3.c Exercises on task interactions, and further model extensions

Credits to A. Burns and A. Wellings

SVork

Where we use a running example to recap the effects of resource access control protocols on task blocking, and make further extensions to the workload model

Task interactions and blocking

- Causing a job J_h to wait for a lower-priority job to complete some computation, undermines the principle of priority
- If that happens, job J_h suffers *priority inversion* and it is said to be *blocked*
 - The blocked state is other than *preempted* or *suspended*
- We would like RTA to contemplate blocking **B**, so that we can continue to use it for FPS
 - □ But then we must determine a conservative bound to it

Incorporating blocking in RTA

- The cost of blocking *B* adds to response time *R*, *outside* of the interference factor *I* $R_i = C_i + B_i + I_i$
- The magnitude of the effects of blocking on response time is an indicator of the effectiveness of the resource access control protocol in use
- We shall now use a running example to expose the principal differences in their performance

Running example

• Consider the example system below: let us see how the principal resource access control protocols treat it

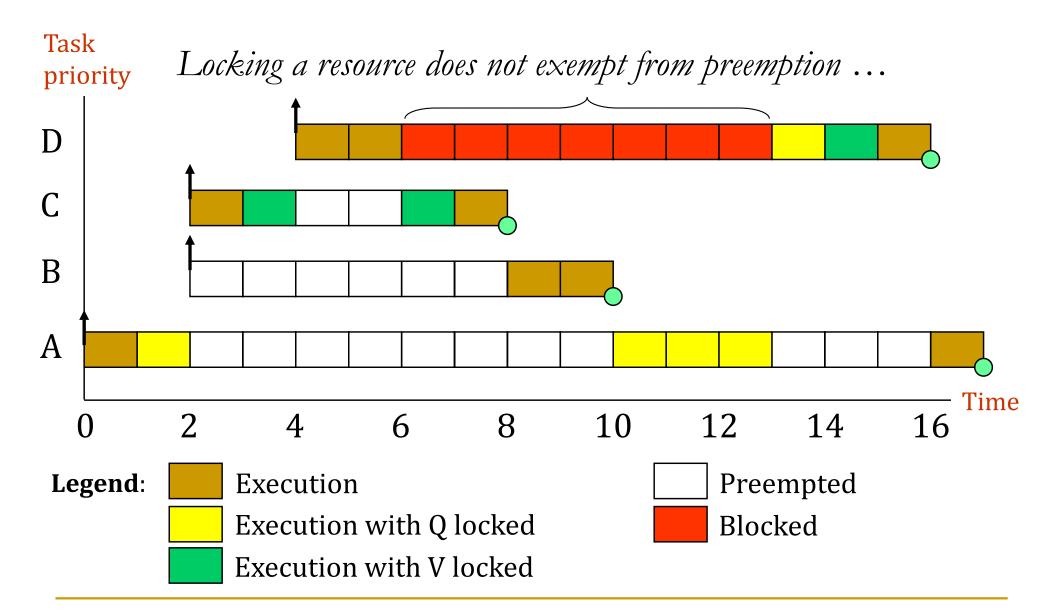
Task	Priority	Execution sequence	Offset	
А	1 (low)	eQQQQe	0	I
В	2	ee	2	
С	3	e VV e	2	
D	4 (high)	ee QV e	4	

Legend:

- e: one unit of execution;
- Q (or V): one unit of use of resource R_q (or R_v) under mutual exclusion

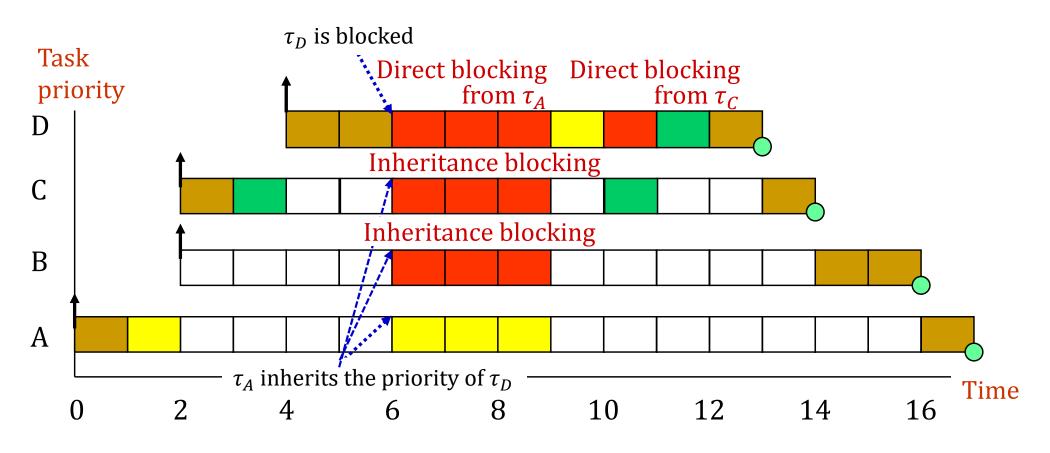
- Simple locking
- Basic Priority Inheritance
- Basic Priority Ceiling (with system ceiling)
- Ceiling Priority

With simple locking



With Basic Priority Inheritance (BPIP)

If task τ_p is blocking task τ_q , then τ_p runs with τ_q 's priority ...



Bounding *direct* blocking under BPIP

- If the system has $\{r_{j=1,\dots,K}\}$ critical sections that can lead to a task τ_i being blocked under BPIP, then K is the maximum number of times that τ_i can be blocked
- The upper bound on the blocking time $B_i(rc)$ for τ_i that contends for K critical sections thus is

$$B_i(rc) = \sum_{j=1}^{n} use(r_j, i) \times C_{max}(r_j)$$

Where $use(r_j, i) = 1$ if r_j is used by at least one task $\tau_l: \pi_l < \pi_i$ and one task $\tau_h: \pi_h \ge \pi_i \mid 0$ otherwise, and $C_{max}(r_j)$ denotes the worst-case duration of use of r_j by *any* such task τ_l

- The worst case for task τ_i with BPIP is to block for the longest duration of contending use on access to *all* the resources it needs
- Note that the running example includes *inheritance blocking* too!

With Ceiling Priority protocols

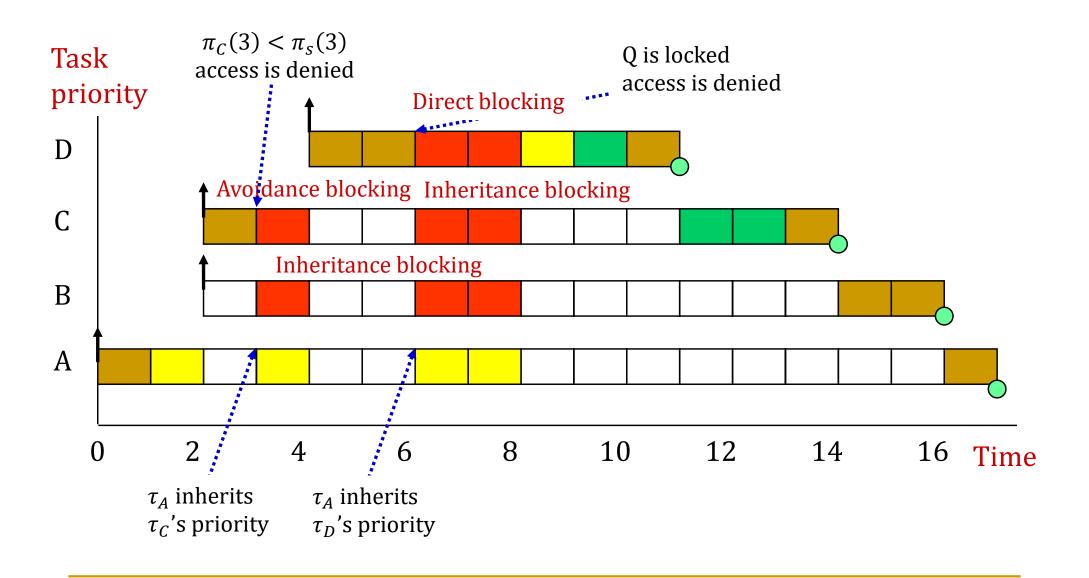
• We shall consider two main variants of them

- □ Basic Priority Ceiling Protocol (aka "Original CPP")
 - Which uses the system ceiling $\pi_s(t)$
- Ceiling Priority Protocol (aka "Immediate CPP")
 - Which does *not* use the system ceiling
- When using either of them on a single processor
 - A high-priority task can only be blocked by lower-priority tasks *at most once* per job
 - Deadlocks are prevented by construction because transitive blocking is also prevented by construction
 - Mutual exclusive access to resources is ensured by the protocol itself, hence locks are *not* needed

Recalling the BPC protocol (BPCP)

- Each task τ_i has an assigned *static* priority
 - Perhaps determined by deadline monotonic assignment
- Each resource r_k has a *static* ceiling attribute defined as the maximum priority of the tasks that may use it
- τ_i has a *dynamic* current priority $\pi_i(t)$ at time t, set to the maximum of its assigned priority and any priorities it has inherited at t from blocking higher-priority tasks
- τ_i can lock a resource r_k at time t if and only if $\pi_i(t) > \pi_s(t)$
 - Where $\pi_s(t) = \max_j(\pi_{r_j})$ for all r_j currently locked at t, excluding those that τ_i locks itself
- The blocking B_i suffered by τ_i is bounded by the longest critical section with ceiling $\pi_{r_k} > \pi_i$ used by lower-priority tasks $B_i = max_{k=1}^K (use(r_k, i) \times C_{max}(r_k))$

With Basic Priority Ceiling (BPCP)

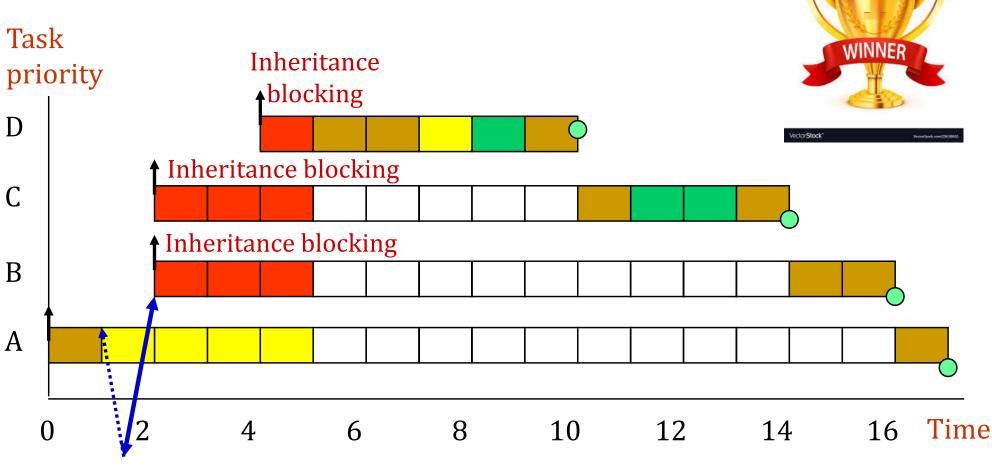


2020/2021 UniPD – T. Vardanega

Recalling the CP Protocol (CPP)

- Each task τ_i has an assigned *static* priority
 - Perhaps determined by deadline monotonic assignment
- Each resource r_k has a *static* ceiling attribute defined as the maximum priority of the tasks that may use it
- τ_i has a *dynamic* current priority $\pi_i(t)$ at time t, that is set to the maximum of its own static priority and the ceiling values of any resources it is currently using
- Any job of that task will suffer blocking *only once*, at release
 - Once the job starts executing, all the resources that it may use are free
 - □ If they were not, then some task would have priority ≥ than the job's, hence its execution would be postponed
- Blocking computed exactly as for BPCP

With Ceiling Priority (CPP)



 τ_A inherits Q's ceiling priority

BPCP vs. CPP

- Although the worst-case behavior of the two ceiling priority schemes is identical from a scheduling viewpoint, there are some points of difference between them
 - CPP is easier to implement than BPCP as blocking relationships need not be monitored
 - CPP leads to *less* context switches as blocking occurs *prior* to job activation
 - CPP requires *more* priority movements as they happen with *all* resource usages: BPCP changes priority only if an actual block has occurred
- CPP is called *Priority Protect Protocol* in POSIX and *Priority Ceiling Emulation* in Ada and Real-Time Java

Extending the workload model further

- Our workload model so far contemplates
 - Constrained and implicit deadlines $(D \leq T)$
 - Periodic and sporadic tasks
 - Aperiodic tasks under some server scheme
 - Task interactions with blocking factored in RTA
 - There are further extensions that we may need
 - Allowing cooperative scheduling
 - Incorporating release jitter
 - Allowing arbitrary deadlines
 - □ Allowing *offsets* (phases)

Cooperative scheduling /1

- Full preemption may not always suit critical systems
- *Cooperative* or *deferred-preemption scheduling* addresses this problem by chopping tasks into distinct slots of execution
 - Slots are said to be *floating* if their start is commanded at task level or *fixed* if it is programmed into the runtime schedule
 - The **yield** command marks the end of each such slot (not the last one)
 - If no *hp* task is ready at that point, the running task continues
 - The time duration of any such slot across all tasks is bounded by B_{max}
 - Mutual exclusion must use non-preemption (else it breaks)
- Deferring preemption has two interesting properties
 - □ It *dominates* both preemptive and non-preemptive scheduling
 - Each last slot of execution is free from interference

Cooperative scheduling /2

- Let F_i be the execution time of the *final slot* of τ_i 's job, and B_{max} the worst-case blocking from deferring preemption
- The RTA recurrence relation must be adapted accordingly and becomes

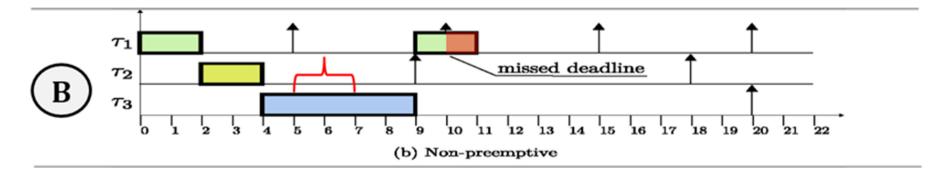
$$w_i^{n+1} = C_i + B_{max} + I_i(w_i^n) - F_i$$

Because the last slot is exempt from preemption

• When the fixed-point equation converges $(w_i^{n+1} = w_i^n)$, τ_i 's response time is computed as $R_i = w_i^n + F_i$

Deferred (limited) preemption /1

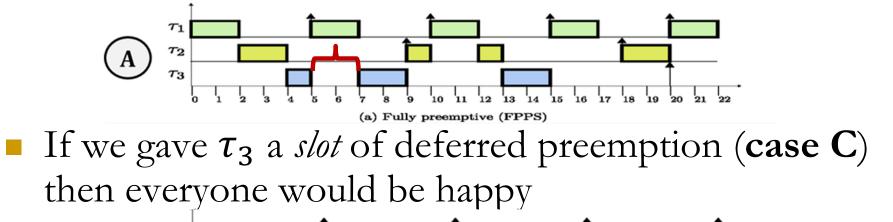
 Let us consider an implicit-deadline system in which τ₃ (lowest-priority task) has a *slot* [1,3] that should run free from preemption

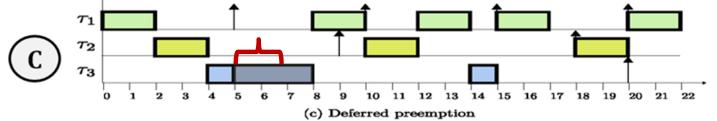


Allowing τ_3 to disable preemption for *all* of its execution (case B) is simple to implement, but unacceptably bad for τ_1

Deferred (limited) preemption /2

If we were to run with full preemption (case A), then it would be τ₃ to be dissatisfied

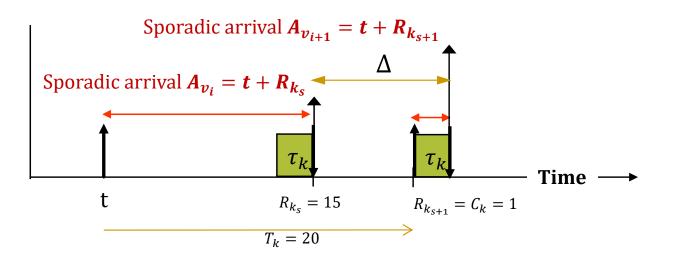




• Such slot would start at t = 1 into τ_3 's execution and would last for the longest feasible duration (c = 3, in this case)

Release jitter /1

- Especially critical for *precedence-constrained* tasks
- **Example**: a periodic task τ_k with period $T_k = 20$, releases a *sporadic task* τ_v *at some point* of *some* runs of its (τ_k 's) jobs
 - The release command ("signal") is conditional: it does not occur at constant time
 - This is a typical source of sporadic activation
- What is the minimum inter-arrival time of any two subsequent jobs of τ_v 's?
 - To contain the variability we require the signal to be the last command of τ_k 's job



Release jitter /2

- The two successive releases of τ_v shown in the picture are spaced by $\Delta = 21 15 = 6$ time units from t
 - A much smaller interval than $T_k = 20$ (the predecessor's period)
- This phenomenon reflects τ_k 's response time jitter, whose largest span is $R_{k_{max}} R_{k_{min}}$
 - Which corresponds to τ_v 's release time jitter
- To model this behaviour, we stipulate that
 - \$\tau_v\$ inherits \$\tau_k\$'s period \$T_k\$ and suffers release jitter \$J_v = R_k C_k\$
 In the example, \$J_v = 15 1 = 14\$
- Hence, τ_v's *minimum interarrival time* is T_k J_v
 In the example, 20 14 = 6

Release jitter /3

- Task τ_v in the example is released at 0, T J, 2T J, 3T J
- RTA says that task τ_i will suffer interference from τ_v ($\pi_i < \pi_v$)
 - Once, if $R_i \in [0, T J)$ Twice, if $R_i \in [T J, 2T J)$ Thrice, if $R_i \in [2T J, 3T J)$
- This shows that tasks with release jitter cause *more* interference

RTA must be adjusted to capture it

$$R_{i} = C_{i} + B_{i} + \sum_{j \in hp(i)} \left[\frac{R_{i} + J_{j}}{T_{j}} \right] C_{j} \quad (less \ pessimistic \ than \left[\frac{R_{i}}{T_{j} - J_{j}} \right])$$

Periodic tasks can only suffer release jitter if the clock is jittery

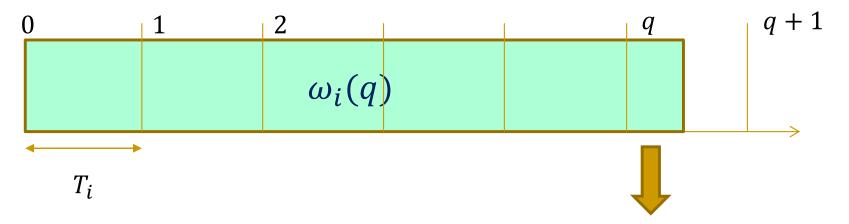
• The response time of a jittery periodic task τ_p measured relative to the *real* release time becomes $R'_p = R_p + J_p$

 $2T_{n}$

- When D > T, then q > 1 jobs of the same task may compete for execution (in FIFO-within-priority mode)
- The RTA equation must be adapted to capture that event

$$\omega_i^{n+1}(q) = (q+1)C_i + \sum_{j \in hp(i)} \left[\frac{\omega_i^n(q)}{T_j}\right]C_j$$
$$R_i(q) = \omega_i^n(q) - qT_i$$

- $\boldsymbol{\omega}_i(\boldsymbol{q})$ extends as long as $\boldsymbol{q}T_i$ falls within it
 - Because that means that some jobs of τ_i 's are still in the ready queue
- □ The number q of releases is bounded by the lowest value for which $q: R_i(q) \le T_i$
- τ_i 's worst-case response time then is $R_i = max_q R_i(q)$

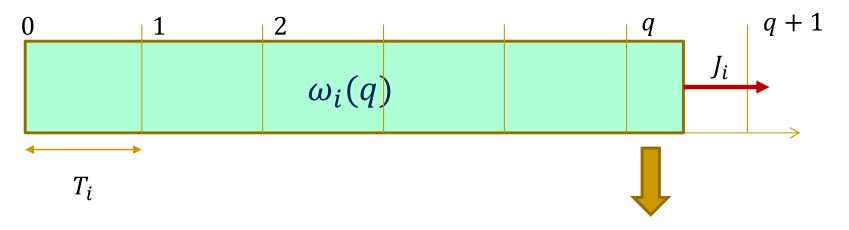


The $(q + 1)^{th}$ job release of task τ_i falls in the level-*i* busy period, but this *q* is also the last index to consider as the next job release belongs in a different busy period

- When the formulation of the RTA equation is combined with the effect of release jitter, two alterations must be made
- First, the interference factor must be increased

$$\omega_i^{n+1}(q) = B_i + (q+1)C_i + \sum_{j \in hp(i)} \left[\frac{\omega_i^n(q) + J_i}{T_j} \right] C_j$$

Second, if the task under analysis can suffer release jitter, then two consecutive windows could overlap if (response time plus jitter) were greater than the period $R_i(q) = \omega_i^n(q) - qT_i + J_i$



If task τ_i has release jitter then the level-*i* busy period may extend until the next release

So far, we assumed all tasks share a common release time (the *critical instant*)

Task	Т	D	С	R	\mathbf{U}	
$ au_a$	8	5	4	4	0.5	
$ au_b$	20	9	4	8	0.2	
$ au_c$	20	10	4	16	0.2	Deadline miss

- What if we allowed offsets?
 - Arbitrary offsets are *not* tractable with critical-instant based analysis
 - □ Hence we cannot use the RTA equation *directly* for them
- The critical instant assumption conservatively upperbounds all possible combinations of offsets and releases

- Task periods are not entirely arbitrary in reality: they are likely to have some relation to one another
 - □ If at least two tasks have a common period, then we give one of them an offset *O* such that $O + D \leq T$) and apply RTA to a transformation that *removes* the offset
- Doing so here, tasks τ_b , τ_c (tentatively with $O_c = \frac{T_c}{2}$) are replaced by a *single* notional task τ_n with

$$\Box T_n = T_c - O_c$$

$$\Box \quad C_n = \max(C_b, C_c) = 4$$

- $\square \quad D_n = T_n$
- □ *no* offset
- This technique allows using RTA and helps determine a "good" offset

• The notional task τ_n has two important properties

- □ If it is deemed feasible (sharing a critical instant with all other tasks), then the two real tasks that it represents will meet their deadlines when one is given the stipulated offset
- If all LP tasks are feasible when suffering interference from τ_n , then they will stay feasible when the notional task is replaced by the two real tasks (one of which with offset)
- These properties follow from the observation that τ_n always has no less CPU utilization than the two real tasks that it subsumes

Task	Т	D	С	R	U
$ au_a$	8	5	4	4	0.5
$ au_n$	10	10	4	8	0.4

 $\square R_n = 8 < D_n = 10 \text{ becomes the (pessimistic but feasible) response time for } \tau_b \text{ and } \tau_c$

In a more general way, the notional task's parameters are set as follows

 $T_{n} = \frac{T_{a}}{2} = \frac{T_{b}}{2}$ Where τ_{a} and τ_{b} have the same period, else we would use $Min(T_{a}, T_{b})$ at the cost of greater pessimism $C_{n} = Max(C_{a}, C_{b})$ $D_{n} = Min(D_{a}, D_{b})$ $P_{n} = Max(P_{a}, P_{b})$ Priority relations

• This strategy can be extended to handle k > 2 tasks

Sustainability [Baruah & Burns, 2006]

- Extends the notion of predictability for single-core systems to wider range of relaxations of workload parameters
 - Shorter execution times
 - Longer periods
 - Less release jitter
 - Later deadlines
- For a scheduling algorithm to be sustainable, any such relaxation should *preserve* feasibility
 - Much like what predictability does but for less types of variation

Summary

- Completing the survey and critique of resource access control protocols by means of a running example
- Considering further desirable extensions to our workload model
- Contemplating the notion of *sustainability* for scheduling

Selected readings

 A. Baldovin, E. Mezzetti, T. Vardanega (2013) Limited preemptive scheduling of non-independent task sets DOI: 10.1109/EMSOFT.2013.6658596