4.2 Programming real-time
systems (in Ada)

Where we see how program code may be
written to conform to the real-time systems
theory, and we present coding patterns
that ensure by-design conformance



Making code match theory /1

Static set of tasks

0 Tasks as programmatic entities declared at the outermost scope of the
program’s main

Cannot go out of scope before the program ends
Tasks issue jobs repeatedly

0 Task duty cycle: activation, {execution, suspension }
Tasks have a single source of activation (release event)
The job is the procedural body of the task’s main loop

Real-time attributes
0 Release time

Periodic: at every T time units
Sporadic: at least T time units between any two subsequent releases
0 Execution

Worst case execution time (WCET) of the job, assumed to be known
Deadline: D time units after release

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 216 of 550



Making code match theory /2

Task interaction

0 Shared variables with mutually exclusive access
Protected objects (PO) with procedures and functions

0 Conditional synchronization solely for sporadic activation
PO with a single entry

0 Ceiling priority protocol for access to shared objects
Ceiling Locking policy
Scheduling model
0 Fixed-priority pre-emptive
FIFO within priorities

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 217 of 550



Protected objects /1

protected type Shared Integer (Initial Value : Integer) is
Read return Integer;

Write (Value
private

The Integer : Integer
end Shared Integer;

Integer) ;

Initial_Value;

protected body Shared Integer is

Read return Integer is
begin

Concurrent

Mutually-exclusive
(exclusion synchronization)

2020/2021 UniPD - T. Vardanega

return The Integer;
end Read;
Write (Value : Integer) 1is
begin
The Integer := Value;
end Write;
end Shared Integer;

Real-Time Kernels and Systems 218 of 550



Protected objects /2

Buffer Size : constant Positive := 5;
type Index is mod Buffer Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer Size;

type Buffer T i1s array (Index) of Any Type;

protected type Bounded Buffer is
Get (Item : out Any Type);
Put (Item : in Any Type);

private

First : Index := Index'First; -- 0

Last : Index := Index'Last; -- 4

In Buffer : Count := 0;

Buffer : Buffer T;

b
Type)

» pointer

e from overflow

.
-7

end Bounded Buffer; | Type)

WITCSII TII DUrTCT DuLLCL_Onze 1S

begin -- first move pointer then write
Last := Last + 1; -- free from overflow
RBuffer (Last) := Item;
In Buffer := In Buffer + 1;

end Put;

end Bounded Buffer;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems

219 of 550




Protected objects /3

Buffer Size

type Index 1is
subtype Count
type Buffer T

protected type Bo
Get (Ite

Put (Ite

private
First
Last

Index
Index
In Buffer Co
Buffer Buffe
end Bounded Buffe

constant Positive
mod Buffer Size; -- tipo modulare
is Natural range O
1s array

.= 5,’

Buffer Size;

(Index) of Any Type;

2020/2021 UniPD - T. Vardanega

protected body Bounded Buffer 1is

Get (Item out Any Type)

when In Buffer > 0 is Guard
begin -- first read then move pointer

Item := Buffer (First);

First := First + 1; —-- free from overflow

In Buffer := In Buffer - 1;
end Get;

Put (Item in Any Type)

begin -- overwrite on full

Last := Last + 1; —-- free from overflow

Buffer (Last) := Item;

In Buffer := In Buffer + 1;
end Put;

end Bounded Buffer;

Real-Time Kernels and Systems 220 of 550




Language profile

Enforced by means of a configuration directive
0 pragma Profile (Ravenscar);

Equivalent to a set of restrictions plus three

additional configuration directives

0 pragma Task Dispatching Policy
(FIFO Within Priorities);
pragma Locking Policy (Ceilling Locking);
pragma Detect Blocking;

ISO/IEC TR 24718, Guide for the use of the Ada
Ravenscar Profile in High Integrity Systems

http://www.open-std.org/jtcl /sc22/wg9/n424.pdf

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 221 of 550



‘ Ravenscar restrictions

No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries

No_Dependence =

No_Dependence
No_Dependence

No_Dependence =
No_Dependence =

=>

=> 0,
Ada.Asynchronous_Task_Control,
Ada.Calendar,
Ada.Execution_Time.Group_Budget,
Ada.Execution_Time.Timers,

Ada.Task_Attributes

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

222 of 550



Restriction checking

Almost all of the Ravenscar profile restrictions can be
checked at compile time

A tew can only be checked at run time
0 Potentially blocking operations in protected operation bodies
0 Priority ceiling violation
a0 More than one call queued on a protected entry or a
suspension object

0 Task termination

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 223 of 550



Potentially blocking operations

Protected entry call statement
a0 Only used for sporadic releases
Delay until statement

0 Only used for periodic suspensions

Call on a subprogram whose body contains a potentially
blocking operation

Pragma Detect Blocking requires detection of
potentially blocking operations
0 Exception Program_Error raised on detection at at run time

0 Blocking need not be detected if it occurs in the domain of a call to
a foreign language

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 224 of 550



Other run-time checks

Priority ceiling violation (lower than caller)

a0 Program_Error must be raised

More than one call waiting on a protected

0 Program_Error must be raised

Task termination

a0 Program behavior in that case must be documented
Can be silent (bad)
May hold the terminating task in a limbo state (unusual)

May call an application-defined termination handler defined with the
Ada.Task Termination package (C.7.3)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 225 of 550



‘ Other restrictions

= Some restrictions on the sequential part of the language may be

useful in conjunction with the Ravenscar profile
No Dispatch

No IO

No Recursion

No Unchecked Access

No;Allocators

o o o o0 o o

No Local;Allocators

= ISO/IEC TR 15942, Guide for the use of the Ada Programming
Language in High Integrity Systems

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 226 of 550



An object-oriented approach

Real-time components are objects
0 Instances of predefined classes

0 They hold an internal state and expose interfaces
Provided interface (PI): what can be called from the outside
Required interface (RI): what needs to be called outside

Inversion of control

0 Application code is strictly sequential

0 Real-time concurrency is “injected” by predefined templates
Based on well-defined code patterns

0 Cyclic & sporadic tasks

a Protected data

0 Passive data

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 227 of 550



‘ Component structure

component

synchronization

Pl

O

concurrency

-~

T~ thread

Oi

\
\sqntrol agent

(OBCS)

O

functionality

/

operatiovs/

(OPCS)

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

228 of 550



‘ Component taxonomy

= Cyclic component
= Sporadic component
= Protected data component

= Passive component

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 229 of 550



Cyclic component

Release event programmed from the system clock

Attributes

0 Period
0 Deadline

0 Worst-case execution time

The most basic cyclic code pattern does not need the
synchronization agent

0 The system clock delivers the activation event

a0 The component behavior is fixed and immutable

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 230 of 550



‘ Cyclic component (basic)

cyclic component

thread

cyclic operation

O

operations
(OPCS)

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

231 of 550



‘ Cyclic thread (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;

Period : Positive) 1s
pragma Priority(Thread_Priori ;
end Cyclic_Thread; <::>

Shouldbe Time_Span
but cannot ..

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 232 of 550



Cydlic thread (body)

task body Cyclic_Thread 1is
Next_Time : Time := <Start_Time>; -- taken at elaboration time
--+ higher in the system
--+ hierarchy

begin
Toop
delay until Next_Time; -- so that all tasks start at 70
OPCS.cyclic_operation; -- fixed and parameteriess
Next_Time := Next_Time + Milliseconds(Period);
end loop;

end Cyclic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 233 of 550



Sporadic component

Release event caused by software action
0 Signal from another task or a hardware interrupt
Attributes

0 Minimum inter-arrival time (must be assured!)
a0 Deadline

0 Worst-case execution time

The synchronization agent of the target component is
used to deliver (signal) the activation event

a0 And to store-and-forward signal-related data (if any)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 234 of 550



‘ Sporadic component

sporadic component

signal

wait

CD_

thread

sporadic operation

control agent
(OBCS)

O

operations
(OPCS)

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

235 of 550



‘ Sporadic component (spec)

task type Sporadic_Thread(Thread_Priority : Priority) 1is
pragma Priority(Thread_Priority);
end Sporadic_Thread;

protected type OBCS(Ceiling : Priority) 1is
pragma Priority(Ceiling);

procedure Signal;
entry wait;

private
Occurred : Boolean := False;
end OBCS;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 236 of 550



‘ Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;
begin
delay until Next_Time; -- so that all tasks start at 70
Toop
OBCS.wait;

OPCS. Sporadic_Operation;
-- may take parameters i1f they were delivered by Signal
--+ and retrieved by wait
end loop;
end Sporadic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 237 of 550



‘ Sporadic control agent (body)

protected body OBCS 1s
procedure Signal 1is
begin
occurred := True;
end Signal;
entry wait when Occurred 1is
begin
Occurred := False;
end wait;
end OBCS;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 238 of 550



Other components

Protected component

a No thread, only synchronization and operations

0 Straightforward direct implementation with protected object
Passive component

a Purely functional behavior, neither thread nor synchronization

0 Straightforward direct implementation with functional
package

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 239 of 550



‘ Temporal properties

= Basic patterns only guarantee periodic activation

= They should be augmented to guarantee additional
temporal properties at run time
a Minimum inter-arrival time for sporadic events
a Deadline for all types of thread
o WCET budgets for all types of thread

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 240 of 550



Minimum inter-arrival time /1

Violations of the specified separation interval may
cause higher interterence on lower priority tasks

The solution is to prevent sporadic threads from
being activated earlier than stipulated

0 Compute earliest (absolute) allowable activation time

0 Withhold activation (if triggered) until that time

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 241 of 550



‘ Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive) 1is
pragma Priority(Thread_Priori
end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 242 of 550



‘ Sporadic thread (body)

task body Sporadic_Thread 1is
Release_Time : Time;
Next_Release : Time := <Start_Time>;
begin
Toop
delay until Next_Release;
OBCS.wait;
Release_Time := Clock;
OPCS. Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);
end loop;
end Sporadic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 243 of 550



Critique

May incur some temporal drift as the clock is read affer
task release

0 Preemption may hit just after release before reading the clock
0 Separation may become /arger than required

Better read clock at place and time of task release

a0 Within the synchronization agent

a0 Which 1s protected and thus less exposed to general
interference

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 244 of 550



Minimum inter-arrival time /2

task body Sporadic_Thread 1is
Release_Time : Time;
Next_Release : Time := <Start_Time>;
begin
Toop
delay until Next_Release;
OBCS.wait(Release_Time);
OPCS. Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);
end loop;
end Sporadic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 245 of 550



‘ Recording release time /1

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry wait(Release_Time : out Time);
private
Occurred : Boolean := False;
end OBCS;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 246 of 550



‘ Recording release time /2

protected body OBCS 1is
procedure Signal 1is
begin
Occurred := True;
end Signal;

entry wait(Release_Time : out Time) when Occurred 1is
begin
Release_Time := Clock;
Occurred := False;
end wait;
end OBCS;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 247 of 550



Deadline miss /1

May result from
0 Higher priority tasks executing more often than expected
Can be prevented with inter-arrival time enforcement

0 Overruns in the same or higher priority tasks
Programming error in the functional code

Inaccurate WCET analysis

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 248 of 550



Deadline miss /2

May be detected with the help of timing events

a0 A mechanism for requiring some application-level action to be
executed at a given time

0 Under the Ravenscar Profile, timing events can only exist at

library level
Timing events are statically allocated

Minor optimization possible for periodic tasks

a0 Which however breaks the symmetry of code patterns

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 249 of 550



Timing events

Lightweight mechanism for defining code to be
executed at a specified time

a0 Does not require an application-level task

0 Analogous to interrupt handling

The code 1s defined as an event handler

0 An (access to) a protected procedure

Directly invoked by the runtime

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 250 of 550



‘ Ada.Real_Time. Timing events

package Ada.Real_Time.Timing_Events 1s
type Timing_Event 1s tagged limited private;
type Timing_Event_Handler 1is
access protected procedure (Event : in out Timing_Event);
procedure Set_Handler (Event : in out Timing_Event;
At_Time : in Time;
Handler : in Timing_Event_Handler);

procedure Cancel_Handler (Event : in out Timing_Event;
Cancelled : out Boolean);

end Ada.Real_Time.Timing_Events;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 251 of 550



‘ Cyclic thread with deadline miss
detection (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;
Period : Positive;
Deadline : Positive) 1s
pragma Priority(Thread_Priority);
end Cyclic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 252 of 550



“Thread body

Deadline_Miss : Timing_Event; -- static, Jlocal per component
task body Cyclic_Thread 1is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;
begin

Toop

delay until Next_Time;

Set_Handler(Deadline_Miss,
Next_Time + Milliseconds(Deadline),
Deadline_miss_Handler); -- application-specific

OPCS.Cyclic_oOperation;

Cancel_Handler(beadline_Miss, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 253 of 550



“Thread body (streamlined)

Deadline_Miss : Timing_Event; -- static, local per component
task body Cyclic_Thread 1is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;
begin

loop

-- setting again cancels any previous event

Set_Handler(Deadline_Miss,
Next_Time + Milliseconds(Deadline),
peadline_miss_Handler); -- application-specific

delay until Next_Time;

OPCS. cyclic_operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 254 of 550



‘ Sporadic thread with deadline miss
detection (spec)

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive;
Deadline : Positive) 1s
pragma Priority(Thread_Priority);
end Sporadic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 255 of 550



“Thread body

Deadline_Miss : Timing_Event; -- static, local per component
task body Sporadic_Thread 1is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;
begin

Toop

delay until Next_Release;

OBCS.wait(Release_Time);

Set_Handler(Deadline_Miss,
Release_Time + Milliseconds(Deadline),
Deadline_Miss_Handler); -- application-specific

OPCS. Sporadic_Operation;

Cancel_Handler(Deadline_Miss, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;
end Sporadic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 256 of 550



Execution-time overruns

Tasks may execute for longer than stipulated owing to

a0 Programming errors in the functional code

0 Inaccurate WCET values used in feasibility analysis
Optimistic vs. pessimistic

WCET overruns can be detected at run time with the

help of execution-time timers

0 Not included in Ravenscar

0 Extended profile

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 257 of 550



Execution-time timers

A user-defined event can be fired when a CPU
clock reaches a specified value

a0 An event handler 1s automatically invoked by the runtime
at that point

0 The handler is an (access to) a protected procedure

Basic mechanism for execution-time monitoring

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 258 of 550



‘ Ada.Execution_Time. Timers /1

with System;

package Ada.Execution_Time.Timers 1S

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) 1s

tagged limited private;
type Timer_Handler 1is

access protected procedure (T™M

1n out Timer);

Min_Handler_Ceiling : constant System.Any_Priority

:= 1mplementation-defined,
procedure Set_Handler (T™
In_Time
Handler
procedure Set_Handler (T™M
At_Time
Handler

end Ada.Execution_Time.Timers;

in
in
in
in
in
in

out Timer;
Time_Span;
Timer_Handler) ;
out Timer;
CPU_T1me;
Timer_Handler) ;

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems

259 of 550



Ada.Execution_Time. Timers /2

Mechanism built on execution time clocks

Needs an interval timer

0 To update at every dispatching point

0 To raise «zero events» that signify execution-time
overruns

Sensible handling of those zero events requires
other sophisticated features

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 260 of 550



‘ Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;
Period : Positive;
WCET_Budget : Positive) 1S
pragma Priority(Thread_Priority);
end Cyclic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 261 of 550



“Thread body

task body Cyclic_Thread 1is

Next_Time : Time := <Start_Time>;
Id : aliased constant Task_ID := Current_Task;
WCET_Timer : Timer(Id'access);
begin
Toop

delay until Next_Time;
Set_Handler (WCET_Timer,
Mi1l1iseconds (WCET_Budget),

WCET_overrun_Handler); -- application-specific
OPCS. cyclic_operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 262 of 550



Summary

We have seen how one particular programming
language is able to capture all design and execution
aspects that descend from the real-time systems
theory that we seen so far

We have seen how design and code patterns may be
used to make sure that the application program
conforms with the required semantics

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 263 of 550



Selected readings

T. Vardanega, J. Zamorano, J.A. de la Puente
(2005), On the Dynamic Semantics and the Timing

Bebavior of Ravenscar Kernels

DOI: 10.1023/B: TIME.0000048937.17571.2b

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 264 of 550



