2. Scheduling basics

Where we commence our familiarization
with real-time scheduling, that is, the
algorithms that decide how the CPU is
assigned to the jobs that contend for it

Common approaches /1

Clock-driven (time-driven) scheduling

0 Scheduling decisions are made beforehand (at system design)
and actuated at fixed time instants during execution

Such time instants occur at intervals signaled by clock via interrupts
0 The scheduler dispatches to execution the job due in the
current time interval and then suspends itself until the next
schedule time
The scheduler zs the prime actor: the jobs are mere called procedures
0 Jobs must complete within the assigned time intervals
Consequently, this scheduling does not require preemption
All scheduling parameters must be known in advance

The schedule, computed offline, 1s fixed forever
The scheduling overhead incurred at run time is very small

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 56 of 550

Common approaches /2

Weighted round-robin scheduling

a0 With basic round-robin (which requires preemption)
All ready jobs are placed in a FIFO queue
CPU time is quantized, i.e., assigned 1in slices
The job at head of queue 1s dispatched to execution for one quantum

O If not complete by end of quantum, it goes to tail of queue
0 All jobs in queue are given one quantum per round

Not good for jobs with precedence relations, but fine for producer-
consumer pipelines that proceed in continual increments

a0 With weighted correction to it (used in network scheduling)
Jobs are assigned CPU time according a (fractional) ‘weight’ attribute

Job J; gets w; time slices per round (full traversal of the queue)
0 One full round corresponds to)}; @; progress for the ready jobs

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 57 of 550

Common approaches /3

Priority-driven (event-driven) scheduling
0 This class of algorithms 1s greed)y

Never leave available processing resources unused if they are wanted

An available resource may stay unused only if no job ready to use it

Q Clazrvoyant schedulers may prefer deferring assignment of CPU to
improve response time

Anomalies may occur when job parameters change dynamically
0 The jobs that contend for execution are kept in a ready gueue
0 Scheduling takes place when the ready queue changes

Such events are called dispatching points

Scheduling decisions are made online, based on present knowledge

Dispatching employs preemption

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 58 of 550

Preemption vs. non preemption

Can we compare the performance of preemptive
scheduling against non-preemptive scheduling?
0 There is no single response that be valid in general

0 When all jobs have same release time, and preemption
overhead is negligible (!?), then preemptive scheduling 1s
Dprovably better

Does the improvement in the last finishing time

(minimum makespan) under preemptive scheduling pay

off the time overhead of preemption?

0 We do not know 1n general ...

0 We do know that, for 2 CPUs, the minimum makespan for
non-preemptive scheduling is zever worse than 4 /3 of that for
preemptive

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 59 of 550

Classification of Scheduling Alsorithms

All scheduling algorithms

TN

static scheduling dyvnamic scheduling
(or offline, or clock driven) (D?HE,DI‘ pri@m)
static-priority dynamic-priority
scheduling scheduling
T &rnderson BEral-Time Systems Introduction - 30

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 60 of 550

Ways to optimality /1

Priorities assigned dynamically to retlect absolute deadlines
0 Ready queue reordering occurs on job release

[Liu & Layland: 1973] Earliest Deadline First (EDF)

scheduhng is optimal for single-CPU systems with independent
jobs and preemption

a For any job set, EDF produces a feasible schedule if one exists
0 The optimality of EDF breaks otherwise (e.g., no preemption, parallelism)

Ready queve: | J, | 1) Js)i)o

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 61 of 550

Ways to optimality /2

Priorities assigned dynamically according to /axzty L(t)

o L;(t) =d; —t —Y;(t), where Y;(t) is the residual execution time needed
for T; at time t, with release time 77 and relative deadline D;

a0 Ready queue reordering occurs on job release and job completion
0 Jobs’ priority, L(t), varies with t: more dynamic and costly than EDF

[Liu & Layland: 1973] Least Laxity First (I.LLF) scheduling is
optimal under the same hypotheses as for EDF optimality

Ty et L) d2 d

Li(t) =d; —t—(e;—ey,) e,

1

L,(t) =d; —t—(e; —0) R time

v

t

Ready queue: | J; Jo)i

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 62 of 550

Optimality and sub-optimality

The processor speed-up factor determines the increase in
processor speed that a scheduling algorithm would

require to equalize an optinal algorithm ot the same
class for any task set

Exact = 2 [15] EDF-P
FP-P (i e i i = (uniprocessor
optimal)
A Y
I
_ 7 I
Upper Bound = 9 C s C :
Exact = 2 4 —max Exact = 92 4 —max Exact = 1+ —=2%
Lower Bound =,/p D, e D, | D,,
7 I
h 4 // 4
/
e
FP-NP E——————— EDF-NP
Exact =2 [15]

Davis et al., "Quantifying the Exact Sub-Optimality of Non-Preemptive Scheduling”, RTSS 2015

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 63 of 550

Ways to optimality /3

If one’s goal were solely that jobs meet their deadlines,

there would be no value in having jobs complete any earlier

0 The Latest Release Time (I.RT) algorithm — the converse of
EDF — follows this logic, scheduling jobs backward from the
latest deadline, treating deadlines as release times and
release times as deadlines

LRT 1s not greedy: it may leave the CPU unused with ready tasks

The wisdom of this algorithm is the knowledge that greedy
scheduling algorithms may cause jobs to suffer larger
interference

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 64 of 550

Latest Release Time scheduling

Job scheduling (execution goes the other way)

T1 . . Time
20 18 9

T (T s

@i 0 11 12

C; 4 3 4 T2

18 17 13 11
di (absolute) 20 18 17
17 13

LRT needs preemption and off line decisions

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 65 of 550

‘ Taxonomy of dynamic scheduling

dynamic scheduling

static priorityﬁ\

Fixed priority per task

dynamic priority

Fixed priority per job

Dynamic priority per job

FPS

EDF

LLF

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

66 of 550

Clock-driven scheduling /1

Workload model

0 N periodic tasks, for N constant and statically defined

a The (@;, pi, €j, D;) parameters of every task T; are constant
and statically known

The schedule is static and committed at design to a table S
of decision times tj where

0 S[tx] = t; if a job of task T; must be dispatched at time t

a Sltr] = I (Zdle) if no job is due at time ¢y,

0 Schedule computation can be as sophisticated as we like since
we pay for it only at design time

QO Jobs cannot overrun otherwise the system is in error

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 67 of 550

Clock-driven scheduling /2

SCHEDULER ::
1 := 0;
k:=0;

set timer to expire at ty ;
do forever :
sleep until timer interrupt;

Input: stored schedule S|t], k = {0,.., N — 1}; H (hyperperiod)

if an aperiodic job is executing then preempt; end if;

current task T := S[t;];

=i+ 1;

k :=imod N;

set timer to expire at t, + |i/N] X H;

if current task T = [
then execute job at head of aperiodic queue;
else execute job of task T;

end if;

end do;
end SCHEDULER

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems

68 of 550

Clock-driven scheduling /3

S[] | Task dispatch |
assign -)
- T) ﬁ - M
— 0 tl' Tm ﬂ p= I~ g
— 1| .., IT fhif -‘ﬁé
, lg‘ 0.2
t T
Li Lj, I set
t;
We need an wterval timer
tr tS! Tl
t,

Where the t; values need nof be equally spaced

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 69 of 550

‘ Example

(Cpi) Pi, €;, DL)
J={t; =(0,4,1,4),t, = (0,5,1.8,5),t; = (0,20,1,20),¢, = (0,20,2,20)}
U =zi§= 0.76, H = 20
19.8

t
0 t,
= The schedule table S for | would need 17 entries ;
a0 That’s too many and the schedule too fragmented! 3;‘8 ;
= Why 177
19.8 1

20 Goto t mod(H)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 70 of 550

Clock-driven scheduling /4

Reasons of complexity control suggest nznimizing the size of

the cyclic schedule (table 5)

a The scheduling point t;, should occur at regular intervals

Each such interval is termed minor cycle (frame) and has duration f

We need a (cheaper, more standard) periodic timer instead of a (more costly)
interval timer

Within minor cycles there is no preemption, but a single frame may allow
the execution of multiple (run-to-completion) jobs

0 For every task T;, ¢; must be a non-negative integer multiple of f

Forcedly, the first job of every task has its release time set at the start edge
of a minor cycle

To build such a schedule, we must enforce some constraints

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 71 of 550

Clock-driven scheduling /5

Constraint 1: Every job | must complete within f
0 f =2 maxi_g p(€;) so that overruns can be detected

Constraint 2: f must be an integer divisor of the
hyperperiod

0 H: H = Nf where NeN

0 It suffices that f be an integer divisor of at least one task period p;

0 The hyperpetiod beginning at minor cycle kf for k = 0, N —
1,2N — 1 is termed major cycle

Constraint 3: There must be one fu// frame f between
J’s release time t' and its deadline: t' + D; > t + 2f

0 So that | can be set to be scheduled in that frame
0 This can be expressed as: 2f — ged(p;, f) < D; for every task T;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 72 of 550

‘ Understanding constraint 3

™~
I
S

—

> Constraint 3

\ 4

t’T t’+D,-t,+pjT J

This is the frame in which job J must be scheduled

t+2f <t'+D; —

. t'—t=ged(p), f) <

t' + p; — 2f —gcd(p;, f) < D;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 73 of 550

Example

T=1{0,4,1,4), (0,5, 2,5), (0, 20, 2, 20)}

H = 20

cl]: f = max(e;) : £= 2

2] : |pi/fl—pi/f =0:£={2,4,5,10, 20}
c3):2f —gcd(py, f) < D;:f<2

f=2:4—-gcd(42) <40K f=5:10—-gcd(4,2) <4 KO
4 —gcd(5,2) < 50K Can o0
4 — gcd(20,2) < 20 OK f=10:20—gcd(4,2) <4 KO
f —4:8— ng(4,4) < 4 0K f = 20 :40 — ng(4,2) < 4 KO
8 —gcd(5,4) <5 KO

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 74 of 550

Clock-driven scheduling /5

It 1s very likely that the original parameters of some
task set T may prove unable to satisty all three
constraints for any given fsimultaneously

In that case we must decompose task T;’s jobs by
slicing their (WCET) e;” into fragments small
enough to artificially yield a “good” f

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 75 of 550

Clock-driven scheduling /6

To construct a cyclic schedule we must make three
design decisions

0 Fixan f

0 Slice (the large) jobs

0 Assign (Jobs and) slices to minor cycles

Sadly, these decisions are very tightly coupled

0 This defect makes cyclic scheduling zery fragile to any
change in system parameters

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 76 of 550

Clock-driven scheduling /7

Input: stored schedule S[k],kin0..F —1
CYCLIC_EXECUTIVE ::
t:=0;k =0;
do forever
sleep until clock interrupt at time t X f;
currentBlock = S|k];
t =t+1;k =tmodF;
if last job not completed then take action;
end if;

execute all slices in currentBlock;

while aperiodic job queue not empty do
execute aperiodic job at top of queue;

end do;
end do;
end SCHEDULER

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 77 of 550

‘ Example (slicing) — 1/2

(@i, pis €5, D;)
J={t;=(0,4,1,4),1, = (0,5,2,5), 73 = (0,20,5,20)}, H = 20

T3 causes disruption since we need e3 < f < 4 to satisfy c3
We must therefore slice e3 : how many slices do we need?

0 4 8 12 16

H

We first look at the schedule with f =4 and F = (7) =5

without T3, to see what least-disruptive opportunities we have ...

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 78 of 550

‘ Example (slicing) — 2/2

... then we observe that e3 = {1, 3, 1} is a good choice

tz t3”’J

T3 = {75 = (0,20,1,x), 74 = (0,20,3,y), 74" = (0,20,1,20)}

where x < y < 20 represent the precedence constraints that
must hold between the slices (could have used phases instead)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 79 of 550

Design issues /1

Completing a job much ahead of its deadline is of no use

Any spare time in time slices should be given to aperiodic jobs, thus
allowing the system to produce more value added

The principle of slack stealing allows aperiodic jobs to execute 7
preference to periodic jobs when possible

a0 FEach minor cycle may include some amount of slack time not used for

scheduling periodic jobs

The slack is a szatic attribute of each minor cycle
A cyclic scheduler does slack stealing 1f it assigns the available slack
time at the beginning of every minor cycle (instead of at the end)
0 This allows the system to become more reactivy

0 Butit also requires a fine-grained interval timer (again!) to signal the end of the
slack time for each minor cycle

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 80 of 550

Design issues /2

What can we do to handle overruns ?

0 Halt the job found running at the start of the new minor cycle
But that job may not be the one that overrun!

Even if it was, stopping it would only serve a useful purpose if
producing a late result had no residual ##/ity

0 Defer halting until the job has completed all its “critical actions™

To avoid the risk that a premature halt may leave the system in an
inconsistent state

a0 Allow the job some extra time by delaying the start of the next
minor cycle

Plausible if producing a late result still had ##/ity

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 81 of 550

Design issues /3

What can we do to handle mode changes?

0 A mode change is when the system incurs some
reconfiguration of its function and workload parameters

Two main axes of design decisions
a0 With or without deadline during the transition

a0 With or without overlap between outgoing and incoming
operation modes

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 82 of 550

Overall evaluation

Pro

0 Comparatively simple design
0 Simple and robust implementation

0 Complete and cost-etfective verification

Con
0 Very fragile design

Construction of the schedule table is a NP-hard problem
High extent of undesirable architectural coupling

0 All parameters must be fixed a priori at the start of design

Choices may be made arbitrarily to satisty the constraints on f
Totally inapt for sporadic jobs

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 83 of 550

Priority-driven scheduling

Base principle

0 Every job 1s assigned a priority

0 The job with the highest priority is dispatched to execution
Two implementation decisions

0 When jobs’ priority should change

a0 When dispatching should occur

Dynamic-priority scheduling

0 Distinct jobs of the same task may have distinct priorities

EDF: the job priority 1s fixed at release, but changes across releases
LLF: the job priority may change at every dispatching point

Static-priority scheduling
0 All jobs of the same task have one and the same priority

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 84 of 550

Static/tixed priority scheduling (FPS)

Two main strategies exist for priority assignment, which
is all we need to determine FPS

Rate monotonic

0 A task with faster rate (hence lower period) takes precedence

a0 Optimal assignment under preemptive zask-/evel priority-based
scheduling and implicit deadlines

0 The consequent scheduling 1s caﬂed

Deadline monotonic

0 A task with bigher urgency (shorter relative deadline) goes first

a0 Equivalently optimal for constrained deadlines

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 85 of 550

Preliminary observations

Priority-driven scheduling algorithms that disregard job
urgency (deadline) perform poorly

The WCET i1s not a tactor of consequence for priority
assignment

0 Weighed round-robin scheduling is “utilization-monotonic”,
but 1s unfit for real-time systems

Schedulable utilization 1s a good metric to compare
the performance ot scheduling algorithms

a A scheduling algorithm S can produce a feasible schedule for
a task set T on a single processor if and only if U(T) does not
exceed the schedulable utilization of §

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 86 of 550

Appraising scheduling /1

Theorem [Liu & Layland: 1973]
For single processors and implicit or constrained

deadlines, EDY’s schedulable utilization is 1

O A necessary and sufficient (1.e., exact) test for implicit

deadlines

. e .
Checking for A= Y2, N dopD) < 1, aka density,

is a sufficient schedulability test for EDF for
constrained deadlines, U <1 < A

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 87 of 550

Appraising scheduling /2

Schedulable utilization alone is 7oz a sutficient criterion:
we must also consider predictability

0 Recall its intuition, given in Section 1
On transient overload, the behavior of static-priority
scheduling can be determined a-priori and 1s reasonable

0 The overrun of any job of a given task T does not harm the
tasks with higher priority than T

Under transient overload, EDF becomes instable

0 A job that missed its deadline is more urgent than a job with a
deadline in the future: one lateness may cause many morel!

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 88 of 550

‘ Overload situations /1

Deadline miss and preemption count ratio over normalized run count (EDF, U > 1)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

tasks

o

0

~
m

o
om
o

normalized value

o
N
o

Legend: DM/R (deadline misses over releases); P/R (preemptions over releases); R (release; run)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 89 of 550

‘ Overload situations /2

Deadline miss and preemption count ratio over normalized run count (FPS, U > 1)

25+

20-

0.0-
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

tasks

-
m
1

type
B owr

normalized value

b
o

o

Legend: DM/R (deadline misses over releases); P/R (preemptions over releases); R (release; run)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 90 of 550

' Overload situations /3

An interesting property of EDF during permanent overloads is that it automatically performs
a period rescaling, and tasks start behaving as they were executing at a lower rate. This
property has been proved by Cervin et al. (2002) and it is formally stated in the following
theorem.

Theorem 1 [Cervin]|. Assume a set of n periodic tasks, where each task is described by a
fixed period T;, a fixed execution time C;, a relative deadline D;, and a release offset ®;.
If U > 1 and tasks are scheduled by EDF, then, in stationarity, the average period T; of
each task t; is given by T; =T, U.

@ Real-Time Systems, 29, 5-26, 2005
(©) 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

= EDI’s throughput decreases by period rescaling

= FPS’s throughput decreases by discarding lower-
priority jobs

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 91 of 550

‘ Overload situations /4

((pi; Pi, €i, Dl)
T = {z; = (0,2,0.6,1), 7, = (0,5,2.3,5)}

Density A(T) = ;—1 + ;—2 =1.06 > 1
1 2
UtilizationU(T) =1 +2=0.76 < 1

p1 P2

What happens to T under EDF?

The exact utilization-based test tells us that T is feasible under EDF
(We don’t need to draw its timeline to tell that!)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 92 of 550

‘ Overload situations /5

(9, vi, €, D;)

T = {t,= (0,2, 1, 2), t,= (0, 5, 3, 5)} & U(t) = ;—1 + ;—2 =1.1
1 2

T has no feasible schedule: what job suffers most under EDF?

e

st s t :
4 35 6 8 =~ 10 g = =

Which job is dispatched here?

T = {t,= (0, 2, 0.8, 2), t,= (0, 5, 3.5, 5)} = U(t) = % + ;—2 =1.1
1 2

T has no feasible schedule: what job suffers most under EDF?

What about

T = {t1 = (0, 2, 0.8, 2), t2 = (0, 5, 4, 5)} with U(t) = % + ;—2 =1.27
1 2

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 93 of 550

‘ Preemption count /1

23
T={t; =(0,4,1,4),t, =(0,6,2,6),t3 =(0,8,3,8)},U = ﬁ’H = 24

With FPS and rate-monotonic priority assignment

i t i I
ny & GAn) » With EPS, at time 4, with
0 4 6 8 t3’s absolute deadline = 8, priority = low
t1’s absolute deadline = 8, priority = high
> 11 preempts t3
And, at time 6, with
t,’s absolute deadline = 12, priority = medium
With EDF t, preempts t3, which misses its deadline

A ? ? A

0 e ‘
8 :

EDF may incur /ess preemptions than FPS

o~
N
A§

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 94 of 550

‘ Preemption count /2

Mean Mean R -
preemptions | preemptions | Min y Max w
FPS EDF = =
Fully-Harmonic ~ Hyperperiod 32,34 32,19 -0.5714 0.8571
Semi-Harmonic ~ Hyperperiod 4.265 4.255 -0.0282 0.1788
1.0<U<1.0004 Hyperperiod * U 23.385 41.171 -1.3866 -0.3089

Mean across task sets

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 95 of 550

Back to FPS: critical instant /1

Feasibility and schedulability tests must consider the
worst case, WC, for all tasks

a0 The WC for task T; occurs when the worst possible relation
holds between its own release time and that of all higher-
priority tasks

0 The actual case may differ depending on the admissible
relation between D; and p;

The notion of critical instant — if one exists — captures

the WC

0 The response time R; for a job of task T; with release time on
the critical instant, is the longest possible value for T;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 96 of 550

Critical instant /2

Theorem: under FPS with D; < p; Vi, the critical instant
for task T; occurs when the release time of any of its jobs is
in phase with a job of every higher-priority task in the set

We seck max(w; ;) for all jobs {j} of task 7; for

(Wi + @i — i)
w;j = e T | ex — @i
(k=1,.,i—1)

Pk

For task indices assigned n decreasing order of priority

0 The) component captures the interference that any job J of task
T; incurs from jobs of higher-priority tasks {7 } between the release
time of the first job of task Ty (with phase @) to the response time
of job j, which occurs at @; + w; ;

When ¢ is O for all jobs considered, all tasks are zz phase and

the equation captures the absolute worst case tor task T;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 97 of 550

Time-demand analysis /1

Time Demand Analysis, TDA, studies w as a function of
time, w(t)

0 Aslong as w(t) < t for some (selected) t for the job of interest, the
supply satisfies the demand, hence the job can complete in time

Theorem [L.ehoczky, Sha, Ding: 1989]
w(t) < tisan exact feasibility test for FPS

0 The obvious question is for which ‘¢’ to check

0 The method proposes to check at a// periods of all higher-priority tasks
until the deadline of the task under study

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 98 of 550

‘Time demand analysis /2

T ={t;=(-313),t,=(5155,t;=(-71.257)}U=0.82

8

(=)

Time demand
=

X

4 (@i, pis €i, D;)

This 1s when the critical-instant job
of t; completes, where w(t) =t

_— Phases do 7ot matter to TDA

They do to the critical instant!

w1 (t) <t

A hence supply satisfies demand
at all t of interest

| ‘ The supply exceeds the demand
M | | |

|
2 4 6 8 10 Time supply

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 99 of 550

‘Time demand analysis /3

T ={t;= (—3,1,3),t,= (—5,1.5,5)t3 = (—,7,1.25,7)},U = 0.82

g —
~§6 w? (t) <t
8
3
54
S
ez{ 2
el{ Hme:upp]y
10

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 100 of 550

‘ Time demand analysis /4

= {t; = (-3,1,3),t; = (- 5 1.5,5,t3= (—7,1.25,7)},U = 0.82

8 — P3
E 6 — For D < p it suffices
g to verify (w(t) < t) at time
3) | instants that are multiple
'.8 The supply meets the demand of the period of the
) E 4 — . i exactly at this point: highest-priority tasks
e [:‘ i--t;;,‘:‘:‘ ------------- J.T this suffices for t3 to complete(!) and <D
33 i X ;.
ez < 72— ¥E.E. ::
! @ ! . >
2 3 4 5 6 7 8 10

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 101 of 550

Time demand analysis /5

We can use TDA to capture the response time of tasks
and then use the critical instant notion to see that

4 The smallest value t that satisfies)

t
t =€+ Xk=1.i-1) [ﬁ] €k
_ s the worst-case response time of task T; y

Solutions methods to calculate this value were

independently proposed by
0 [Joseph, Pandia: 1986]
0 [Audsley, Burns, Richardson, Tindell, Wellings: 1993]

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 102 of 550

Time demand analysis /6

Theorem [I.ehoczky, Sha, Strosnider, Tokuda: 1991]
When D > p, the first job of task T; may 7of be the one that
incurs the worst-case response time

We must consider a// jobs of task 7; within the so-called
level-i busy period, the (ty,t) time interval within which
the processor is busy executing jobs with priority = i, with
release time in (&g, t), and response time falling within ¢

0 The release time in (tg, t) captures all backlog of interfering jobs

0 The response time of all jobs falling within t ensures that the busy
period extends to their completion

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 103 of 550

Example

T, = {-, 70, 26, 70}, T, = {-, 100, 62, 120} (p;,p;, €5, D;)
Let’s look at the level-2 busy period

Ready queue: JinJ2n Ready queue: J,5, I,

Ready queue: J, 4, J»,

Time window 1 [0,70)

Time window 2 [70,100) : :
Time left for J,,: 70-26 = 44 Time left for T. . : 30.26 = 4 s wobadons < [0,
Still to execute: 62-44 = 18 L Ja1 Time left for J,; = 40

il euernie: i = 1k L, J,, completes at: 114 (R = 114)
iellense Wme G 0Dy Time available for J,.,: 40-14 = 26
Still to execute: 62-26 = 36

Ready queue: J,,,]

Time window 5 [200,210)

Release time of job J, ; Ready quene: Ju, Jo,
J>, completes at: 202 (R = 102) |« Time window 4 [140,200)
Time available for J, ;: 10-2 = 8 Time available for J,,: 60-26 = 34 |«
Still to execute: 62-8 = 54 Still to execute: 36-34 = 2
Ready queue: J; 4, J»3 Ready queue: J, 4, J»5
Time window 6 [210,280) promaent P
>{ Time available for J;: 70-26 = 44 [— | e &vaL a5 0F gm- V=
Still to execute: 54-44 = 10 clease time of job J,,

Ready queue: Jis)23)04

Still in ready queue: J,,
The T, busy period Time window 8 [300,350)
extends beyond < Time available for J2,3: 50-6 = 44 =
this point (!) J2,3 completes at: 300+6+10 = 3 1 J,1 s response time is not worst-case!

AN

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 104 of 550

‘ Level-1 busy period

T, = {-, 100, 20, 100}, T, = {-, 150, 40, 150}, T, = {-, 350, 100, 350} = U = 0.75
The same definition of level-i busy period holds also for D < p
but its width is obviously shorter!

UNIVERSIDAD
DE CANTABRIA
™ |

0 20 100 120 200 220 300 320
T2 l ‘ l
0 20 60 150 190 300
- T3 busy period o
w J: | l
0 60 100 120 150 190200 220 240 350

time

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 105 of 550

Demand bound analysis (EDF)

For df, the EDF demand function and time t;, an exact test for a task set T
under EDF is:
Vi, tyit, > t;,df(t,t,) <t,—t;
For periodic tasks with no offsets and U < 1, it holds that:
df(t,,t;) <df(0,t; — t1)
The demand bound function helps generalize the test
dbf (L) = max(df(t,t + L)) = df(0,L),L > 0

Theorem [Baruah, Howell, Rosier: 1990] Exact test for EDF:
| VL €D(T),dbf(L) <LU<1 |
a0 D(T) is the set of deadlines for T in [0, L,], L., = min(Ly, Ly), L, =

Xz, (Ti=DU;
max 3D, ..., D, = 111U —

, Ly, = first idle time in T's busy petiod

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 106 of 550

Summary

Initial survey of scheduling approaches
Important definitions and criteria

Detail discussion and evaluation of main scheduling
algorithms

Initial considerations on feasibility analysis techniques

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 107 of 550

Selected readings

T. Baker, A. Shaw
The cyclic executive model and Ada

DOI: 10.]

1 109/R]

HAL.1988.51108

C.L. Liu, J.W. Layland
Scheduling algorithms for multiprogramming in a hard-real-

time environnient

DOL: 10.1145/321738.321743 (1973)

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

108 of 550

