- A cyclic scheduler does slack stealing if it assigns the available slack time at the beginning of every minor cycle (instead of at the end)
 - ☐ This allows the system to become more reactivy
 - □ But it also requires a fine-grained interval timer (again!) to signal the end of the slack time for each minor cycle

Design issues /2

- What can we do to handle *overruns*?
 - Halt the job found running at the start of the new minor cycle
 - But that job may not be the one that overrun!
 - Even if it was, stopping it would only serve a useful purpose if producing a late result had no residual *utility*
 - □ Defer halting until the job has completed all its "critical actions"
 - To avoid the risk that a premature halt may leave the system in an inconsistent state
 - Allow the job some extra time by delaying the start of the next minor cycle
 - Plausible if producing a late result still had utility

Design issues /3

- What can we do to handle *mode changes*?
 - A mode change is when the system incurs some reconfiguration of its function and workload parameters
- Two main axes of design decisions
 - With or without deadline during the transition
 - With or without overlap between outgoing and incoming operation modes

Overall evaluation

Pro

- Comparatively simple design
- Simple and robust implementation
- Complete and cost-effective verification

Con

- Very fragile design
 - Construction of the schedule table is a NP-hard problem
 - High extent of undesirable architectural coupling
- All parameters must be fixed a priori at the start of design
 - \blacksquare Choices may be made arbitrarily to satisfy the constraints on f
 - Totally inapt for sporadic jobs

Priority-driven scheduling

- Base principle
 - Every job is assigned a priority
 - The job with the highest priority is dispatched to execution
- Two implementation decisions
 - When jobs' priority should change
 - When dispatching should occur
- Dynamic-priority scheduling
 - Distinct jobs of the same task may have *distinct* priorities
 - EDF: the job priority is *fixed* at release, but changes across releases
 - LLF: the job priority may change at every dispatching point
- Static-priority scheduling
 - □ All jobs of the same task have one and the same priority

Static/fixed priority scheduling (FPS)

■ Two main strategies exist for priority assignment, which is all we need to determine FPS

Rate monotonic

- □ A task with *faster rate* (hence lower period) takes precedence
- Optimal assignment under preemptive task-level priority-based scheduling and implicit deadlines
- The consequent scheduling is called **RMS**

Deadline monotonic

- □ A task with higher urgency (shorter relative deadline) goes first
- Equivalently optimal for constrained deadlines

Preliminary observations

- Priority-driven scheduling algorithms that disregard job urgency (deadline) perform *poorly*
- The WCET is *not* a factor of consequence for priority assignment
 - Weighed round-robin scheduling is "utilization-monotonic", but is unfit for real-time systems
- Schedulable utilization is a good metric to compare the performance of scheduling algorithms
 - A scheduling algorithm S can produce a feasible schedule for a task set T on a single processor if and only if U(T) does not exceed the schedulable utilization of S

Appraising scheduling /1

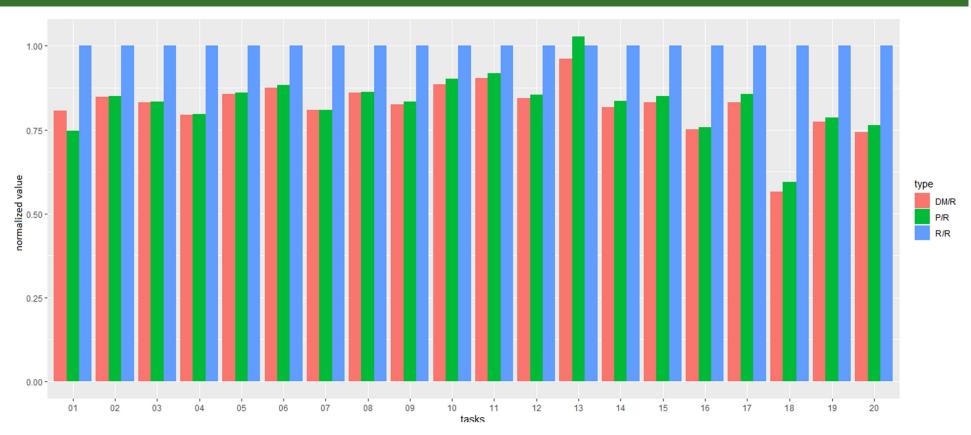
- Theorem [Liu & Layland: 1973]
 For single processors and implicit or constrained deadlines, EDF's schedulable utilization is 1
 - □ A necessary and sufficient (i.e., exact) test for implicit deadlines
- Checking for $\Delta = \sum_{i=1}^{n} \frac{e_i}{\min(d_i, p_i)} \le 1$, aka *density*, is a *sufficient* schedulability test for EDF for constrained deadlines, $U \le 1 \le \Delta$

Appraising scheduling /2

- Schedulable utilization alone is *not* a sufficient criterion:
 we must also consider *predictability*
 - Recall its intuition, given in Section 1
- On *transient overload*, the behavior of static-priority scheduling can be determined a-priori and is reasonable
 - lacktriangle The overrun of any job of a given task au does not harm the tasks with higher priority than au
- Under transient overload, EDF becomes instable
 - A job that missed its deadline is *more urgent* than a job with a deadline in the future: one lateness may cause many more!

Overload situations /1

Deadline miss and preemption count ratio over normalized run count (EDF, U > 1)



Legend: DM/R (deadline misses over releases); P/R (preemptions over releases); R (release; run)

Overload situations /2

Deadline miss and preemption count ratio over normalized run count (FPS, U > 1)

Legend: DM/R (deadline misses over releases); P/R (preemptions over releases); R (release; run)

Overload situations /3

An interesting property of EDF during permanent overloads is that it automatically performs a period rescaling, and tasks start behaving as they were executing at a lower rate. This property has been proved by Cervin et al. (2002) and it is formally stated in the following theorem.

Theorem 1 [Cervin]. Assume a set of n periodic tasks, where each task is described by a fixed period T_i , a fixed execution time C_i , a relative deadline D_i , and a release offset Φ_i . If U > 1 and tasks are scheduled by EDF, then, in stationarity, the average period \bar{T}_i of each task τ_i is given by $\bar{T}_i = T_i U$.

- EDF's throughput decreases by period rescaling
- FPS's throughput decreases by discarding lowerpriority jobs

Overload situations /4

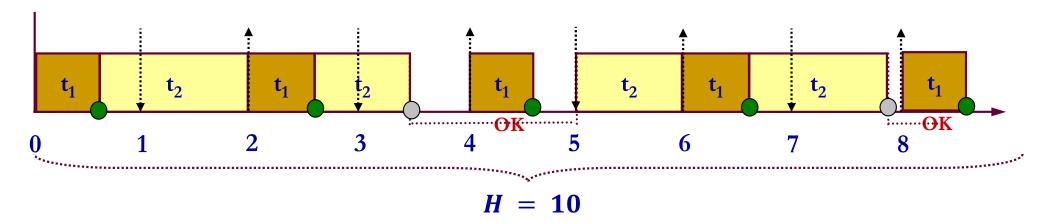
$$(\varphi_i, p_i, e_i, D_i)$$

$$T = \{ \tau_1 = (0, 2, 0, 6, 1), \tau_2 = (0, 5, 2, 3, 5) \}$$

$$Density \Delta(T) = \frac{e_1}{D_1} + \frac{e_2}{D_2} = 1.06 > 1$$

$$Utilization U(T) = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 0.76 < 1$$

What happens to T under EDF?



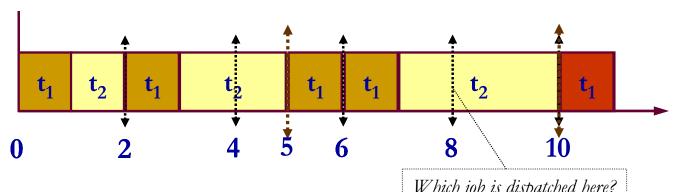
The exact utilization-based test tells us that T is feasible under EDF (We don't need to draw its timeline to tell that!)

Overload situations /5

$$(\varphi_i, p_i, e_i, D_i)$$

T = {
$$t_1$$
= (0, 2, 1, 2), t_2 = (0, 5, 3, 5)} $\Rightarrow U(t) = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1.1$

T has no feasible schedule: what job suffers most under EDF?



Which job is dispatched here?

T = {
$$t_1$$
= (0, 2, 0.8, 2), t_2 = (0, 5, 3.5, 5)} $\Rightarrow U(t) = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1.1$

T has no feasible schedule: what job suffers most under EDF?

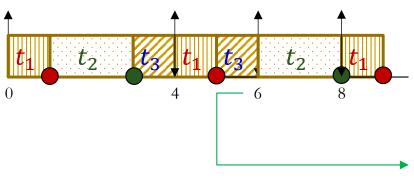
What about

T = {t1 = (0, 2, 0.8, 2), t2 = (0, 5, 4, 5)} with
$$U(t) = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1.2$$
?

Preemption count /1

$$T = \{t_1 = (0, 4, 1, 4), t_2 = (0, 6, 2, 6), t_3 = (0, 8, 3, 8)\}, U = \frac{23}{24}, H = 24$$

With FPS and rate-monotonic priority assignment



With FPS, at time 4, with

 t_3 's absolute deadline = 8, priority = low

 t_1 's absolute deadline = 8, priority = high

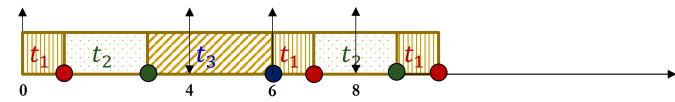
• t_1 preempts t_3

And, at time 6, with

 t_2 's absolute deadline = 12, priority = medium

 t_2 preempts t_3 , which misses its deadline

With EDF



EDF may incur less preemptions than FPS

Preemption count /2

Experiment	Run time	Mean preemptions FPS	Mean preemptions EDF	$Min\frac{P_{EDF} - P_{FPS}}{P_{FPS}}$	$Max \frac{P_{EDF} - P_{FPS}}{P_{FPS}}$
Fully-Harmonic	Hyperperiod	32,34	32,19	-0.5714	0.8571
Semi-Harmonic	Hyperperiod	4.265	4.255	-0.0282	0.1788
1.0 < U < 1.0004	Hyperperiod * U	23.385	41.171	-1.3866	-0.3089

Mean across task sets

Back to FPS: critical instant /1

- Feasibility and schedulability tests must consider the worst case, WC, for all tasks
 - lacktriangleright The WC for task au_i occurs when the worst possible relation holds between its own release time and that of all higher-priority tasks
 - $lue{}$ The actual case may differ depending on the admissible relation between D_i and p_i
- The notion of *critical instant* if one exists captures the WC
 - The response time R_i for a job of task τ_i with release time on the critical instant, is the longest possible value for τ_i

Critical instant /2

- Theorem: under FPS with $D_i \le p_i \ \forall i$, the critical instant for task τ_i occurs when the release time of *any* of its jobs is *in phase* with a job of every higher-priority task in the set
- We seek $\max(\omega_{i,j})$ for all jobs $\{j\}$ of task τ_i for

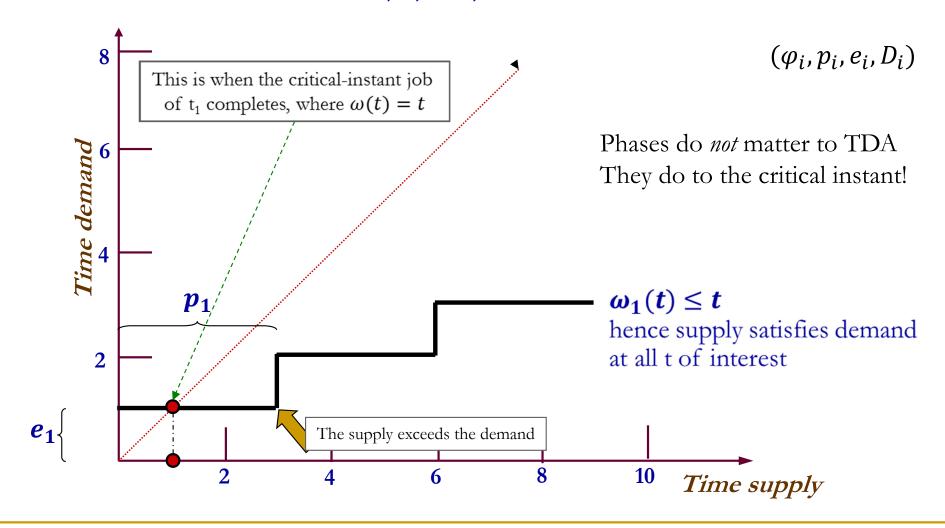
$$\omega_{i,j} = e_i + \sum_{(k=1,\dots,i-1)} \left[\frac{(\omega_{i,j} + \varphi_i - \varphi_k)}{p_k} \right] e_k - \varphi_i$$

For task indices assigned in decreasing order of priority

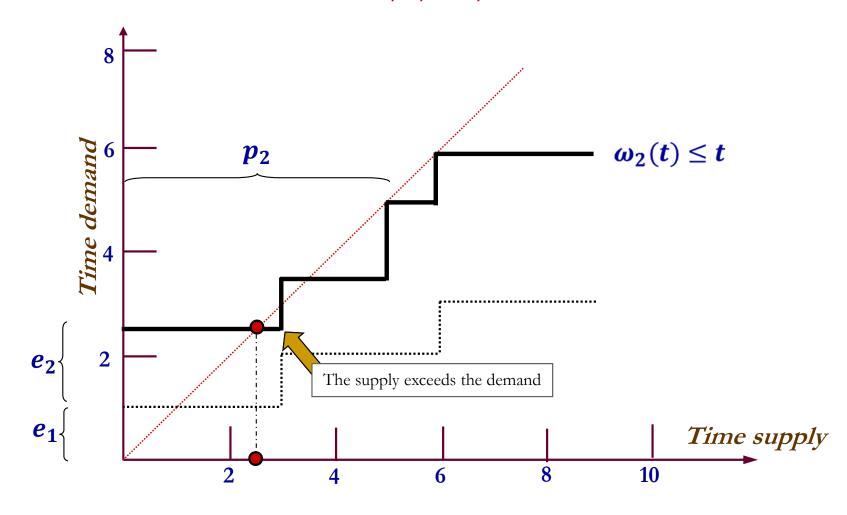
- The \sum component captures the *interference* that any job j of task τ_i incurs from jobs of higher-priority tasks $\{\tau_k\}$ between the release time of the first job of task τ_k (with phase φ_k) to the response time of job j, which occurs at $\varphi_i + \omega_{i,j}$
- When φ is 0 for all jobs considered, all tasks are *in phase* and the equation captures the *absolute worst case* for task τ_i

- *Time Demand Analysis*, TDA, studies ω as a function of time, ω(t)
 - As long as $\omega(t) \leq t$ for some (selected) t for the job of interest, the supply satisfies the demand, hence the job can complete in time
- Theorem [Lehoczky, Sha, Ding: 1989] $\omega(t) \le t$ is an exact feasibility test for FPS
 - \Box The obvious question is for which 't' to check
 - □ The method proposes to check at *all periods of all higher-priority tasks* until the deadline of the task under study

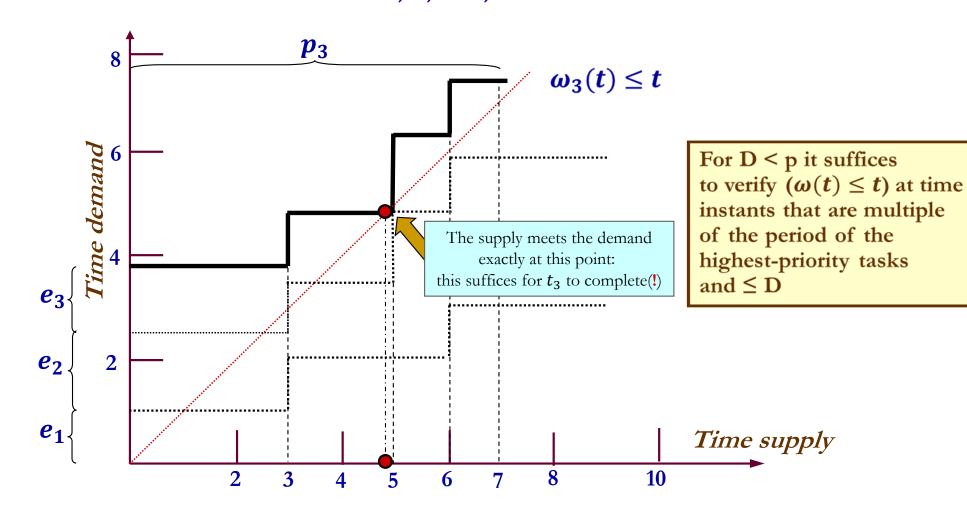
$$T = \{t_1 = (-,3,1,3), t_2 = (-,5,1,5,5), t_3 = (-,7,1,25,7)\}, U = 0.82$$



$$T = \{t_1 = (-,3,1,3), t_2 = (-,5,1,5,5), t_3 = (-,7,1,25,7)\}, U = 0.82$$



$$T = \{t_1 = (-,3,1,3), t_2 = (-,5,1,5,5), t_3 = (-,7,1,25,7)\}, U = 0.82$$



■ We can use TDA to capture the *response time* of tasks and then use the critical instant notion to see that

The smallest value t that satisfies

$$t = e_i + \sum_{(k=1,\dots i-1)} \left[\frac{t}{p_k} \right] e_k$$

is the *worst-case response time* of task au_i

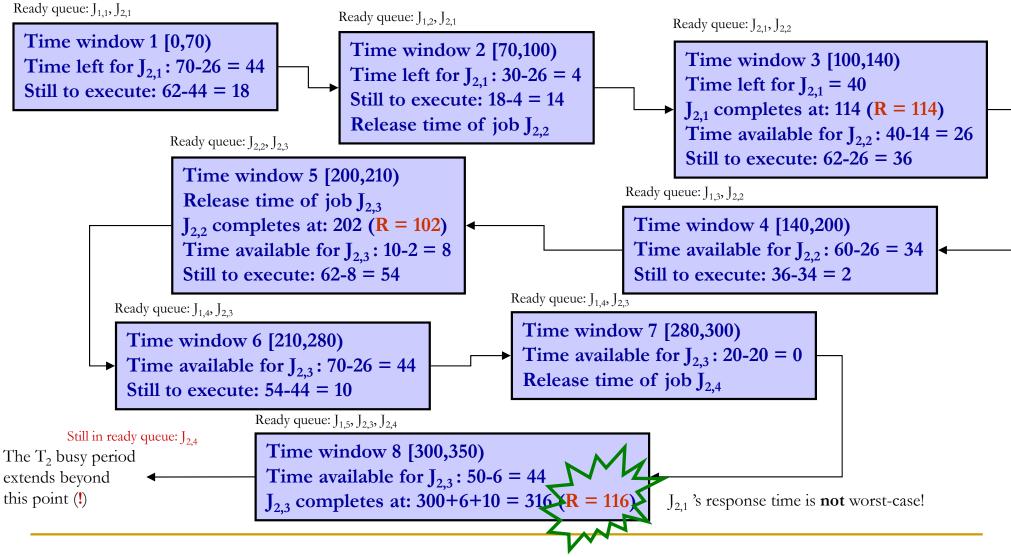
- Solutions methods to calculate this value were independently proposed by
 - □ [Joseph, Pandia: 1986]
 - □ [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

- Theorem [Lehoczky, Sha, Strosnider, Tokuda: 1991] When D > p, the first job of task τ_i may *not* be the one that incurs the worst-case response time
- We must consider *all* jobs of task τ_i within the so-called *level-i busy period*, the (t_0, t) time interval within which the processor is busy executing jobs with priority $\geq i$, with release time in (t_0, t) , and response time falling within t
 - \Box The release time in (t_0, t) captures all backlog of interfering jobs
 - \Box The response time of all jobs falling within t ensures that the busy period extends to their completion

Example

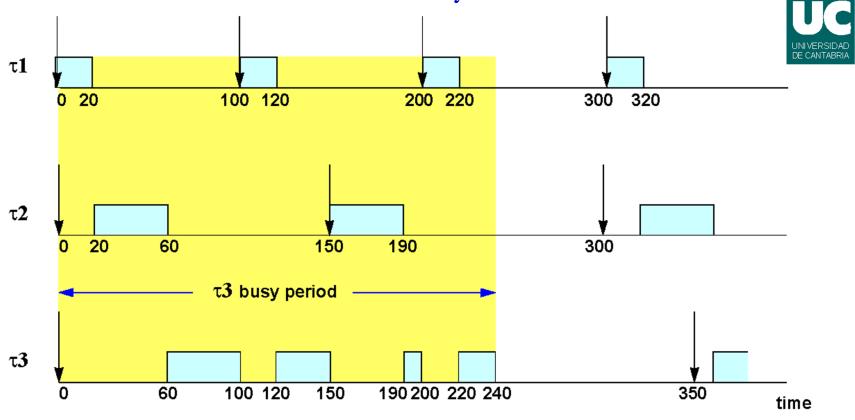
 $T_1 = \{-, 70, 26, 70\}, T_2 = \{-, 100, 62, 120\}$ Let's look at the level-2 busy period

 $(\varphi_i, p_i, e_i, D_i)$



Level-i busy period

 $T_1 = \{-, 100, 20, 100\}, T_2 = \{-, 150, 40, 150\}, T_3 = \{-, 350, 100, 350\} \Rightarrow U = 0.75$ The same definition of level-i busy period holds also for $D \le p$ but its width is obviously shorter!



Demand bound analysis (EDF)

For df, the EDF demand function and time t_i , an exact test for a task set T under EDF is:

$$\forall t_1, t_2: t_2 > t_i, \mathbf{df}(t_1, t_2) \le t_2 - t_1$$

- For periodic tasks with no offsets and $U \le 1$, it holds that: $df(t_1, t_2) \le df(0, t_2 t_1)$
- The *demand bound function* helps generalize the test $dbf(L) = \max_{t} (df(t, t + L)) = df(0, L), L > 0$
- **Theorem** [Baruah, Howell, Rosier: 1990] Exact test for EDF:

$$\forall L \in D(T), \mathbf{dbf}(L) \leq L, U < 1$$

 $D(T) \text{ is the set of deadlines for } T \text{ in } [0, L_m], L_m = \min(L_a, L_b), L_a = \max\left\{D_1, \dots, D_n, \frac{\sum_{i=1}^n (T_i - D_i)U_i}{1 - U}\right\}, L_b = \text{first idle time in } T's \text{ busy period}$

Summary

- Initial survey of scheduling approaches
- Important definitions and criteria
- Detail discussion and evaluation of main scheduling algorithms
- Initial considerations on feasibility analysis techniques

Selected readings

T. Baker, A. Shaw

The cyclic executive model and Ada

DOI: 10.1109/REAL.1988.51108

C.L. Liu, J.W. Layland Scheduling algorithms for multiprogramming in a hard-realtime environment

DOI: 10.1145/321738.321743 (1973)