
4.a Programming real-time
systems (in Ada)

Where we see how program code may be
written to conform to the real-time systems
theory, and we present coding patterns
that ensure by-design conformance

Making code match theory /1

 Static set of tasks
 Tasks as programmatic entities declared at the outermost scope of the

program’s main
 Cannot go out of scope before the program ends

 Tasks issue jobs repeatedly
 Task duty cycle: activation, {execution, suspension}

 Tasks have a single source of activation (release event)
 The job is the procedural body of the task’s main loop

 Real-time attributes
 Release time

 Periodic: at every 𝑇 time units
 Sporadic: at least 𝑇 time units between any two subsequent releases

 Execution
 Worst case execution time (WCET) of the job, assumed to be known
 Deadline: 𝐷 time units after release

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 216 of 550

Making code match theory /2

 Task interaction
 Shared variables with mutually exclusive access
 Protected objects (PO) with procedures and functions

 Conditional synchronization solely for sporadic activation
 PO with a single entry

 Ceiling priority protocol for access to shared objects
 Ceiling_Locking policy

 Scheduling model
 Fixed-priority pre-emptive
 FIFO within priorities

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 217 of 550

Protected objects /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 218 of 550

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);
private
The_Integer : Integer := Initial_Value;
end Shared_Integer;

protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Concurrent

Mutually-exclusive
(exclusion synchronization)

Protected objects /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 219 of 550

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
procedure Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

Protected objects /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 220 of 550

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
procedure Put (Item : in Any_Type)
begin -- overwrite on full

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Guard

Language profile

 Enforced by means of a configuration directive
 pragma Profile (Ravenscar);

 Equivalent to a set of restrictions plus three
additional configuration directives
 pragma Task_Dispatching_Policy

(FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;

 ISO/IEC TR 24718, Guide for the use of the Ada
Ravenscar Profile in High Integrity Systems

http://www.open-std.org/jtc1/sc22/wg9/n424.pdf

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 221 of 550

Ravenscar restrictions

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 222 of 550

No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Restriction checking

 Almost all of the Ravenscar profile restrictions can be
checked at compile time

 A few can only be checked at run time
 Potentially blocking operations in protected operation bodies
 Priority ceiling violation
 More than one call queued on a protected entry or a

suspension object
 Task termination

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 223 of 550

Potentially blocking operations

 Protected entry call statement
 Only used for sporadic releases

 Delay until statement
 Only used for periodic suspensions

 Call on a subprogram whose body contains a potentially
blocking operation

 Pragma Detect_Blocking requires detection of
potentially blocking operations
 Exception Program_Error raised on detection at at run time
 Blocking need not be detected if it occurs in the domain of a call to

a foreign language

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 224 of 550

Other run-time checks

 Priority ceiling violation (lower than caller)
 Program_Error must be raised

 More than one call waiting on a protected
 Program_Error must be raised

 Task termination
 Program behavior in that case must be documented

 Can be silent (bad)
 May hold the terminating task in a limbo state (unusual)
 May call an application-defined termination handler defined with the

Ada.Task_Termination package (C.7.3)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 225 of 550

Other restrictions

 Some restrictions on the sequential part of the language may be
useful in conjunction with the Ravenscar profile
 No_Dispatch
 No_IO
 No_Recursion
 No_Unchecked_Access
 No_Allocators
 No_Local_Allocators

 ISO/IEC TR 15942, Guide for the use of the Ada Programming
Language in High Integrity Systems

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 226 of 550

An object-oriented approach

 Real-time components are objects
 Instances of predefined classes
 They hold an internal state and expose interfaces

 Provided interface (PI): what can be called from the outside
 Required interface (RI): what needs to be called outside

 Inversion of control
 Application code is strictly sequential
 Real-time concurrency is “injected” by predefined templates

 Based on well-defined code patterns
 Cyclic & sporadic tasks
 Protected data
 Passive data

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 227 of 550

Component structure

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 228 of 550

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Component taxonomy

 Cyclic component
 Sporadic component
 Protected data component
 Passive component

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 229 of 550

Cyclic component

 Release event programmed from the system clock
 Attributes

 Period
 Deadline
 Worst-case execution time

 The most basic cyclic code pattern does not need the
synchronization agent
 The system clock delivers the activation event
 The component behavior is fixed and immutable

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 230 of 550

Cyclic component (basic)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 231 of 550

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

Cyclic thread (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 232 of 550

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

Should be Time_Span
but cannot …

ms

Cyclic thread (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 233 of 550

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Sporadic component

 Release event caused by software action
 Signal from another task or a hardware interrupt

 Attributes
 Minimum inter-arrival time (must be assured!)
 Deadline
 Worst-case execution time

 The synchronization agent of the target component is
used to deliver (signal) the activation event
 And to store-and-forward signal-related data (if any)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 234 of 550

Sporadic component

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 235 of 550

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

Sporadic component (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 236 of 550

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry Wait;

private
Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is
pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic task is activated by calling
the Signal operation

Sporadic thread (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 237 of 550

task body Sporadic_Thread is
Next_Time : Time := <Start_Time>;

begin
delay until Next_Time; -- so that all tasks start at T0
loop

OBCS.Wait;
OPCS.Sporadic_Operation;
-- may take parameters if they were delivered by Signal
--+ and retrieved by Wait

end loop;
end Sporadic_Thread;

Sporadic control agent (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 238 of 550

protected body OBCS is
procedure Signal is
begin

Occurred := True;
end Signal;
entry Wait when Occurred is
begin

Occurred := False;
end Wait;

end OBCS;

Other components

 Protected component
 No thread, only synchronization and operations
 Straightforward direct implementation with protected object

 Passive component
 Purely functional behavior, neither thread nor synchronization
 Straightforward direct implementation with functional

package

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 239 of 550

Temporal properties

 Basic patterns only guarantee periodic activation
 They should be augmented to guarantee additional

temporal properties at run time
 Minimum inter-arrival time for sporadic events
 Deadline for all types of thread
 WCET budgets for all types of thread

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 240 of 550

Minimum inter-arrival time /1

 Violations of the specified separation interval may
cause higher interference on lower priority tasks

 The solution is to prevent sporadic threads from
being activated earlier than stipulated
 Compute earliest (absolute) allowable activation time
 Withhold activation (if triggered) until that time

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 241 of 550

Sporadic thread with minimum
separation (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 242 of 550

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive) is

pragma Priority(Thread_Priority);
end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

ms

Sporadic thread (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 243 of 550

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;

begin
loop
delay until Next_Release;
OBCS.Wait;
Release_Time := Clock;
OPCS.Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);

end loop;
end Sporadic_Thread;

These three statements notionally still form a single point of activation

Critique

 May incur some temporal drift as the clock is read after
task release
 Preemption may hit just after release before reading the clock
 Separation may become larger than required

 Better read clock at place and time of task release
 Within the synchronization agent
 Which is protected and thus less exposed to general

interference

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 244 of 550

Minimum inter-arrival time /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 245 of 550

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;

begin
loop
delay until Next_Release;
OBCS.Wait(Release_Time);
OPCS.Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);

end loop;
end Sporadic_Thread;

Recording release time /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 246 of 550

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry Wait(Release_Time : out Time);

private
Occurred : Boolean := False;

end OBCS;

Recording release time /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 247 of 550

protected body OBCS is
procedure Signal is
begin

Occurred := True;
end Signal;

entry Wait(Release_Time : out Time) when Occurred is
begin

Release_Time := Clock;
Occurred := False;

end Wait;
end OBCS;

Deadline miss /1

 May result from
 Higher priority tasks executing more often than expected

 Can be prevented with inter-arrival time enforcement

 Overruns in the same or higher priority tasks
 Programming error in the functional code
 Inaccurate WCET analysis

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 248 of 550

Deadline miss /2

 May be detected with the help of timing events
 A mechanism for requiring some application-level action to be

executed at a given time
 Under the Ravenscar Profile, timing events can only exist at

library level

 Timing events are statically allocated
 Minor optimization possible for periodic tasks

 Which however breaks the symmetry of code patterns

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 249 of 550

Timing events

 Lightweight mechanism for defining code to be
executed at a specified time
 Does not require an application-level task
 Analogous to interrupt handling

 The code is defined as an event handler
 An (access to) a protected procedure

 Directly invoked by the runtime

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 250 of 550

Ada.Real_Time.Timing events

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 251 of 550

package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Cyclic thread with deadline miss
detection (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 252 of 550

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Thread body

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 253 of 550

Deadline_Miss : Timing_Event; -- static, local per component
task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Canceled : Boolean := False;

begin
loop
delay until Next_Time;
Set_Handler(Deadline_Miss,

Next_Time + Milliseconds(Deadline),
Deadline_Miss_Handler); -- application-specific

OPCS.Cyclic_Operation;
Cancel_Handler(Deadline_Miss, Canceled);
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Thread body (streamlined)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 254 of 550

Deadline_Miss : Timing_Event; -- static, local per component
task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Canceled : Boolean := False;

begin
loop
-- setting again cancels any previous event
Set_Handler(Deadline_Miss,

Next_Time + Milliseconds(Deadline),
Deadline_Miss_Handler); -- application-specific

delay until Next_Time;
OPCS.Cyclic_Operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Watch out!
What about
the critical

instant?

Sporadic thread with deadline miss
detection (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 255 of 550

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Thread body

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 256 of 550

Deadline_Miss : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Miss,

Release_Time + Milliseconds(Deadline),

Deadline_Miss_Handler); -- application-specific

OPCS.Sporadic_Operation;

Cancel_Handler(Deadline_Miss, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Can’t streamline as the
deadline cannot be
computed until
returning from Wait

Execution-time overruns

 Tasks may execute for longer than stipulated owing to
 Programming errors in the functional code
 Inaccurate WCET values used in feasibility analysis

 Optimistic vs. pessimistic

 WCET overruns can be detected at run time with the
help of execution-time timers
 Not included in Ravenscar
 Extended profile

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 257 of 550

Execution-time timers

 A user-defined event can be fired when a CPU
clock reaches a specified value
 An event handler is automatically invoked by the runtime

at that point
 The handler is an (access to) a protected procedure

 Basic mechanism for execution-time monitoring

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 258 of 550

Ada.Execution_Time.Timers /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 259 of 550

with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Ada.Execution_Time.Timers /2

 Mechanism built on execution time clocks
 Needs an interval timer
 To update at every dispatching point
 To raise «zero events» that signify execution-time

overruns

 Sensible handling of those zero events requires
other sophisticated features

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 260 of 550

Cyclic thread with WCET overrun
detection (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 261 of 550

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Thread body

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 262 of 550

task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Id : aliased constant Task_ID := Current_Task;
WCET_Timer : Timer(Id'access);

begin
loop
delay until Next_Time;
Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),
WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Summary

 We have seen how one particular programming
language is able to capture all design and execution
aspects that descend from the real-time systems
theory that we seen so far

 We have seen how design and code patterns may be
used to make sure that the application program
conforms with the required semantics

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 263 of 550

Selected readings

 T. Vardanega, J. Zamorano, J.A. de la Puente
(2005), On the Dynamic Semantics and the Timing
Behavior of Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2b

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 264 of 550

