
3.c Exercises on task interactions, 
and further model extensions

Where we use a running example to recap 
the effects of resource access control 
protocols on task blocking, and make 
further extensions to the workload model



Task interactions and blocking

 Causing a job  to wait for a lower-priority job to 
complete some computation, undermines the 
principle of priority

 If that happens, job  suffers priority inversion and it 
is said to be blocked
 The blocked state is other than preempted or suspended

 We would like RTA to contemplate blocking , so 
that we can continue to use it for FPS
 But then we must determine a conservative bound to it
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Incorporating blocking in RTA

 The cost of blocking adds to response time , 
outside of the interference factor 

𝒊 𝒊 𝒊 𝒊

 The magnitude of the effects of blocking on 
response time is an indicator of the effectiveness of 
the resource access control protocol in use 

 We shall now use a running example to expose the 
principal differences in their performance
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Running example

 Consider the example system below: let us see how the 
principal resource access control protocols treat it

 Simple locking
 Basic Priority Inheritance
 Basic Priority Ceiling (with system ceiling)
 Ceiling Priority
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Task Priority Execution sequence Offset

A 1 (low) eQQQQe 0

B 2 ee 2

C 3 eVVe 2

D 4 (high) eeQVe 4

Legend: 
• e: one unit of execution; 
• Q (or V): one unit of use 

of resource 𝑅 (or 𝑅௩)
under mutual exclusion



With simple locking
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Execution
Execution with Q locked

Preempted

Execution with V locked
Blocked

Task
priority

A

B

C

D

0 2 4 6 8 10 12 14 16
Time

Locking a resource does not exempt from preemption …

Legend:



With Basic Priority Inheritance (BPIP)

If task  is blocking task , then  runs with ’s priority …
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0 2 4 6 8 10 12 14 16

A

B

C

D

Task
priority

Time

Inheritance blocking

Direct blocking
from 𝜏

𝜏 is blocked

𝜏 inherits the priority of 𝜏

Direct blocking
from 𝜏

Inheritance blocking



Bounding direct blocking under BPIP

 If the system has ୀଵ,.., critical sections that can lead to a task 
 being blocked under BPIP, then is the maximum number 

of times that  can be blocked
 The upper bound on the blocking time  for  that 

contends for critical sections thus is 

𝑩𝒊 𝒓𝒄 ൌ𝒖𝒔𝒆ሺ𝒓𝒋, 𝒊ሻ ൈ 𝑪𝒎𝒂𝒙ሺ𝒓𝒋ሻ
𝑲

𝒋ୀ𝟏
Where 𝑢𝑠𝑒ሺ𝑟 , 𝑖ሻ ൌ 1 if 𝑟 is used by at least one task 𝜏:𝜋 ൏ 𝜋 and one task 𝜏:𝜋  𝜋 | 
0 otherwise, and 𝐶௫ሺ𝑟ሻ denotes the worst-case duration of use of 𝑟 by any such task 𝜏

 The worst case for task  with BPIP is to block for the longest 
duration of contending use on access to all the resources it needs

 Note that the running example includes inheritance blocking too!
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With Ceiling Priority protocols

 We shall consider two main variants of them
 Basic Priority Ceiling Protocol (aka “Original CPP”)

 Which uses the system ceiling 𝜋௦ 𝑡
 Ceiling Priority Protocol (aka “Immediate CPP”)

 Which does not use the system ceiling

 When using either of them on a single processor
 A high-priority task can only be blocked by lower-priority tasks at 

most once per job
 Deadlocks are prevented by construction because transitive 

blocking is also prevented by construction
 Mutual exclusive access to resources is ensured by the protocol 

itself, hence locks are not needed
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Recalling the BPC protocol (BPCP)

 Each task  has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource  has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it

  has a dynamic current priority  at time , set to the 
maximum of its assigned priority and any priorities it has 
inherited at from blocking higher-priority tasks

  can lock a resource  at time if and only if  ௦
 Where 𝜋௦ 𝑡 ൌ 𝑚𝑎𝑥ሺ𝜋ೕሻ for all 𝑟 currently locked at 𝑡, excluding those 

that 𝜏 locks itself
 The blocking  suffered by  is bounded by the longest critical 

section with ceiling ೖ  used by lower-priority tasks
𝑩𝒊 ൌ 𝒎𝒂𝒙𝒌ୀ𝟏𝑲 ሺ𝒖𝒔𝒆 𝒓𝒌, 𝒊 ൈ 𝑪𝒎𝒂𝒙 𝒓𝒌 ሻ
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With Basic Priority Ceiling (BPCP)
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A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

𝜋 3 ൏ 𝜋௦ 3
access is denied

Direct blocking

𝜏 inherits 
𝜏’s priority

Inheritance blocking

Q is locked 
access is denied

𝜏 inherits 
𝜏 ’s priority

Avoidance blocking



Recalling the CP Protocol (CPP)

 Each task  has an assigned static priority
 Perhaps determined by deadline monotonic assignment

 Each resource  has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it

  has a dynamic current priority  at time , that is set to 
the maximum of its own static priority and the ceiling values 
of any resources it is currently using

 Any job of that task will suffer blocking only once, at release
 Once the job starts executing, all the resources that it may use are free
 If they were not, then some task would have priority ≥ than the job’s, 

hence its execution would be postponed
 Blocking computed exactly as for BPCP
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With Ceiling Priority (CPP)
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A

B

C

D

0 2 4 6 8 10 12 14 16

Task
priority

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

𝜏 inherits Q’s ceiling priority

Real-Time Kernels and Systems 194 of  550



BPCP vs. CPP

 Although the worst-case behavior of the two ceiling priority 
schemes is identical from a scheduling viewpoint, there are some 
points of difference between them
 CPP is easier to implement than BPCP as blocking relationships 

need not be monitored
 CPP leads to less context switches as blocking occurs prior to job 

activation
 CPP requires more priority movements as they happen with all

resource usages: BPCP changes priority only if an actual block has 
occurred

 CPP is called Priority Protect Protocol in POSIX and Priority Ceiling 
Emulation in Ada and Real-Time Java
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Extending the workload model further

 Our workload model so far contemplates
 Constrained and implicit deadlines ( )
 Periodic and sporadic tasks
 Aperiodic tasks under some server scheme
 Task interactions with blocking factored in RTA

 There are further extensions that we may need
 Allowing cooperative scheduling
 Incorporating release jitter
 Allowing arbitrary deadlines
 Allowing offsets (phases)
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Cooperative scheduling /1

 Full preemption may not always suit critical systems
 Cooperative or deferred-preemption scheduling addresses this 

problem by chopping tasks into distinct slots of execution
 Slots are said to be floating if their start is commanded at task level or fixed

if it is programmed into the runtime schedule
 The yield command marks the end of each such slot (not the last one)

 If no ℎ𝑝 task is ready at that point, the running task continues
 The time duration of any such slot across all tasks is bounded by 𝐵௫ 
 Mutual exclusion must use non-preemption (else it breaks)

 Deferring preemption has two interesting properties
 It dominates both preemptive and non-preemptive scheduling
 Each last slot of execution is free from interference
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 Let  be the execution time of the final slot of ’s job, 
and ௫ the worst-case blocking from deferring 
preemption

 The RTA recurrence relation must be adapted 
accordingly and becomes

𝒊
𝒏ା𝟏

𝒊 𝒎𝒂𝒙 𝒊 𝒊
𝒏

𝒊
 Because the last slot is exempt from preemption

 When the fixed-point equation converges ( 
ାଵ


), ’s response time is computed as 

𝒊 𝒊
𝒏

𝒊

Cooperative scheduling /2
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Deferred (limited) preemption /1

 Let us consider an implicit-deadline system in which 
ଷ (lowest-priority task) has a slot that should 

run free from preemption

 Allowing ଷ to disable preemption for all of its 
execution (case B) is simple to implement, but 
unacceptably bad for ଵ
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Deferred (limited) preemption /2

 If we were to run with full preemption (case A), then it 
would be ଷ to be dissatisfied

 If we gave ଷ a slot of deferred preemption (case C) 
then everyone would be happy

 Such slot would start at into ଷ’s execution and would 
last for the longest feasible duration ( , in this case)
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Release jitter /1
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 Especially critical for precedence-constrained tasks 
 Example: a periodic task 𝜏 with period 𝑇 ൌ 20, releases a sporadic task 𝜏௩ at 

some point of some runs of its (𝜏’s) jobs
 The release command ( “signal”) is conditional: it does not occur at constant time
 This is a typical source of sporadic activation

 What is the minimum inter-arrival time of any two subsequent jobs of 𝜏௩’s?
 To contain the variability we require the signal to be the last command of 𝜏’s job
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𝜏𝜏
Time

Sporadic arrival 𝑨𝒗𝒊 ൌ 𝒕  𝑹𝒌𝒔

𝑇 ൌ 20

Sporadic arrival 𝑨𝒗𝒊శ𝟏 ൌ 𝒕  𝑹𝒌𝒔శ𝟏

t 𝑅ೞ ൌ 15 𝑅ೞశభ ൌ 𝐶 ൌ 1

∆



Release jitter /2

 The two successive releases of ௩ shown in the picture are 
spaced by time units from 
 A much smaller interval than 𝑇 ൌ 20 (the predecessor’s period)

 This phenomenon reflects ’s response time jitter, whose 
largest span is ೌೣ 
 Which corresponds to 𝜏௩’s release time jitter

 To model this behaviour, we stipulate that 
 𝜏௩ inherits 𝜏’s period 𝑇 and suffers release jitter 𝐽௩ ൌ 𝑅 െ 𝐶
 In the example, 𝐽௩ ൌ 15 െ 1 ൌ 14

 Hence, ௩’s minimum interarrival time is  ௩
 In the example, 20 െ 14 ൌ 6
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 Task ௩ in the example is released at 
 RTA says that task  will suffer interference from ௩ (  ௩)

 Once, if 𝑅 ∈ ሾ0,𝑇 െ 𝐽ሻ
 Twice, if 𝑅 ∈ ሾ𝑇 െ 𝐽, 2𝑇 െ 𝐽ሻ
 Thrice, if 𝑅 ∈ ሾ2𝑇 െ 𝐽, 3𝑇 െ 𝐽ሻ

 This shows that tasks with release jitter cause more interference
 RTA must be adjusted to capture it

𝑹𝒊 ൌ 𝑪𝒊  𝑩𝒊  ∑ 𝑹𝒊ା𝑱𝒋
𝑻𝒋

𝑪𝒋𝒋∈𝒉𝒑ሺ𝒊ሻ (less pessimistic than 𝑹𝒊
𝑻𝒋ି𝑱𝒋

)

 Periodic tasks can only suffer release jitter if the clock is jittery
 The response time of a jittery periodic task 𝜏 measured relative to the real

release time becomes 𝑅′ ൌ 𝑅  𝐽

Release jitter /3
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Arbitrary deadlines /1

 When , then jobs of the same task may 
compete for execution (in FIFO-within-priority mode) 

 The RTA equation must be adapted to capture that event

𝒊
𝒏ା𝟏

𝒊
𝝎𝒊
𝒏ሺ𝒒ሻ
𝑻𝒋 𝒋𝒋∈𝒉𝒑ሺ𝒊ሻ

𝒊 𝒊
𝒏

𝒊
 𝒊 extends as long as  falls within it

 Because that means that some jobs of 𝜏’s are still in the ready queue
 The number of releases is bounded by the lowest value for 

which :  

 ’s worst-case response time then is 𝒊 𝒒 𝒊
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Arbitrary deadlines /2
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𝑇

0 1 2 𝑞

The ሺ𝑞  1ሻ௧ job release of task 𝜏 falls in 
the level-𝑖 busy period, but this 𝑞 is also the 
last index to consider as the next job release 
belongs in a different busy period

𝑞  1
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Arbitrary deadlines /3

 When the formulation of the RTA equation is 
combined with the effect of release jitter, two 
alterations must be made

 First, the interference factor must be increased

𝜔
ାଵ 𝑞 ൌ 𝐵  𝑞  1 𝐶  

𝜔
 𝑞  𝑱𝒊
𝑇

𝐶
∈ 

 Second, if the task under analysis can suffer release 
jitter, then two consecutive windows could overlap if 
(response time plus jitter) were greater than the period

 


 𝒊
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Arbitrary deadlines /4
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𝑇

0 1 2 𝑞

If task 𝜏 has release jitter then 
the level-𝑖 busy period may extend 
until the next release

𝑞  1
𝐽
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Non-optimal analysis for offsets /1

 So far, we assumed all tasks share a common release time 
(the critical instant)

 What if we allowed offsets?
 Arbitrary offsets are not tractable with critical-instant based analysis
 Hence we cannot use the RTA equation directly for them

 The critical instant assumption conservatively upper-
bounds all possible combinations of offsets and releases
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Task T D C R U

𝜏 8 5 4 4 0.5

𝜏 20 9 4 8 0.2

𝜏 20 10 4 16 0.2 Deadline miss!
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Non-optimal analysis for offsets /2

 Task periods are not entirely arbitrary in reality: they are 
likely to have some relation to one another
 If at least two tasks have a common period, then we give one of 

them an offset 𝑂 such that 𝑶𝑫  𝑻) and apply RTA to a 
transformation that removes the offset

 Doing so here, tasks   (tentatively with 
்
ଶ

) are 
replaced by a single notional task  with 
 𝑇 ൌ 𝑇 െ 𝑂
 𝐶 ൌ max ሺ𝐶 ,𝐶ሻ ൌ 4
 𝐷 ൌ 𝑇
 no offset

 This technique allows using RTA and helps determine a 
“good” offset
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Non-optimal analysis for offsets /3

 The notional task  has two important properties
 If it is deemed feasible (sharing a critical instant with all other tasks), then 

the two real tasks that it represents will meet their deadlines when one is 
given the stipulated offset

 If all LP tasks are feasible when suffering interference from 𝜏, then they 
will stay feasible when the notional task is replaced by the two real tasks 
(one of which with offset)

 These properties follow from the observation that  always has 
no less CPU utilization than the two real tasks that it subsumes

 𝑅 ൌ 8 ൏ 𝐷 ൌ 10 becomes the (pessimistic but feasible) response time 
for 𝜏 and 𝜏
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Task T D C R U
𝜏 8 5 4 4 0.5
𝜏 10 10 4 8 0.4
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Non-optimal analysis for offsets /4

 In a more general way, the notional task’s 
parameters are set as follows

 This strategy can be extended to handle tasks
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Where 𝜏 and 𝜏 have the same period,
else we would use 𝑀𝑖𝑛ሺ𝑇,𝑇ሻ at the cost 
of greater pessimism

Priority relations



Sustainability [Baruah & Burns, 2006]

 Extends the notion of predictability for single-core systems 
to wider range of relaxations of workload parameters 
 Shorter execution times
 Longer periods
 Less release jitter
 Later deadlines

 For a scheduling algorithm to be sustainable, any such 
relaxation should preserve feasibility
 Much like what predictability does but for less types of variation
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Summary

 Completing the survey and critique of resource access 
control protocols by means of a running example

 Considering further desirable extensions to our 
workload model

 Contemplating the notion of sustainability for 
scheduling
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