3.c Exercises on task interactions,

and further model extensions

Credits to A. Burns and A. Wellings
RTS /5«

Where we use a running example to recap
the effects of resource access control
protocols on task blocking, and make
further extensions to the workload model



Task interactions and blocking

Causing a job Jj to wait for a lower-priority job to
complete some computation, undermines the

principle of priority

If that happens, job [y, sutters priority inversion and it
is said to be blocked

0 The blocked state is other than preempted ot suspended

We would like RTA to contemplate blocking B, so

that we can continue to use it for FPS

0 But then we must determine a conservative bound to it

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 184 of 550



Incorporating blocking in RTA

The cost of blocking B adds to response time R,
outside of the interference factor [

Ri — Ci + Bi + Ii
The magnitude of the etfects of blocking on
response time 1s an indicator of the effectiveness ot
the resource access control protocol in use

We shall now use a running example to expose the
principal differences in their performance

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 185 of 550



‘ Runn:

ng example

= Consider the example system below: let us see how the
principal resource access control protocols treat it

1 (low) cQQQQe Legend:

° e:one unit of execution;

B 2 ce 2

* Q (orV): one unit of use
C 3 eVVe 2 of resource R, (or Ry)
D 4 (high) ceQVe 4 under mutual exclusion

0 Simple locking

0 Basic Priority Inheritance

0 Basic Priority Ceiling (with systemz ceiling)
0 Ceiling Priority

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 186 of 550



‘ With simple locking

Task : :
priority Locking a resource does not exempt from preemption ...

R i — —— —
c| T

B [
AF 0
Time
0 2 4 6 3 10 12 14 16

Legend: - Execution Preempted
Execution with Q locked - Blocked

- Execution with V locked

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 187 of 550



With Basic Priority Inheritance (BPIP)

If task Ty, is blocking task Ty, then Ty runs with Ty's priority ...

Tp is blocked

Ta§k _ =~ Direct blocking Direct blocking
priority ", from 74 from 7,
D
Inheritance blocking
C i !

) Inheritance blocking

L
L4
B /7
1
1/
10

A £ .
. b .

T4 inherits the priority of 7 Time

0 2 4 6 8 10 12 14

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 188 of 550



Bounding direct blocking under BPIP

If the system has {7”j=1,__, K} critical sections that can lead to a task
T; being blocked under BPIP, then K is the maximum number
of times that T; can be blocked

The upper bound on the blocking time B;(rc) for T; that

contends for K critical slgzctions thus is

B;(rc) = z use(rj, i) X Cpax (1))

j=1
Where use(rj,i) = 1if 1j is used by at least one task 7;: 7; < 7; and one task Tp: Ty = T; |
0 otherwise, and Cpyqx (77) denotes the worst-case duration of use of 7; by azy such task T

The worst case for task 7; with BPIP is to block for the longest
duration of contending use on access to &/ the resources it needs

Note that the running example includes wheritance blocking too!

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 189 of 550



With Ceiling Priority protocols

We shall consider two main variants of them

Q  Basic Priority Ceiling Protocol (aka “Original CPP”)
Which uses the system ceiling 1¢(t)

a Cezling Priority Protocol (aka “Immediate CPP”)
Which does 7oz use the system ceiling

When using either of them on a single processor

0 A high-priority task can only be blocked by lower-priority tasks az
705t once per job

0 Deadlocks are prevented by construction because transitive
blocking is also prevented by construction

0 Mutual exclusive access to resources is ensured by the protocol
itself, hence locks are 7ot needed

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 190 of 550



Recalling the BPC protocol (BPCP)

Fach task 7; has an assigned static priority
0 Perhaps determined by deadline monotonic assignment

FEach resource 1, has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

T; has a dynamic current priority 7;(t) at time t, set to the
maximum of its assigned priotity and any priorities it has
inherited at t from blocking higher-priority tasks

T; can lock a resource 1y, at time t if and only if w; (t) > mg(t)

0 Where 4 (t) = max; j (T[r ) forall 7, 1; currently locked at t, excluding those
that T; locks itself

The blocking B; suffered by 7; is bounded by the longest critical
section with ceiling 1,., > 7; used by lower-priority tasks

B; = maxh_;(use(ry, i) X Cpax(T1))

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 191 of 550



'With Basic Priority Ceiling (BPCP)

Task access i_s denied gclcselszcil;e((ijenied

priority Direct blocking ="
D _:-

Avofdance blocking Inheritance blocking
C - | 1] I

) Inheritance blocking

B O . 1)
1 1 |

0 2/ 4 ‘6 8 10 12 14 16 Time

T4 inherits T, inherits
Tc's priority Tp's priority

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 192 of 550



Recalling the CP Protocol (CPP)

Fach task 7; has an assigned szatzc priority
0 Perhaps determined by deadline monotonic assignment

FEach resource 13, has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

T; has a dynamic current priority 1; (t) at time t, that is set to
the maximum of its own static priority and the ceiling values
of any resources it is currently using

Any job of that task will sutfer blocking only once, at release

a0 Once the job starts executing, all the resources that it may use are free

a If they were not, then some task would have priority = than the job’s,
hence its execution would be postponed

Blocking computed exactly as for BPCP

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 193 of 550



'With Ceiling Priority (CPP)

iblocking

Task _
priority Inheritance
D

Inheritance blocking
C

Inheritance blocking
B

0 "'-.“2 4 6

74 inherits Q’s ceiling priority

8 10

12

14

16 Time

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

194 of 550



BPCP vs. CPP

Although the worst-case behavior of the two ceiling priority
schemes is identical from a scheduling viewpoint, there are some
points of difference between them

0 CPP is easier to implement than BPCP as blocking relationships
need not be monitored

a0 CPP leads to /ess context switches as blocking occurs prior to job
activation

0 CPP requires more priority movements as they happen with a//
resource usages: BPCP changes priority only if an actual block has
occurred

CPP is called Priority Protect Protoco/ in POSIX and Priority Ceiling
Emmulation in Ada and Real-Time Java

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 195 of 550



Extending the workload model further

Our workload model so far contemplates

0 Constrained and implicit deadlines (D < T)

0 Periodic and sporadic tasks

0 Aperiodic tasks under some server scheme

0 Task interactions with blocking factored in RTA

There are further extensions that we may need
0 Allowing cooperative scheduling

Incorporating release jitter

a
0 Allowing arbitrary deadlines
0 Allowing offsets (phases)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 196 of 550



Cooperative scheduling /1

Full preemption may not always suit critical systems
Cooperative or deferred-preemption scheduling addresses this
problem by chopping tasks into distinct slots of execution

0 Slots are said to be floating 1f their start is commanded at task level or fixed
if it is programmed into the runtime schedule

0 The yield command marks the end of each such slot (not the last one)
If no hp task is ready at that point, the running task continues

0 The time duration of any such slot across all tasks is bounded by By, qx
O Mutual exclusion must use non-preemption (else it breaks)

Deferring preemption has two interesting properties

a It dominates both preemptive and non-preemptive scheduling

0 FEach last slot of execution 1s free from interference

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 197 of 550



Cooperative scheduling /2

Let F; be the execution time of the final skot of T;’s job,
and B4y the worst-case blocking from deferring
preemption

The RTA recurrence relation must be adapted
accordingly and becomes

W?-I_l = C; + Bpax + I;(w') — F;
0 Because the last slot is exempt from preemption

When the fixed-point equation converges (W' =

w), T;’s response time is computed as
Ri — W{l + Fi

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 198 of 550



Deferred (limited) preemption /1

Let us consider an implicit-deadline system in which
73 (lowest-priority task) has a sz |1,3] that should
run free from preemption

™ 1 - 1 |
: <|:: {_L_\I ]I‘ ~_missed deadline T

| N A A U SR SR |
1 2 3 4 5 6 7 8

A I A I A AU R I O | |
9 10 11 12 13 14 15 16 17 18 19 20 21 22

(b) Non-preemptive

Allowing T3 to disable preemption for a// of its
execution (case B) 1s simple to implement, but
unacceptably bad for 74

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 199 of 550



Deferred (limited) preemption /2

If we were to run with tull preemption (case A), then it
would be T5 to be dissatisfied

nC — — [ — —

@Tzl_l b O

[ | /RN I P AR R AU R A A R AR IS A A A A A
1

0 h | 2 3 4 5 6 7 8 9 10 1 12 13 14 156 16 17 18 19 20 21 22
(a) Fully preemptive (FPPS)

If we gave T3 a s/t of deferred preemption (case C)
then everyone Would be happy

~n [ : —

O gy = o H

73

I | | | I I I I I I "
0 1 2 3 E} 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(¢) Deferred preemption

0 Such slot would start at t = 1 into T3’s execution and would
last for the longest feasible duration (¢ = 3, in this case)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 200 of 550



Release jitter /1

Especially critical for precedence-constrained tasks

Example: a periodic task Tj, with period Ty, = 20, releases a sporadic task T,, at
some point ot some runs of its (Ty’s) jobs

0 The release command ( “signal”) 1s conditional: it does not occur at constant time

0 This is a typical source of sporadic activation

What is the minimum inter-arrival time of any two subsequent jobs of T;,’s?

0 To contain the variability we require the signal to be the last command of Tj’s job

Sporadic arrival 4,,,,, =t + Ry, ,
A
o A
Sporadic arrival 4, = t + Ry
< > <
‘ Tk l Tkv .
_ ! , Time —
t Rks =15 Rks+1 = Ck =1

T, = 20

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 201 of 550



Release jitter /2

The two successtve releases of T;, shown 1n the picture are
spaced by A= 21 — 15 = 6 time units from ¢

0 A much smaller interval than T}, = 20 (the predecessot’s period)

This phenomenon reflects Ty’s response time jitter, whose

largest spanis Ry, — Ry .

a0 Which corresponds to Ty,’s release time jitter

To model this behaviour, we stipulate that

0 T, inherits Tg’s period Ty, and suffers release jitter J;,, = Ry, — Cy
0 In the example, J, = 15 -1 = 14

Hence, T,’s minimum interarrival time is Ty, — |,
0 In the example, 20 — 14 =6

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 202 of 550



Release jitter /3

Task T, in the example 1s released at 0, T — [, 2T — J, 3T — ]
RTA says that task 7; will sutfer interference from 7, (; < 1},

Two releases of T,

0 Once, if R; € [0,T —J) R i —— A— ,

0 Twice, if R; € [T —],2T —]) b b )

0 Thrice, if R; € [2T —J,3T — ) ! iR
Tv:Tk v

This shows that tasks with release jitter cause more interterence
0 RTA must be adjusted to capture it

R,=C,+B; + Z]Ehp(l)[ i ]1} Cj (less pessimistic than[ R_]J)

Periodic tasks can only suffer release jitter if the clock is jittery

0 The response time of a jittery periodic task T, measured relative to the rea/
release time becomes R'p =Ry, + ]

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 203 of 550



Arbitrary deadlines /1

When D > T, then q > 1 jobs of the same task may
compete for execution (in FIFO-within-priority mode)

The RTA equation must be adapted to capture that event

w1 (q) = (q+ 1)C; + Yjenpe [wi ﬂ 4

T
Ri(q) = wi'(q) — qT;
0 w;(q) extends as long as qT; falls within it
Because that means that some jobs of T;’s are still in the ready queue
a0 The number q of releases is bounded by the lowest value for

which q: RL(C[) < Ti
T;’s worst-case response time then is R; = max,R i(q)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 204 of 550



‘ Arbitrary deadlines /2

w;(q

)

A
\

!

The (q + 1)*"* job release of task t; falls in
the level-i busy period, but this q is also the
last index to consider as the next job release
belongs in a different busy period

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 205 of 550



Arbitrary deadlines /3

When the formulation of the RTA equation 1s
combined with the effect of release jitter, two
alterations must be made

First, the interference factor must be increased

;' (q) +]i‘

ey T;
jE€hP(i)

wi (@) = Bi+ (g + DC; + Ci

J

Second, 1f the task under analysis can suffer release
jitter, then two consecutive windows could overlap if
(response time plus jitter) were greater than the period

Ri(q) = wl(q) — qT; +J;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 206 of 550



‘ Arbitrary deadlines /4

w;(q

S

Ji

q+1

A
4

!

If task 7; has release jitter then
the level-i busy period may extend

until the next release

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

207 of 550



‘ Non-optimal analysis for offsets /1

= So far, we assumed all tasks share a common release time
(the critical instan?)

“r | T | D | C | R | U_
T, 8 5 4 4 0.5
Tp 20 9 -+ 8 0.2
T, 20 10 4 16 0.2 Deadline miss!

= What if we allowed offsets?
0 Arbitrary offsets are nof tractable with critical-instant based analysis
0 Hence we cannot use the RTA equation directly for them

= The critical instant assumption conservatively upper-
bounds all possible combinations of offsets and releases

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 208 of 550



Non-optimal analysis for offsets /2

Task periods are not entirely arbitrary in reality: they are
likely to have some relation to one another

0 If at least two tasks have a common<period, then we give one of
them an offset O such that O + D < T) and apply RTA to a
transformation that removes the otfset

: : : T,

Doing so here, tasks Tp, T, (tentatively with O, = ?C) are

replaced by a szugle notional task T, with

a T, =T, — 0,
0 C, = max(Cy, C,) =4
o D, =T,

a 70 offset

This technique allows using RTA and helps determine a
“oood” offset

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 209 of 550



‘ Non-optimal analysis for offsets /3

= The notional task T, has two important properties

a Ifitis deemed feasible (sharing a critical instant with all other tasks), then
the two real tasks that it represents will meet their deadlines when one 1s
otven the stipulated offset

0 If all LP tasks are feasible when suffering interference from 7, then they
will stay feasible when the notional task is replaced by the two real tasks
(one of which with offset)

= These properties follow from the observation that 7, always has
no less CPU utilization than the two real tasks that it subsumes

| Task | T | D | C | R | U
T, 8 5 4 4 0.5
T 10 10 4 8 0.4

a0 R, =8 <D, =10 becomes the (pessimistic but feasible) response time
for T and T,

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 210 of 550



‘ Non-optimal analysis for offsets /4

= In a more general way, the notional task’s
parameters are set as follows

T T Where 1, and 75, have the same period,
T =4 = b else we would use Min(T,, T;) at the cost
4 2 2 of greater pessimism

C =Max(C,,C,)
D, =Min(D,,D,)
P, = Max(P,,P,)

= This strategy can be extended to handle k > 2 tasks

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 211 of 550



Sustainability [Baruah & Burns, 2000]

Extends the notion of predictability for single-core systems
to wider range of relaxations of workload parameters

0 Shorter execution times

0 Longer periods

0 Less release jitter

0 Later deadlines

For a scheduling algorithm to be sustainable, any such
relaxation should preserve teasibility

0 Much like what predictability does but for less types of variation

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 212 of 550



Summary

Completing the survey and critique of resource access
control protocols by means of a running example

Considering further desirable extensions to our
workload model

Contemplating the notion of sustainability tor

scheduling

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 213 of 550



Selected readings

A. Baldovin, E. Mezzetti, T. Vardanega (2013)
Limited preemptive scheduling of non-independent task sets
DOI: 10.1109/EMSOFT.2013.6658596

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 214 of 550



