
2. Scheduling basics

Where we commence our familiarization
with real-time scheduling, that is, the
algorithms that decide how the CPU is
assigned to the jobs that contend for it

Common approaches /1

 Clock-driven (time-driven) scheduling
 Scheduling decisions are made beforehand (at system design)

and actuated at fixed time instants during execution
 Such time instants occur at intervals signaled by clock via interrupts

 The scheduler dispatches to execution the job due in the
current time interval and then suspends itself until the next
schedule time
 The scheduler is the prime actor: the jobs are mere called procedures

 Jobs must complete within the assigned time intervals
 Consequently, this scheduling does not require preemption
 All scheduling parameters must be known in advance
 The schedule, computed offline, is fixed forever
 The scheduling overhead incurred at run time is very small

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 56 of 550

Common approaches /2

 Weighted round-robin scheduling
 With basic round-robin (which requires preemption)

 All ready jobs are placed in a FIFO queue
 CPU time is quantized, i.e., assigned in slices
 The job at head of queue is dispatched to execution for one quantum

 If not complete by end of quantum, it goes to tail of queue
 All jobs in queue are given one quantum per round

 Not good for jobs with precedence relations, but fine for producer-
consumer pipelines that proceed in continual increments

 With weighted correction to it (used in network scheduling)
 Jobs are assigned CPU time according a (fractional) ‘weight’ attribute
 Job 𝐽௜ gets 𝝎𝒊 time slices per round (full traversal of the queue)

 One full round corresponds to ∑ 𝝎𝒊𝒊 progress for the ready jobs

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 57 of 550

Common approaches /3

 Priority-driven (event-driven) scheduling
 This class of algorithms is greedy

 Never leave available processing resources unused if they are wanted
 An available resource may stay unused only if no job ready to use it

 Clairvoyant schedulers may prefer deferring assignment of CPU to
improve response time

 Anomalies may occur when job parameters change dynamically
 The jobs that contend for execution are kept in a ready queue
 Scheduling takes place when the ready queue changes

 Such events are called dispatching points
 Scheduling decisions are made online, based on present knowledge
 Dispatching employs preemption

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 58 of 550

Preemption vs. non preemption

 Can we compare the performance of preemptive
scheduling against non-preemptive scheduling?
 There is no single response that be valid in general
 When all jobs have same release time, and preemption

overhead is negligible (!?), then preemptive scheduling is
provably better

 Does the improvement in the last finishing time
(minimum makespan) under preemptive scheduling pay
off the time overhead of preemption?
 We do not know in general …
 We do know that, for 2 CPUs, the minimum makespan for

non-preemptive scheduling is never worse than of that for
preemptive

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 59 of 550

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 60 of 550

Ways to optimality /1

 Priorities assigned dynamically to reflect absolute deadlines
 Ready queue reordering occurs on job release

 [Liu & Layland: 1973] Earliest Deadline First (EDF)
scheduling is optimal for single-CPU systems with independent
jobs and preemption
 For any job set, EDF produces a feasible schedule if one exists
 The optimality of EDF breaks otherwise (e.g., no preemption, parallelism)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 61 of 550

𝑟ଵ 𝑑ଷ

J1 J1, J2 J3, J1, J2

time

Ready queue:

Absolute deadline 𝑑௜ ൌ 𝑟௜ ൅ 𝐷௜
𝑟ଶ 𝑟ଷ 𝑑ଵ 𝑑ଶ

Ways to optimality /2

 Priorities assigned dynamically according to laxity
 𝐿௜ 𝑡 ൌ 𝑑௜ െ 𝑡 െ 𝑌௜ሺ𝑡ሻ, where 𝑌௜ 𝑡 is the residual execution time needed

for 𝜏௜ at time 𝑡, with release time 𝑟௜ and relative deadline 𝐷௜
 Ready queue reordering occurs on job release and job completion
 Jobs’ priority, 𝐿ሺ𝑡ሻ, varies with 𝑡: more dynamic and costly than EDF

 [Liu & Layland: 1973] Least Laxity First (LLF) scheduling is
optimal under the same hypotheses as for EDF optimality

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 62 of 550

𝑒ଶ

𝑒ଵభ 𝑒ଵమ

𝑟1, 𝑒1 𝑟2, 𝑒2 𝑑1𝑑2

J1

time

Ready queue:

𝐿ଵ 𝑡 ൌ 𝑑ଵ െ 𝑡 െ ሺ𝑒ଵ െ 𝑒ଵభሻ

𝑡

𝐿ଶ 𝑡 ൌ 𝑑ଶ െ 𝑡 െ 𝑒ଶ െ 0

J2, J1

Optimality and sub-optimality

 The processor speed-up factor determines the increase in
processor speed that a scheduling algorithm would
require to equalize an optimal algorithm of the same
class for any task set

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 63 of 550

Davis et al., "Quantifying the Exact Sub-Optimality of Non-Preemptive Scheduling”, RTSS 2015

Ways to optimality /3

 If one’s goal were solely that jobs meet their deadlines,
there would be no value in having jobs complete any earlier
 The Latest Release Time (LRT) algorithm – the converse of

EDF – follows this logic, scheduling jobs backward from the
latest deadline, treating deadlines as release times and
release times as deadlines
 LRT is not greedy: it may leave the CPU unused with ready tasks

 The wisdom of this algorithm is the knowledge that greedy
scheduling algorithms may cause jobs to suffer larger
interference

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 64 of 550

Latest Release Time scheduling

2020/2021 UniPD – T. Vardanega

LRT needs preemption and off line decisions

Job scheduling (execution goes the other way)

Time

Real-Time Kernels and Systems 65 of 550

𝑻𝟏 𝑻𝟐 𝑻𝟑
𝝋𝒊 0 11 12

𝑪𝒊 4 3 4

𝒅𝒊 (absolute) 20 18 17

Taxonomy of dynamic scheduling

dynamic scheduling

static	priority

dynamic	priority

EDF LLFFPS

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 66 of 550

Fixed priority per task

Fixed priority per job Dynamic priority per job

Clock-driven scheduling /1

 Workload model
 N periodic tasks, for N constant and statically defined
 The ௜ ௜ ௜ ௜ parameters of every task ௜ are constant

and statically known
 The schedule is static and committed at design to a table S

of decision times ௞ where
 ௞ ௜ if a job of task ௜ must be dispatched at time ௞
 ௞ (idle) if no job is due at time ௞
 Schedule computation can be as sophisticated as we like since

we pay for it only at design time
 Jobs cannot overrun otherwise the system is in error

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 67 of 550

Clock-driven scheduling /2
Input: stored schedule 𝑆 𝑡௞ , 𝑘 ൌ 0, . . ,𝑁 െ 1 ;𝐻 (hyperperiod)
SCHEDULER ::
𝑖 ∶ൌ 0;
𝑘 ∶ൌ 0;
set timer to expire at 𝑡௞ ;
do forever :

sleep until timer interrupt;
if an aperiodic job is executing then preempt; end if;
current task T ≔ 𝑆 𝑡௞ ;
𝑖 ∶ൌ 𝑖 ൅ 1;
𝑘 ∶ൌ 𝑖 𝒎𝒐𝒅 𝑁;
set timer to expire at 𝑡௞ ൅ 𝑖/𝑁 ൈ 𝐻;
if current task 𝑇 ൌ 𝐼

then execute job at head of aperiodic queue;
else execute job of task 𝑇;

end if;
end do;

end SCHEDULER

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 68 of 550

Clock-driven scheduling /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 69 of 550

𝑡ଵ,𝑇௠

𝑡௝ , 𝐼

𝑡௦,𝑇௟

S[]

𝒕𝒔

0

𝒕𝒊

𝒕𝒓

𝑇௠

Task

Timer

𝒕𝟏

assign

set

dispatch

We need an interval timer

… , …𝒕𝟏

… , …𝒕𝒋

… , …

Where the 𝑡௝ values need not be equally spaced

Example

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 70 of 550

 The schedule table S for J would need 17 entries
 That’s too many and the schedule too fragmented!

 Why 17?

𝑱 ൌ 𝒕𝟏 ൌ 𝟎,𝟒,𝟏,𝟒 , 𝒕𝟐 ൌ 𝟎,𝟓,𝟏.𝟖,𝟓 , 𝒕𝟑 ൌ 𝟎,𝟐𝟎,𝟏,𝟐𝟎 , 𝒕𝟒 ൌ 𝟎,𝟐𝟎,𝟐,𝟐𝟎
𝑼 ൌ ∑ 𝒆𝒊

𝒑𝒊
ൌ 𝟎.𝟕𝟔𝒊 , 𝑯 ൌ 𝟐𝟎

0 4 8 12 16

t1 t3 t2 t1 t1 t1t4 t2 t1t2 t2

t1 t1 t1 t1t2 t2 t2 19.8

20

ሺ𝜑௜ , 𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Time Schedule

0 𝑡ଵ
1 𝑡ଷ
2 𝑡ଶ

3.8 I

4 𝑡ଵ
… …

19.8 I

20 Goto 𝑡 𝑚𝑜𝑑ሺ𝐻ሻ

Clock-driven scheduling /4

 Reasons of complexity control suggest minimizing the size of
the cyclic schedule (table)
 The scheduling point 𝑡௞ should occur at regular intervals

 Each such interval is termed minor cycle (frame) and has duration 𝑓
 We need a (cheaper, more standard) periodic timer instead of a (more costly)

interval timer
 Within minor cycles there is no preemption, but a single frame may allow

the execution of multiple (run-to-completion) jobs
 For every task 𝜏௜, 𝜑௜ must be a non-negative integer multiple of 𝑓

 Forcedly, the first job of every task has its release time set at the start edge
of a minor cycle

 To build such a schedule, we must enforce some constraints

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 71 of 550

Clock-driven scheduling /5

 Constraint 1: Every job must complete within
 𝒇 ൒ 𝒎𝒂𝒙𝒊ୀ 𝟏,..𝒏 ሺ𝒆𝒊ሻ so that overruns can be detected

 Constraint 2: must be an integer divisor of the
hyperperiod
 : where
 It suffices that 𝑓 be an integer divisor of at least one task period 𝑝௜
 The hyperperiod beginning at minor cycle 𝑘𝑓 for 𝑘 ൌ 0,𝑁 െ

1,2𝑁 െ 1 is termed major cycle

 Constraint 3: There must be one full frame between
’s release time ᇱ and its deadline: ᇱ

௝
 So that 𝐽 can be set to be scheduled in that frame
 This can be expressed as: 𝟐𝒇 െ 𝐠𝐜𝐝 ሺ𝒑𝒊,𝒇ሻ ൑ 𝑫𝒊 for every task 𝜏௜

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 72 of 550

Understanding constraint 3

2020/2021 UniPD – T. Vardanega

𝒕ᇱ ൅ 𝒑𝒋

𝒕ᇱ ൅ 𝑫𝒋

𝒕ᇱ

𝒇

𝒕 ൅ 𝟐𝒇𝒕 𝒕 ൅ 𝒇

a

b

c

𝑡 ൅ 2𝑓 ൑ 𝑡ᇱ ൅ 𝐷௝

𝑡ᇱ െ 𝑡 ൒ gcd ሺ𝑝௝ ,𝑓ሻ

2𝑓 െ gcd ሺ𝑝௝ , 𝑓ሻ ൑ 𝐷௝

Constraint 3

𝒑𝒋

𝒕ᇱ 𝒕ᇱ ൅ 𝑫𝒋 𝒕ᇱ ൅ 𝒑𝒋

𝒕ᇱ 𝒕ᇱ ൅ 𝑫𝒋

𝒕ᇱ ൅ 𝒑𝒋

This	is	the	frame	in	which	job	𝑱must	be	scheduled

Real-Time Kernels and Systems 73 of 550

Example

 T = {(0, 4, 1, 4), (0, 5, 2, 5), (0, 20, 2, 20)}
 H = 20
 [c1] : ௜ : f ≥ 2
 [c2] : ௜ ௜ : f = {2, 4, 5, 10, 20}
 [c3] : ௜ ௜ : f ≤ 2

𝑓 ൌ 2 ∶ 4 െ gcd 4,2 ൑ 4 OK
4 െ gcdሺ5,2ሻ ൑ 5 OK

 4 െ gcd ሺ20,2ሻ ൑ 20 OK
𝑓 ൌ 4 ∶ 8 െ gcd 4,4 ൑ 4 OK

8 െ gcdሺ5,4ሻ ൑ 5 KO

𝑓 ൌ 5 ∶ 10 െ gcd 4,2 ൑ 4 KO
𝑓 ൌ 10 ∶ 20 െ gcd 4,2 ൑ 4 KO

𝑓 ൌ 20 ∶ 40 െ gcd 4,2 ൑ 4 KO

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 74 of 550

Clock-driven scheduling /5

 It is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for any given f simultaneously

 In that case we must decompose task ௜’s jobs by
slicing their (WCET) ௜

௪ into fragments small
enough to artificially yield a “good” f

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 75 of 550

Clock-driven scheduling /6

 To construct a cyclic schedule we must make three
design decisions
 Fix an f
 Slice (the large) jobs
 Assign (jobs and) slices to minor cycles

 Sadly, these decisions are very tightly coupled
 This defect makes cyclic scheduling very fragile to any

change in system parameters

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 76 of 550

Clock-driven scheduling /7
Input: stored schedule 𝑆 𝑘 , 𝑘 in 0 . . F െ 1
CYCLIC_EXECUTIVE ::
𝑡 ≔ 0;𝑘 ≔ 0;
do forever

sleep until clock interrupt at time 𝑡 ൈ 𝑓;
currentBlock ≔ 𝑆 𝑘 ;
𝑡 ≔ 𝑡 ൅ 1;𝑘 ≔ 𝑡 𝒎𝒐𝒅 𝐹;
if last job not completed then take action;
end if;
execute all slices in currentBlock;
while aperiodic job queue not empty do
execute aperiodic job at top of queue;

end do;
end do;

end SCHEDULER

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 77 of 550

Example (slicing) – 1/2

2020/2021 UniPD – T. Vardanega

𝑱 ൌ 𝝉𝟏 ൌ 𝟎,𝟒,𝟏,𝟒 , 𝝉𝟐 ൌ 𝟎,𝟓,𝟐,𝟓 , 𝝉𝟑 ൌ ሺ𝟎,𝟐𝟎,𝟓,𝟐𝟎ሻ ,𝑯 ൌ 𝟐𝟎
𝝉𝟑 causes disruption since we need 𝒆𝟑 ൑ 𝒇 ൑ 𝟒 to satisfy c3
We must therefore slice 𝒆𝟑 : how many slices do we need?

0 4 8 12 16

We first look at the schedule with 𝒇 ൌ 𝟒 and 𝑭 ൌ 𝑯
𝒇

ൌ 𝟓
without 𝝉𝟑, to see what least-disruptive opportunities we have …

t1 t2

f = 4

t1 t1 t2 t1 t2 t1 t2

S(t=4)

ሺ𝜑௜ , 𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Real-Time Kernels and Systems 78 of 550

Example (slicing) – 2/2

… then we observe that 𝒆𝟑 ൌ 𝟏,𝟑,𝟏 is a good choice

0 4 8 12 16

𝝉𝟑 ൌ 𝝉𝟑ᇱ ൌ 𝟎,𝟐𝟎,𝟏,𝒙 , 𝝉𝟑ᇱᇱ ൌ 𝟎,𝟐𝟎,𝟑,𝒚 , 𝝉𝟑ᇱᇱᇱ ൌ 𝟎,𝟐𝟎,𝟏,𝟐𝟎

where 𝒙 ൏ 𝒚 ൑ 𝟐𝟎 represent the precedence constraints that
must hold between the slices (could have used phases instead)

t1 t2 t3’ t1 t3” t1 t2 t1 t2 t1 t2 t3’’’

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 79 of 550

Design issues /1

 Completing a job much ahead of its deadline is of no use
 Any spare time in time slices should be given to aperiodic jobs, thus

allowing the system to produce more value added
 The principle of slack stealing allows aperiodic jobs to execute in

preference to periodic jobs when possible
 Each minor cycle may include some amount of slack time not used for

scheduling periodic jobs
 The slack is a static attribute of each minor cycle

 A cyclic scheduler does slack stealing if it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)
 This allows the system to become more reactivy
 But it also requires a fine-grained interval timer (again!) to signal the end of the

slack time for each minor cycle

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 80 of 550

Design issues /2

 What can we do to handle overruns ?
 Halt the job found running at the start of the new minor cycle

 But that job may not be the one that overrun!
 Even if it was, stopping it would only serve a useful purpose if

producing a late result had no residual utility
 Defer halting until the job has completed all its “critical actions”

 To avoid the risk that a premature halt may leave the system in an
inconsistent state

 Allow the job some extra time by delaying the start of the next
minor cycle
 Plausible if producing a late result still had utility

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 81 of 550

Design issues /3

 What can we do to handle mode changes?
 A mode change is when the system incurs some

reconfiguration of its function and workload parameters
 Two main axes of design decisions

 With or without deadline during the transition
 With or without overlap between outgoing and incoming

operation modes

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 82 of 550

Overall evaluation

 Pro
 Comparatively simple design
 Simple and robust implementation
 Complete and cost-effective verification

 Con
 Very fragile design

 Construction of the schedule table is a NP-hard problem
 High extent of undesirable architectural coupling

 All parameters must be fixed a priori at the start of design
 Choices may be made arbitrarily to satisfy the constraints on f
 Totally inapt for sporadic jobs

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 83 of 550

Priority-driven scheduling

 Base principle
 Every job is assigned a priority
 The job with the highest priority is dispatched to execution

 Two implementation decisions
 When jobs’ priority should change
 When dispatching should occur

 Dynamic-priority scheduling
 Distinct jobs of the same task may have distinct priorities

 EDF: the job priority is fixed at release, but changes across releases
 LLF: the job priority may change at every dispatching point

 Static-priority scheduling
 All jobs of the same task have one and the same priority

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 84 of 550

Static/fixed priority scheduling (FPS)

 Two main strategies exist for priority assignment, which
is all we need to determine FPS

 Rate monotonic
 A task with faster rate (hence lower period) takes precedence
 Optimal assignment under preemptive task-level priority-based

scheduling and implicit deadlines
 The consequent scheduling is called RMS

 Deadline monotonic
 A task with higher urgency (shorter relative deadline) goes first
 Equivalently optimal for constrained deadlines

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 85 of 550

Preliminary observations

 Priority-driven scheduling algorithms that disregard job
urgency (deadline) perform poorly

 The WCET is not a factor of consequence for priority
assignment
 Weighed round-robin scheduling is “utilization-monotonic”,

but is unfit for real-time systems

 Schedulable utilization is a good metric to compare
the performance of scheduling algorithms
 A scheduling algorithm can produce a feasible schedule for

a task set on a single processor if and only if does not
exceed the schedulable utilization of

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 86 of 550

Appraising scheduling /1

 Theorem [Liu & Layland: 1973]
For single processors and implicit or constrained
deadlines, EDF’s schedulable utilization is
 A necessary and sufficient (i.e., exact) test for implicit

deadlines

 Checking for ௘೔
୫୧୬ ሺௗ೔,௣೔ሻ

௡
௜ୀଵ , aka density,

is a sufficient schedulability test for EDF for
constrained deadlines,

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 87 of 550

Appraising scheduling /2

 Schedulable utilization alone is not a sufficient criterion:
we must also consider predictability
 Recall its intuition, given in Section 1

 On transient overload, the behavior of static-priority
scheduling can be determined a-priori and is reasonable
 The overrun of any job of a given task does not harm the

tasks with higher priority than

 Under transient overload, EDF becomes instable
 A job that missed its deadline is more urgent than a job with a

deadline in the future: one lateness may cause many more!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 88 of 550

Overload situations /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 89 of 550

Deadline miss and preemption count ratio over normalized run count (EDF, 𝑼 ൐ 𝟏)

Legend: DM/R (deadline misses over releases); P/R (preemptions over releases); R (release; run)

Overload situations /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 90 of 550

Deadline miss and preemption count ratio over normalized run count (FPS, 𝑼 ൐ 𝟏)

Legend: DM/R (deadline misses over releases); P/R (preemptions over releases); R (release; run)

Overload situations /3

 EDF’s throughput decreases by period rescaling
 FPS’s throughput decreases by discarding lower-

priority jobs

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 91 of 550

Overload situations /4

2020/2021 UniPD – T. Vardanega

𝑻 ൌ 𝝉𝟏 ൌ 𝟎,𝟐,𝟎.𝟔,𝟏 , 𝝉𝟐 ൌ ሺ𝟎,𝟓,𝟐.𝟑,𝟓ሻ
Density ∆ 𝑻 ൌ 𝒆𝟏

𝑫𝟏
൅ 𝒆𝟐

𝑫𝟐
ൌ 𝟏.𝟎𝟔 ൐ 𝟏

Utilization 𝑼 𝑻 ൌ 𝒆𝟏
𝒑𝟏
൅ 𝒆𝟐

𝒑𝟐
ൌ 𝟎.𝟕𝟔 ൏ 𝟏

What happens to under EDF?

ሺ𝜑௜ , 𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Real-Time Kernels and Systems 92 of 550

t2t2 t2t1

0 1 2 3 4 5

t1 t1 t2

6

t1

7
OK

8
OK

𝑯 ൌ 𝟏𝟎

t1

The exact utilization-based test tells us that T is feasible under EDF
(We don’t need to draw its timeline to tell that!)

Overload situations /5

T = {t1= (0, 2, 1, 2), t2= (0, 5, 3, 5)}  𝑼 𝒕 ൌ 𝒆𝟏
𝒑𝟏
൅ 𝒆𝟐

𝒑𝟐
ൌ 𝟏.𝟏

T has no feasible schedule: what job suffers most under EDF?

T = {t1= (0, 2, 0.8, 2), t2= (0, 5, 3.5, 5)}  𝑼 𝒕 ൌ 𝒆𝟏
𝒑𝟏
൅ 𝒆𝟐

𝒑𝟐
ൌ 𝟏.𝟏

T has no feasible schedule: what job suffers most under EDF?

What about

T = {t1 = (0, 2, 0.8, 2), t2 = (0, 5, 4, 5)} with 𝑼 𝒕 ൌ 𝒆𝟏
𝒑𝟏
൅ 𝒆𝟐

𝒑𝟐
ൌ 𝟏.𝟐 ?

t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8 10

t2 t1

5
Which job is dispatched here?

2020/2021 UniPD – T. Vardanega

ሺ𝜑௜ , 𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Real-Time Kernels and Systems 93 of 550

𝑡ଵ𝑡ଷ

Preemption count /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 94 of 550

𝑡ଶ𝑡ଵ 𝑡ଷ 𝑡ଵ 𝑡ଶ
0 4 8

With FPS, at time 4, with
𝑡ଷ’s absolute deadline = 8, priority = low
𝑡ଵ’s absolute deadline = 8, priority = high
𝑡ଵ preempts 𝑡ଷ
And, at time 6, with
𝑡ଶ’s absolute deadline = 12, priority = medium
𝑡ଶ preempts 𝑡ଷ, which misses its deadline

𝑡ଵ𝑡ଶ𝑡ଵ 𝑡ଷ 𝑡ଵ 𝑡ଶ
0 4 8

With FPS and rate-monotonic priority assignment

With EDF

6

6

𝑻 ൌ 𝒕𝟏 ൌ 𝟎,𝟒,𝟏,𝟒 , 𝒕𝟐 ൌ 𝟎,𝟔,𝟐,𝟔 , 𝒕𝟑 ൌ 𝟎,𝟖,𝟑,𝟖 ,𝑼 ൌ
𝟐𝟑
𝟐𝟒 ,𝐇 ൌ 𝟐𝟒

EDF may incur less preemptions than FPS

Preemption count /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 95 of 550

Mean across task sets

Back to FPS: critical instant /1

 Feasibility and schedulability tests must consider the
worst case, WC, for all tasks
 The WC for task ௜ occurs when the worst possible relation

holds between its own release time and that of all higher-
priority tasks

 The actual case may differ depending on the admissible
relation between ௜ and ௜

 The notion of critical instant – if one exists – captures
the WC
 The response time ௜ for a job of task ௜ with release time on

the critical instant, is the longest possible value for ௜

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 96 of 550

Critical instant /2

 Theorem: under FPS with ௜ ௜ , the critical instant
for task ௜ occurs when the release time of any of its jobs is
in phase with a job of every higher-priority task in the set

 We seek ௜,௝ for all jobs of task ௜ for

𝜔௜,௝ ൌ 𝑒௜ ൅ ෍
ሺ𝜔௜,௝ ൅ 𝜑௜ െ 𝜑௞ሻ

𝑝௞
𝑒௞ െ 𝜑௜

ሺ௞ୀଵ,..,௜ିଵሻ
For task indices assigned in decreasing order of priority

 The ∑ component captures the interference that any job 𝑗 of task
𝜏௜ incurs from jobs of higher-priority tasks 𝜏௞ between the release
time of the first job of task 𝜏௞ (with phase 𝜑௞) to the response time
of job 𝑗, which occurs at 𝜑௜ ൅ 𝜔௜,௝

 When is 0 for all jobs considered, all tasks are in phase and
the equation captures the absolute worst case for task ௜

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 97 of 550

Time-demand analysis /1

 Time Demand Analysis, TDA, studies as a function of
time,
 As long as 𝜔ሺ𝑡ሻ ൑ 𝑡 for some (selected) 𝑡 for the job of interest, the

supply satisfies the demand, hence the job can complete in time

 Theorem [Lehoczky, Sha, Ding: 1989]
is an exact feasibility test for FPS

 The obvious question is for which ‘𝑡’ to check
 The method proposes to check at all periods of all higher-priority tasks

until the deadline of the task under study

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 98 of 550

Time demand analysis /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 99 of 550

T
im

e
de

m
an

d

Time supply2

4

6 8 10

2

4

6

8

𝒆𝟏

𝒑𝟏

𝑻 ൌ 𝒕𝟏 ൌ െ,𝟑,𝟏,𝟑 , 𝒕𝟐 ൌ െ,𝟓,𝟏.𝟓,𝟓 , 𝒕𝟑 ൌ െ,𝟕,𝟏.𝟐𝟓,𝟕 ,𝑼 ൌ 𝟎.𝟖𝟐

The supply exceeds the demand

ሺ𝜑௜ , 𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Phases do not matter to TDA
They do to the critical instant!

Time demand analysis /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 100 of 550

T
im

e
de

m
an

d

Time supply

2

4

6 8 10

2

4

6

8

𝒆𝟐

𝒑𝟐

The supply exceeds the demandThe supply exceeds the demand

𝒆𝟏

𝑻 ൌ 𝒕𝟏 ൌ െ,𝟑,𝟏,𝟑 , 𝒕𝟐 ൌ െ,𝟓,𝟏.𝟓,𝟓 , 𝒕𝟑 ൌ െ,𝟕,𝟏.𝟐𝟓,𝟕 ,𝑼 ൌ 𝟎.𝟖𝟐

Time demand analysis /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 101 of 550

T
im

e
de

m
an

d

Time supply

2

4

6 8 10

2

4

6

8
𝒑𝟑

𝒆𝟑

5 73

The supply meets the demand
exactly at this point:

this suffices for 𝑡ଷ to complete(!)

𝒆𝟐

𝒆𝟏

𝑻 ൌ 𝒕𝟏 ൌ െ,𝟑,𝟏,𝟑 , 𝒕𝟐 ൌ െ,𝟓,𝟏.𝟓,𝟓 , 𝒕𝟑 ൌ െ,𝟕,𝟏.𝟐𝟓,𝟕 ,𝑼 ൌ 𝟎.𝟖𝟐

Time demand analysis /5

 We can use TDA to capture the response time of tasks
and then use the critical instant notion to see that

The smallest value that satisfies

௜
௧
௣ೖሺ௞ୀଵ,..௜ିଵሻ ௞

is the worst-case response time of task ௜
 Solutions methods to calculate this value were

independently proposed by
 [Joseph, Pandia: 1986]
 [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 102 of 550

Time demand analysis /6

 Theorem [Lehoczky, Sha, Strosnider, Tokuda: 1991]
When , the first job of task ௜ may not be the one that
incurs the worst-case response time

 We must consider all jobs of task ௜ within the so-called
level-i busy period, the ଴ time interval within which
the processor is busy executing jobs with priority , with
release time in ଴ , and response time falling within
 The release time in 𝑡଴, 𝑡 captures all backlog of interfering jobs
 The response time of all jobs falling within 𝑡 ensures that the busy

period extends to their completion

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 103 of 550

Example

Time window 1 [0,70)
Time left for J2,1 : 70-26 = 44
Still to execute: 62-44 = 18

Time window 2 [70,100)
Time left for J2,1 : 30-26 = 4
Still to execute: 18-4 = 14
Release time of job J2,2

Time window 3 [100,140)
Time left for J2,1 = 40
J2,1 completes at: 114 (R = 114)
Time available for J2,2 : 40-14 = 26
Still to execute: 62-26 = 36

Time window 4 [140,200)
Time available for J2,2 : 60-26 = 34
Still to execute: 36-34 = 2

Time window 5 [200,210)
Release time of job J2,3

J2,2 completes at: 202 (R = 102)
Time available for J2,3 : 10-2 = 8
Still to execute: 62-8 = 54

Time window 6 [210,280)
Time available for J2,3 : 70-26 = 44
Still to execute: 54-44 = 10

Time window 7 [280,300)
Time available for J2,3 : 20-20 = 0
Release time of job J2,4

Time window 8 [300,350)
Time available for J2,3 : 50-6 = 44
J2,3 completes at: 300+6+10 = 316 (R = 116)

T1 = {-, 70, 26, 70}, T2 = {-, 100, 62, 120}
Let’s look at the level-2 busy period

The T2 busy period
extends beyond
this point (!) J2,1 ’s response time is not worst-case!

Ready queue: J1,1, J2,1 Ready queue: J1,2, J2,1 Ready queue: J2,1, J2,2

Ready queue: J1,3, J2,2

Ready queue: J2,2, J2,3

Ready queue: J1,4, J2,3
Ready queue: J1,4, J2,3

Ready queue: J1,5, J2,3, J2,4
Still in ready queue: J2,4

2020/2021 UniPD – T. Vardanega

ሺ𝜑௜ , 𝑝௜ , 𝑒௜ ,𝐷௜ሻ

Real-Time Kernels and Systems 104 of 550

Level-i busy period

T1 = {-, 100, 20, 100}, T2 = {-, 150, 40, 150}, T3 = {-, 350, 100, 350}  U = 0.75
The same definition of level-i busy period holds also for D ≤ p

but its width is obviously shorter!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 105 of 550

Demand bound analysis (EDF)

 For 𝒅𝒇, the EDF demand function and time 𝑡௜, an exact test for a task set 𝑇
under EDF is:

∀𝑡ଵ, 𝑡ଶ: 𝑡ଶ ൐ 𝑡௜ ,𝒅𝒇 𝑡ଵ, 𝑡ଶ ൑ 𝑡ଶ െ 𝑡ଵ
 For periodic tasks with no offsets and 𝑈 ൑ 1, it holds that:

𝒅𝒇 𝑡ଵ, 𝑡ଶ ൑ 𝒅𝒇 0, 𝑡ଶ െ 𝑡ଵ
 The demand bound function helps generalize the test

𝒅𝒃𝒇 𝐿 ൌ max
௧

𝑑𝑓 𝑡, 𝑡 ൅ 𝐿 ൌ 𝑑𝑓 0, 𝐿 , 𝐿 ൐ 0
 Theorem [Baruah, Howell, Rosier: 1990] Exact test for EDF:

 𝐷ሺ𝑇ሻ is the set of deadlines for 𝑇 in 0, 𝐿௠ , 𝐿௠ ൌ 𝑚𝑖𝑛 𝐿௔, 𝐿௕ , 𝐿௔ ൌ
𝑚𝑎𝑥 𝐷ଵ, … ,𝐷௡, ∑ ்೔ି஽೔ ௎೔೙

೔సభ
ଵି௎

, 𝐿௕ ൌ first idle time in 𝑇ᇱ𝑠 busy period

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 106 of 550

Summary

 Initial survey of scheduling approaches
 Important definitions and criteria
 Detail discussion and evaluation of main scheduling

algorithms
 Initial considerations on feasibility analysis techniques

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 107 of 550

Selected readings

 T. Baker, A. Shaw
The cyclic executive model and Ada
DOI: 10.1109/REAL.1988.51108

 C.L. Liu, J.W. Layland
Scheduling algorithms for multiprogramming in a hard-real-
time environment
DOI: 10.1145/321738.321743 (1973)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 108 of 550

