
3.c Exercises on task interactions, 
and further model extensions

Where we use a running example to recap 
the effects of resource access control 
protocols on task blocking, and make 
further extensions to the workload model



Task interactions and blocking

 Causing a job ௛ to wait for a lower-priority job to 
complete some computation, undermines the 
principle of priority

 If that happens, job ௛ suffers priority inversion and it 
is said to be blocked
 The blocked state is other than preempted or suspended

 We would like RTA to contemplate blocking , so 
that we can continue to use it for FPS
 But then we must determine a conservative bound to it
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Incorporating blocking in RTA

 The cost of blocking adds to response time , 
outside of the interference factor 

𝒊 𝒊 𝒊 𝒊

 The magnitude of the effects of blocking on 
response time is an indicator of the effectiveness of 
the resource access control protocol in use 

 We shall now use a running example to expose the 
principal differences in their performance
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Running example

 Consider the example system below: let us see how the 
principal resource access control protocols treat it

 Simple locking
 Basic Priority Inheritance
 Basic Priority Ceiling (with system ceiling)
 Ceiling Priority
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Task Priority Execution sequence Offset

A 1 (low) eQQQQe 0

B 2 ee 2

C 3 eVVe 2

D 4 (high) eeQVe 4

Legend: 
• e: one unit of execution; 
• Q (or V): one unit of use 

of resource 𝑅௤ (or 𝑅௩)
under mutual exclusion



With simple locking
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Execution
Execution with Q locked

Preempted

Execution with V locked
Blocked

Task
priority

A

B

C

D

0 2 4 6 8 10 12 14 16
Time

Locking a resource does not exempt from preemption …

Legend:



With Basic Priority Inheritance (BPIP)

If task ௣ is blocking task ௤, then ௣ runs with ௤’s priority …
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0 2 4 6 8 10 12 14 16

A

B

C

D

Task
priority

Time

Inheritance blocking

Direct blocking
from 𝜏஼

𝜏஽ is blocked

𝜏஺ inherits the priority of 𝜏஽

Direct blocking
from 𝜏஺

Inheritance blocking



Bounding direct blocking under BPIP

 If the system has ௝ୀଵ,..,௄ critical sections that can lead to a task 
௜ being blocked under BPIP, then is the maximum number 

of times that ௜ can be blocked
 The upper bound on the blocking time ௜ for ௜ that 

contends for critical sections thus is 

𝑩𝒊 𝒓𝒄 ൌ෍𝒖𝒔𝒆ሺ𝒓𝒋, 𝒊ሻ ൈ 𝑪𝒎𝒂𝒙ሺ𝒓𝒋ሻ
𝑲

𝒋ୀ𝟏
Where 𝑢𝑠𝑒ሺ𝑟௝ , 𝑖ሻ ൌ 1 if 𝑟௝ is used by at least one task 𝜏௟:𝜋௟ ൏ 𝜋௜ and one task 𝜏௛:𝜋௛ ൒ 𝜋௜ | 
0 otherwise, and 𝐶௠௔௫ሺ𝑟௝ሻ denotes the worst-case duration of use of 𝑟௝ by any such task 𝜏௟

 The worst case for task ௜ with BPIP is to block for the longest 
duration of contending use on access to all the resources it needs

 Note that the running example includes inheritance blocking too!
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With Ceiling Priority protocols

 We shall consider two main variants of them
 Basic Priority Ceiling Protocol (aka “Original CPP”)

 Which uses the system ceiling 𝜋௦ 𝑡
 Ceiling Priority Protocol (aka “Immediate CPP”)

 Which does not use the system ceiling

 When using either of them on a single processor
 A high-priority task can only be blocked by lower-priority tasks at 

most once per job
 Deadlocks are prevented by construction because transitive 

blocking is also prevented by construction
 Mutual exclusive access to resources is ensured by the protocol 

itself, hence locks are not needed
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Recalling the BPC protocol (BPCP)

 Each task ௜ has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource ௞ has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it

 ௜ has a dynamic current priority ௜ at time , set to the 
maximum of its assigned priority and any priorities it has 
inherited at from blocking higher-priority tasks

 ௜ can lock a resource ௞ at time if and only if ௜ ௦
 Where 𝜋௦ 𝑡 ൌ 𝑚𝑎𝑥௝ሺ𝜋௥ೕሻ for all 𝑟௝ currently locked at 𝑡, excluding those 

that 𝜏௜ locks itself
 The blocking ௜ suffered by ௜ is bounded by the longest critical 

section with ceiling ௥ೖ ௜ used by lower-priority tasks
𝑩𝒊 ൌ 𝒎𝒂𝒙𝒌ୀ𝟏𝑲 ሺ𝒖𝒔𝒆 𝒓𝒌, 𝒊 ൈ 𝑪𝒎𝒂𝒙 𝒓𝒌 ሻ
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With Basic Priority Ceiling (BPCP)
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A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

𝜋஼ 3 ൏ 𝜋௦ 3
access is denied

Direct blocking

𝜏஺ inherits 
𝜏஽’s priority

Inheritance blocking

Q is locked 
access is denied

𝜏஺ inherits 
𝜏஼ ’s priority

Avoidance blocking



Recalling the CP Protocol (CPP)

 Each task ௜ has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource ௞ has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it

 ௜ has a dynamic current priority ௜ at time , that is set to 
the maximum of its own static priority and the ceiling values 
of any resources it is currently using

 Any job of that task will suffer blocking only once, at release
 Once the job starts executing, all the resources that it may use are free
 If they were not, then some task would have priority ≥ than the job’s, 

hence its execution would be postponed
 Blocking computed exactly as for BPCP
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With Ceiling Priority (CPP)
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A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

𝜏஺ inherits Q’s ceiling priority
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BPCP vs. CPP

 Although the worst-case behavior of the two ceiling priority 
schemes is identical from a scheduling viewpoint, there are some 
points of difference between them
 CPP is easier to implement than BPCP as blocking relationships 

need not be monitored
 CPP leads to less context switches as blocking occurs prior to job 

activation
 CPP requires more priority movements as they happen with all

resource usages: BPCP changes priority only if an actual block has 
occurred

 CPP is called Priority Protect Protocol in POSIX and Priority Ceiling 
Emulation in Ada and Real-Time Java
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Extending the workload model further

 Our workload model so far contemplates
 Constrained and implicit deadlines ( )
 Periodic and sporadic tasks
 Aperiodic tasks under some server scheme
 Task interactions with blocking factored in RTA

 There are further extensions that we may need
 Allowing cooperative scheduling
 Incorporating release jitter
 Allowing arbitrary deadlines
 Allowing offsets (phases)
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Cooperative scheduling /1

 Full preemption may not always suit critical systems
 Cooperative or deferred-preemption scheduling addresses this 

problem by chopping tasks into distinct slots of execution
 Slots are said to be floating if their start is commanded at task level or fixed

if it is programmed into the runtime schedule
 The yield command marks the end of each such slot (not the last one)

 If no ℎ𝑝 task is ready at that point, the running task continues
 The time duration of any such slot across all tasks is bounded by 𝐵௠௔௫ 
 Mutual exclusion must use non-preemption (else it breaks)

 Deferring preemption has two interesting properties
 It dominates both preemptive and non-preemptive scheduling
 Each last slot of execution is free from interference
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 Let ௜ be the execution time of the final slot of ௜’s job, 
and ௠௔௫ the worst-case blocking from deferring 
preemption

 The RTA recurrence relation must be adapted 
accordingly and becomes

𝒊
𝒏ା𝟏

𝒊 𝒎𝒂𝒙 𝒊 𝒊
𝒏

𝒊
 Because the last slot is exempt from preemption

 When the fixed-point equation converges ( ௜
௡ାଵ

௜
௡), ௜’s response time is computed as 

𝒊 𝒊
𝒏

𝒊

Cooperative scheduling /2
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Deferred (limited) preemption /1

 Let us consider an implicit-deadline system in which 
ଷ (lowest-priority task) has a slot that should 

run free from preemption

 Allowing ଷ to disable preemption for all of its 
execution (case B) is simple to implement, but 
unacceptably bad for ଵ
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Deferred (limited) preemption /2

 If we were to run with full preemption (case A), then it 
would be ଷ to be dissatisfied

 If we gave ଷ a slot of deferred preemption (case C) 
then everyone would be happy

 Such slot would start at into ଷ’s execution and would 
last for the longest feasible duration ( , in this case)
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Release jitter /1

2020/2021 UniPD – T. Vardanega

 Especially critical for precedence-constrained tasks 
 Example: a periodic task 𝜏௞ with period 𝑇௞ ൌ 20, releases a sporadic task 𝜏௩ at 

some point of some runs of its (𝜏௞’s) jobs
 The release command ( “signal”) is conditional: it does not occur at constant time
 This is a typical source of sporadic activation

 What is the minimum inter-arrival time of any two subsequent jobs of 𝜏௩’s?
 To contain the variability we require the signal to be the last command of 𝜏௞’s job
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𝜏௞𝜏௞
Time

Sporadic arrival 𝑨𝒗𝒊 ൌ 𝒕 ൅ 𝑹𝒌𝒔

𝑇௞ ൌ 20

Sporadic arrival 𝑨𝒗𝒊శ𝟏 ൌ 𝒕 ൅ 𝑹𝒌𝒔శ𝟏

t 𝑅௞ೞ ൌ 15 𝑅௞ೞశభ ൌ 𝐶௞ ൌ 1

∆



Release jitter /2

 The two successive releases of ௩ shown in the picture are 
spaced by time units from 
 A much smaller interval than 𝑇௞ ൌ 20 (the predecessor’s period)

 This phenomenon reflects ௞’s response time jitter, whose 
largest span is ௞೘ೌೣ ௞೘೔೙
 Which corresponds to 𝜏௩’s release time jitter

 To model this behaviour, we stipulate that 
 𝜏௩ inherits 𝜏௞’s period 𝑇௞ and suffers release jitter 𝐽௩ ൌ 𝑅௞ െ 𝐶௞
 In the example, 𝐽௩ ൌ 15 െ 1 ൌ 14

 Hence, ௩’s minimum interarrival time is ௞ ௩
 In the example, 20 െ 14 ൌ 6
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 Task ௩ in the example is released at 
 RTA says that task ௜ will suffer interference from ௩ ( ௜ ௩)

 Once, if 𝑅௜ ∈ ሾ0,𝑇 െ 𝐽ሻ
 Twice, if 𝑅௜ ∈ ሾ𝑇 െ 𝐽, 2𝑇 െ 𝐽ሻ
 Thrice, if 𝑅௜ ∈ ሾ2𝑇 െ 𝐽, 3𝑇 െ 𝐽ሻ

 This shows that tasks with release jitter cause more interference
 RTA must be adjusted to capture it

𝑹𝒊 ൌ 𝑪𝒊 ൅ 𝑩𝒊 ൅ ∑ 𝑹𝒊ା𝑱𝒋
𝑻𝒋

𝑪𝒋𝒋∈𝒉𝒑ሺ𝒊ሻ (less pessimistic than 𝑹𝒊
𝑻𝒋ି𝑱𝒋

)

 Periodic tasks can only suffer release jitter if the clock is jittery
 The response time of a jittery periodic task 𝜏௣ measured relative to the real

release time becomes 𝑅′௣ ൌ 𝑅௣ ൅ 𝐽௣

Release jitter /3
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Arbitrary deadlines /1

 When , then jobs of the same task may 
compete for execution (in FIFO-within-priority mode) 

 The RTA equation must be adapted to capture that event

𝒊
𝒏ା𝟏

𝒊
𝝎𝒊
𝒏ሺ𝒒ሻ
𝑻𝒋 𝒋𝒋∈𝒉𝒑ሺ𝒊ሻ

𝒊 𝒊
𝒏

𝒊
 𝒊 extends as long as ௜ falls within it

 Because that means that some jobs of 𝜏௜’s are still in the ready queue
 The number of releases is bounded by the lowest value for 

which : ௜ ௜

 ௜’s worst-case response time then is 𝒊 𝒒 𝒊
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Arbitrary deadlines /2
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௜

𝑇௜

0 1 2 𝑞

The ሺ𝑞 ൅ 1ሻ௧௛ job release of task 𝜏௜ falls in 
the level-𝑖 busy period, but this 𝑞 is also the 
last index to consider as the next job release 
belongs in a different busy period

𝑞 ൅ 1
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Arbitrary deadlines /3

 When the formulation of the RTA equation is 
combined with the effect of release jitter, two 
alterations must be made

 First, the interference factor must be increased

𝜔௜
௡ାଵ 𝑞 ൌ 𝐵௜ ൅ 𝑞 ൅ 1 𝐶௜ ൅ ෍

𝜔௜
௡ 𝑞 ൅ 𝑱𝒊
𝑇௝

𝐶௝
௝∈௛௣ ௜

 Second, if the task under analysis can suffer release 
jitter, then two consecutive windows could overlap if 
(response time plus jitter) were greater than the period

௜ ௜
௡

௜ 𝒊
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Arbitrary deadlines /4
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௜

𝑇௜

0 1 2 𝑞

If task 𝜏௜ has release jitter then 
the level-𝑖 busy period may extend 
until the next release

𝑞 ൅ 1
𝐽௜
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Non-optimal analysis for offsets /1

 So far, we assumed all tasks share a common release time 
(the critical instant)

 What if we allowed offsets?
 Arbitrary offsets are not tractable with critical-instant based analysis
 Hence we cannot use the RTA equation directly for them

 The critical instant assumption conservatively upper-
bounds all possible combinations of offsets and releases
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Task T D C R U

𝜏௔ 8 5 4 4 0.5

𝜏௕ 20 9 4 8 0.2

𝜏௖ 20 10 4 16 0.2 Deadline miss!
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Non-optimal analysis for offsets /2

 Task periods are not entirely arbitrary in reality: they are 
likely to have some relation to one another
 If at least two tasks have a common period, then we give one of 

them an offset 𝑂 such that 𝑶൅𝑫 ൑ 𝑻) and apply RTA to a 
transformation that removes the offset

 Doing so here, tasks ௕ ௖ (tentatively with ௖
೎்
ଶ

) are 
replaced by a single notional task ௡ with 
 𝑇௡ ൌ 𝑇௖ െ 𝑂௖
 𝐶௡ ൌ max ሺ𝐶௕ ,𝐶௖ሻ ൌ 4
 𝐷௡ ൌ 𝑇௡
 no offset

 This technique allows using RTA and helps determine a 
“good” offset
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Non-optimal analysis for offsets /3

 The notional task ௡ has two important properties
 If it is deemed feasible (sharing a critical instant with all other tasks), then 

the two real tasks that it represents will meet their deadlines when one is 
given the stipulated offset

 If all LP tasks are feasible when suffering interference from 𝜏௡, then they 
will stay feasible when the notional task is replaced by the two real tasks 
(one of which with offset)

 These properties follow from the observation that ௡ always has 
no less CPU utilization than the two real tasks that it subsumes

 𝑅௡ ൌ 8 ൏ 𝐷௡ ൌ 10 becomes the (pessimistic but feasible) response time 
for 𝜏௕ and 𝜏௖
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Task T D C R U
𝜏௔ 8 5 4 4 0.5
𝜏௡ 10 10 4 8 0.4
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Non-optimal analysis for offsets /4

 In a more general way, the notional task’s 
parameters are set as follows

 This strategy can be extended to handle tasks
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Where 𝜏௔ and 𝜏௕ have the same period,
else we would use 𝑀𝑖𝑛ሺ𝑇௔,𝑇௕ሻ at the cost 
of greater pessimism

Priority relations



Sustainability [Baruah & Burns, 2006]

 Extends the notion of predictability for single-core systems 
to wider range of relaxations of workload parameters 
 Shorter execution times
 Longer periods
 Less release jitter
 Later deadlines

 For a scheduling algorithm to be sustainable, any such 
relaxation should preserve feasibility
 Much like what predictability does but for less types of variation
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Summary

 Completing the survey and critique of resource access 
control protocols by means of a running example

 Considering further desirable extensions to our 
workload model

 Contemplating the notion of sustainability for 
scheduling
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