
3.c Exercises on task interactions,
and further model extensions

Where we use a running example to recap
the effects of resource access control
protocols on task blocking, and make
further extensions to the workload model

Task interactions and blocking

 Causing a job to wait for a lower-priority job to
complete some computation, undermines the
principle of priority

 If that happens, job suffers priority inversion and it
is said to be blocked
 The blocked state is other than preempted or suspended

 We would like RTA to contemplate blocking , so
that we can continue to use it for FPS
 But then we must determine a conservative bound to it

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 184 of 550

Incorporating blocking in RTA

 The cost of blocking adds to response time ,
outside of the interference factor

𝒊 𝒊 𝒊 𝒊

 The magnitude of the effects of blocking on
response time is an indicator of the effectiveness of
the resource access control protocol in use

 We shall now use a running example to expose the
principal differences in their performance

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 185 of 550

Running example

 Consider the example system below: let us see how the
principal resource access control protocols treat it

 Simple locking
 Basic Priority Inheritance
 Basic Priority Ceiling (with system ceiling)
 Ceiling Priority

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 186 of 550

Task Priority Execution sequence Offset

A 1 (low) eQQQQe 0

B 2 ee 2

C 3 eVVe 2

D 4 (high) eeQVe 4

Legend:
• e: one unit of execution;
• Q (or V): one unit of use

of resource 𝑅 (or 𝑅௩)
under mutual exclusion

With simple locking

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 187 of 550

Execution
Execution with Q locked

Preempted

Execution with V locked
Blocked

Task
priority

A

B

C

D

0 2 4 6 8 10 12 14 16
Time

Locking a resource does not exempt from preemption …

Legend:

With Basic Priority Inheritance (BPIP)

If task is blocking task , then runs with ’s priority …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 188 of 550

0 2 4 6 8 10 12 14 16

A

B

C

D

Task
priority

Time

Inheritance blocking

Direct blocking
from 𝜏

𝜏 is blocked

𝜏 inherits the priority of 𝜏

Direct blocking
from 𝜏

Inheritance blocking

Bounding direct blocking under BPIP

 If the system has ୀଵ,.., critical sections that can lead to a task
 being blocked under BPIP, then is the maximum number

of times that can be blocked
 The upper bound on the blocking time for that

contends for critical sections thus is

𝑩𝒊 𝒓𝒄 ൌ𝒖𝒔𝒆ሺ𝒓𝒋, 𝒊ሻ ൈ 𝑪𝒎𝒂𝒙ሺ𝒓𝒋ሻ
𝑲

𝒋ୀ𝟏
Where 𝑢𝑠𝑒ሺ𝑟 , 𝑖ሻ ൌ 1 if 𝑟 is used by at least one task 𝜏:𝜋 ൏ 𝜋 and one task 𝜏:𝜋 𝜋 |
0 otherwise, and 𝐶௫ሺ𝑟ሻ denotes the worst-case duration of use of 𝑟 by any such task 𝜏

 The worst case for task with BPIP is to block for the longest
duration of contending use on access to all the resources it needs

 Note that the running example includes inheritance blocking too!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 189 of 550

With Ceiling Priority protocols

 We shall consider two main variants of them
 Basic Priority Ceiling Protocol (aka “Original CPP”)

 Which uses the system ceiling 𝜋௦ 𝑡
 Ceiling Priority Protocol (aka “Immediate CPP”)

 Which does not use the system ceiling

 When using either of them on a single processor
 A high-priority task can only be blocked by lower-priority tasks at

most once per job
 Deadlocks are prevented by construction because transitive

blocking is also prevented by construction
 Mutual exclusive access to resources is ensured by the protocol

itself, hence locks are not needed

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 190 of 550

Recalling the BPC protocol (BPCP)

 Each task has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

 has a dynamic current priority at time , set to the
maximum of its assigned priority and any priorities it has
inherited at from blocking higher-priority tasks

 can lock a resource at time if and only if ௦
 Where 𝜋௦ 𝑡 ൌ 𝑚𝑎𝑥ሺ𝜋ೕሻ for all 𝑟 currently locked at 𝑡, excluding those

that 𝜏 locks itself
 The blocking suffered by is bounded by the longest critical

section with ceiling ೖ used by lower-priority tasks
𝑩𝒊 ൌ 𝒎𝒂𝒙𝒌ୀ𝟏𝑲 ሺ𝒖𝒔𝒆 𝒓𝒌, 𝒊 ൈ 𝑪𝒎𝒂𝒙 𝒓𝒌 ሻ

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 191 of 550

With Basic Priority Ceiling (BPCP)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 192 of 550

A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

𝜋 3 ൏ 𝜋௦ 3
access is denied

Direct blocking

𝜏 inherits
𝜏’s priority

Inheritance blocking

Q is locked
access is denied

𝜏 inherits
𝜏 ’s priority

Avoidance blocking

Recalling the CP Protocol (CPP)

 Each task has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

 has a dynamic current priority at time , that is set to
the maximum of its own static priority and the ceiling values
of any resources it is currently using

 Any job of that task will suffer blocking only once, at release
 Once the job starts executing, all the resources that it may use are free
 If they were not, then some task would have priority ≥ than the job’s,

hence its execution would be postponed
 Blocking computed exactly as for BPCP

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 193 of 550

With Ceiling Priority (CPP)

2020/2021 UniPD – T. Vardanega

A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

𝜏 inherits Q’s ceiling priority

Real-Time Kernels and Systems 194 of 550

BPCP vs. CPP

 Although the worst-case behavior of the two ceiling priority
schemes is identical from a scheduling viewpoint, there are some
points of difference between them
 CPP is easier to implement than BPCP as blocking relationships

need not be monitored
 CPP leads to less context switches as blocking occurs prior to job

activation
 CPP requires more priority movements as they happen with all

resource usages: BPCP changes priority only if an actual block has
occurred

 CPP is called Priority Protect Protocol in POSIX and Priority Ceiling
Emulation in Ada and Real-Time Java

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 195 of 550

Extending the workload model further

 Our workload model so far contemplates
 Constrained and implicit deadlines ()
 Periodic and sporadic tasks
 Aperiodic tasks under some server scheme
 Task interactions with blocking factored in RTA

 There are further extensions that we may need
 Allowing cooperative scheduling
 Incorporating release jitter
 Allowing arbitrary deadlines
 Allowing offsets (phases)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 196 of 550

Cooperative scheduling /1

 Full preemption may not always suit critical systems
 Cooperative or deferred-preemption scheduling addresses this

problem by chopping tasks into distinct slots of execution
 Slots are said to be floating if their start is commanded at task level or fixed

if it is programmed into the runtime schedule
 The yield command marks the end of each such slot (not the last one)

 If no ℎ𝑝 task is ready at that point, the running task continues
 The time duration of any such slot across all tasks is bounded by 𝐵௫
 Mutual exclusion must use non-preemption (else it breaks)

 Deferring preemption has two interesting properties
 It dominates both preemptive and non-preemptive scheduling
 Each last slot of execution is free from interference

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 197 of 550

 Let be the execution time of the final slot of ’s job,
and ௫ the worst-case blocking from deferring
preemption

 The RTA recurrence relation must be adapted
accordingly and becomes

𝒊
𝒏ା𝟏

𝒊 𝒎𝒂𝒙 𝒊 𝒊
𝒏

𝒊
 Because the last slot is exempt from preemption

 When the fixed-point equation converges (
ାଵ

), ’s response time is computed as

𝒊 𝒊
𝒏

𝒊

Cooperative scheduling /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 198 of 550

Deferred (limited) preemption /1

 Let us consider an implicit-deadline system in which
ଷ (lowest-priority task) has a slot that should

run free from preemption

 Allowing ଷ to disable preemption for all of its
execution (case B) is simple to implement, but
unacceptably bad for ଵ

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 199 of 550

Deferred (limited) preemption /2

 If we were to run with full preemption (case A), then it
would be ଷ to be dissatisfied

 If we gave ଷ a slot of deferred preemption (case C)
then everyone would be happy

 Such slot would start at into ଷ’s execution and would
last for the longest feasible duration (, in this case)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 200 of 550

Release jitter /1

2020/2021 UniPD – T. Vardanega

 Especially critical for precedence-constrained tasks
 Example: a periodic task 𝜏 with period 𝑇 ൌ 20, releases a sporadic task 𝜏௩ at

some point of some runs of its (𝜏’s) jobs
 The release command (“signal”) is conditional: it does not occur at constant time
 This is a typical source of sporadic activation

 What is the minimum inter-arrival time of any two subsequent jobs of 𝜏௩’s?
 To contain the variability we require the signal to be the last command of 𝜏’s job

Real-Time Kernels and Systems 201 of 550

𝜏𝜏
Time

Sporadic arrival 𝑨𝒗𝒊 ൌ 𝒕 𝑹𝒌𝒔

𝑇 ൌ 20

Sporadic arrival 𝑨𝒗𝒊శ𝟏 ൌ 𝒕 𝑹𝒌𝒔శ𝟏

t 𝑅ೞ ൌ 15 𝑅ೞశభ ൌ 𝐶 ൌ 1

∆

Release jitter /2

 The two successive releases of ௩ shown in the picture are
spaced by time units from
 A much smaller interval than 𝑇 ൌ 20 (the predecessor’s period)

 This phenomenon reflects ’s response time jitter, whose
largest span is ೌೣ
 Which corresponds to 𝜏௩’s release time jitter

 To model this behaviour, we stipulate that
 𝜏௩ inherits 𝜏’s period 𝑇 and suffers release jitter 𝐽௩ ൌ 𝑅 െ 𝐶
 In the example, 𝐽௩ ൌ 15 െ 1 ൌ 14

 Hence, ௩’s minimum interarrival time is ௩
 In the example, 20 െ 14 ൌ 6

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 202 of 550

 Task ௩ in the example is released at
 RTA says that task will suffer interference from ௩ (௩)

 Once, if 𝑅 ∈ ሾ0,𝑇 െ 𝐽ሻ
 Twice, if 𝑅 ∈ ሾ𝑇 െ 𝐽, 2𝑇 െ 𝐽ሻ
 Thrice, if 𝑅 ∈ ሾ2𝑇 െ 𝐽, 3𝑇 െ 𝐽ሻ

 This shows that tasks with release jitter cause more interference
 RTA must be adjusted to capture it

𝑹𝒊 ൌ 𝑪𝒊 𝑩𝒊 ∑ 𝑹𝒊ା𝑱𝒋
𝑻𝒋

𝑪𝒋𝒋∈𝒉𝒑ሺ𝒊ሻ (less pessimistic than 𝑹𝒊
𝑻𝒋ି𝑱𝒋

)

 Periodic tasks can only suffer release jitter if the clock is jittery
 The response time of a jittery periodic task 𝜏 measured relative to the real

release time becomes 𝑅′ ൌ 𝑅 𝐽

Release jitter /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 203 of 550

Arbitrary deadlines /1

 When , then jobs of the same task may
compete for execution (in FIFO-within-priority mode)

 The RTA equation must be adapted to capture that event

𝒊
𝒏ା𝟏

𝒊
𝝎𝒊
𝒏ሺ𝒒ሻ
𝑻𝒋 𝒋𝒋∈𝒉𝒑ሺ𝒊ሻ

𝒊 𝒊
𝒏

𝒊
 𝒊 extends as long as falls within it

 Because that means that some jobs of 𝜏’s are still in the ready queue
 The number of releases is bounded by the lowest value for

which :

 ’s worst-case response time then is 𝒊 𝒒 𝒊

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 204 of 550

Arbitrary deadlines /2

2020/2021 UniPD – T. Vardanega

𝑇

0 1 2 𝑞

The ሺ𝑞 1ሻ௧ job release of task 𝜏 falls in
the level-𝑖 busy period, but this 𝑞 is also the
last index to consider as the next job release
belongs in a different busy period

𝑞 1

Real-Time Kernels and Systems 205 of 550

Arbitrary deadlines /3

 When the formulation of the RTA equation is
combined with the effect of release jitter, two
alterations must be made

 First, the interference factor must be increased

𝜔
ାଵ 𝑞 ൌ 𝐵 𝑞 1 𝐶

𝜔
 𝑞 𝑱𝒊
𝑇

𝐶
∈

 Second, if the task under analysis can suffer release
jitter, then two consecutive windows could overlap if
(response time plus jitter) were greater than the period

 𝒊

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 206 of 550

Arbitrary deadlines /4

2020/2021 UniPD – T. Vardanega

𝑇

0 1 2 𝑞

If task 𝜏 has release jitter then
the level-𝑖 busy period may extend
until the next release

𝑞 1
𝐽

Real-Time Kernels and Systems 207 of 550

Non-optimal analysis for offsets /1

 So far, we assumed all tasks share a common release time
(the critical instant)

 What if we allowed offsets?
 Arbitrary offsets are not tractable with critical-instant based analysis
 Hence we cannot use the RTA equation directly for them

 The critical instant assumption conservatively upper-
bounds all possible combinations of offsets and releases

2020/2021 UniPD – T. Vardanega

Task T D C R U

𝜏 8 5 4 4 0.5

𝜏 20 9 4 8 0.2

𝜏 20 10 4 16 0.2 Deadline miss!

Real-Time Kernels and Systems 208 of 550

Non-optimal analysis for offsets /2

 Task periods are not entirely arbitrary in reality: they are
likely to have some relation to one another
 If at least two tasks have a common period, then we give one of

them an offset 𝑂 such that 𝑶𝑫 𝑻) and apply RTA to a
transformation that removes the offset

 Doing so here, tasks (tentatively with
்
ଶ

) are
replaced by a single notional task with
 𝑇 ൌ 𝑇 െ 𝑂
 𝐶 ൌ max ሺ𝐶 ,𝐶ሻ ൌ 4
 𝐷 ൌ 𝑇
 no offset

 This technique allows using RTA and helps determine a
“good” offset

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 209 of 550

Non-optimal analysis for offsets /3

 The notional task has two important properties
 If it is deemed feasible (sharing a critical instant with all other tasks), then

the two real tasks that it represents will meet their deadlines when one is
given the stipulated offset

 If all LP tasks are feasible when suffering interference from 𝜏, then they
will stay feasible when the notional task is replaced by the two real tasks
(one of which with offset)

 These properties follow from the observation that always has
no less CPU utilization than the two real tasks that it subsumes

 𝑅 ൌ 8 ൏ 𝐷 ൌ 10 becomes the (pessimistic but feasible) response time
for 𝜏 and 𝜏

2020/2021 UniPD – T. Vardanega

Task T D C R U
𝜏 8 5 4 4 0.5
𝜏 10 10 4 8 0.4

Real-Time Kernels and Systems 210 of 550

Non-optimal analysis for offsets /4

 In a more general way, the notional task’s
parameters are set as follows

 This strategy can be extended to handle tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 211 of 550

),(
),(
),(

22

ban

ban

ban

ba
n

PPMaxP
DDMinD
CCMaxC

TTT

Where 𝜏 and 𝜏 have the same period,
else we would use 𝑀𝑖𝑛ሺ𝑇,𝑇ሻ at the cost
of greater pessimism

Priority relations

Sustainability [Baruah & Burns, 2006]

 Extends the notion of predictability for single-core systems
to wider range of relaxations of workload parameters
 Shorter execution times
 Longer periods
 Less release jitter
 Later deadlines

 For a scheduling algorithm to be sustainable, any such
relaxation should preserve feasibility
 Much like what predictability does but for less types of variation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 212 of 550

Summary

 Completing the survey and critique of resource access
control protocols by means of a running example

 Considering further desirable extensions to our
workload model

 Contemplating the notion of sustainability for
scheduling

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 213 of 550

Selected readings

 A. Baldovin, E. Mezzetti, T. Vardanega (2013)
Limited preemptive scheduling of non-independent task sets
DOI: 10.1109/EMSOFT.2013.6658596

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 214 of 550

