
4.a Programming real-time
systems (in Ada)

Where we see how program code may be
written to conform to the real-time systems
theory, and we present coding patterns
that ensure by-design conformance

Making code match theory /1

 Static set of tasks
 Tasks as programmatic entities declared at the outermost scope of the

program’s main
 Cannot go out of scope before the program ends

 Tasks issue jobs repeatedly
 Task duty cycle: activation, {execution, suspension}

 Tasks have a single source of activation (release event)
 The job is the procedural body of the task’s main loop

 Real-time attributes
 Release time

 Periodic: at every 𝑇 time units
 Sporadic: at least 𝑇 time units between any two subsequent releases

 Execution
 Worst case execution time (WCET) of the job, assumed to be known
 Deadline: 𝐷 time units after release

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 216 of 550

Making code match theory /2

 Task interaction
 Shared variables with mutually exclusive access
 Protected objects (PO) with procedures and functions

 Conditional synchronization solely for sporadic activation
 PO with a single entry

 Ceiling priority protocol for access to shared objects
 Ceiling_Locking policy

 Scheduling model
 Fixed-priority pre-emptive
 FIFO within priorities

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 217 of 550

Protected objects /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 218 of 550

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);
private
The_Integer : Integer := Initial_Value;
end Shared_Integer;

protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Concurrent

Mutually-exclusive
(exclusion synchronization)

Protected objects /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 219 of 550

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
procedure Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

Protected objects /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 220 of 550

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
procedure Put (Item : in Any_Type)
begin -- overwrite on full

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Guard

Language profile

 Enforced by means of a configuration directive
 pragma Profile (Ravenscar);

 Equivalent to a set of restrictions plus three
additional configuration directives
 pragma Task_Dispatching_Policy

(FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;

 ISO/IEC TR 24718, Guide for the use of the Ada
Ravenscar Profile in High Integrity Systems

http://www.open-std.org/jtc1/sc22/wg9/n424.pdf

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 221 of 550

Ravenscar restrictions

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 222 of 550

No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Restriction checking

 Almost all of the Ravenscar profile restrictions can be
checked at compile time

 A few can only be checked at run time
 Potentially blocking operations in protected operation bodies
 Priority ceiling violation
 More than one call queued on a protected entry or a

suspension object
 Task termination

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 223 of 550

Potentially blocking operations

 Protected entry call statement
 Only used for sporadic releases

 Delay until statement
 Only used for periodic suspensions

 Call on a subprogram whose body contains a potentially
blocking operation

 Pragma Detect_Blocking requires detection of
potentially blocking operations
 Exception Program_Error raised on detection at at run time
 Blocking need not be detected if it occurs in the domain of a call to

a foreign language

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 224 of 550

Other run-time checks

 Priority ceiling violation (lower than caller)
 Program_Error must be raised

 More than one call waiting on a protected
 Program_Error must be raised

 Task termination
 Program behavior in that case must be documented

 Can be silent (bad)
 May hold the terminating task in a limbo state (unusual)
 May call an application-defined termination handler defined with the

Ada.Task_Termination package (C.7.3)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 225 of 550

Other restrictions

 Some restrictions on the sequential part of the language may be
useful in conjunction with the Ravenscar profile
 No_Dispatch
 No_IO
 No_Recursion
 No_Unchecked_Access
 No_Allocators
 No_Local_Allocators

 ISO/IEC TR 15942, Guide for the use of the Ada Programming
Language in High Integrity Systems

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 226 of 550

An object-oriented approach

 Real-time components are objects
 Instances of predefined classes
 They hold an internal state and expose interfaces

 Provided interface (PI): what can be called from the outside
 Required interface (RI): what needs to be called outside

 Inversion of control
 Application code is strictly sequential
 Real-time concurrency is “injected” by predefined templates

 Based on well-defined code patterns
 Cyclic & sporadic tasks
 Protected data
 Passive data

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 227 of 550

Component structure

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 228 of 550

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Component taxonomy

 Cyclic component
 Sporadic component
 Protected data component
 Passive component

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 229 of 550

Cyclic component

 Release event programmed from the system clock
 Attributes

 Period
 Deadline
 Worst-case execution time

 The most basic cyclic code pattern does not need the
synchronization agent
 The system clock delivers the activation event
 The component behavior is fixed and immutable

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 230 of 550

Cyclic component (basic)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 231 of 550

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

Cyclic thread (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 232 of 550

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

Should be Time_Span
but cannot …

ms

Cyclic thread (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 233 of 550

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Sporadic component

 Release event caused by software action
 Signal from another task or a hardware interrupt

 Attributes
 Minimum inter-arrival time (must be assured!)
 Deadline
 Worst-case execution time

 The synchronization agent of the target component is
used to deliver (signal) the activation event
 And to store-and-forward signal-related data (if any)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 234 of 550

Sporadic component

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 235 of 550

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

Sporadic component (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 236 of 550

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry Wait;

private
Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is
pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic task is activated by calling
the Signal operation

Sporadic thread (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 237 of 550

task body Sporadic_Thread is
Next_Time : Time := <Start_Time>;

begin
delay until Next_Time; -- so that all tasks start at T0
loop

OBCS.Wait;
OPCS.Sporadic_Operation;
-- may take parameters if they were delivered by Signal
--+ and retrieved by Wait

end loop;
end Sporadic_Thread;

Sporadic control agent (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 238 of 550

protected body OBCS is
procedure Signal is
begin

Occurred := True;
end Signal;
entry Wait when Occurred is
begin

Occurred := False;
end Wait;

end OBCS;

Other components

 Protected component
 No thread, only synchronization and operations
 Straightforward direct implementation with protected object

 Passive component
 Purely functional behavior, neither thread nor synchronization
 Straightforward direct implementation with functional

package

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 239 of 550

Temporal properties

 Basic patterns only guarantee periodic activation
 They should be augmented to guarantee additional

temporal properties at run time
 Minimum inter-arrival time for sporadic events
 Deadline for all types of thread
 WCET budgets for all types of thread

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 240 of 550

Minimum inter-arrival time /1

 Violations of the specified separation interval may
cause higher interference on lower priority tasks

 The solution is to prevent sporadic threads from
being activated earlier than stipulated
 Compute earliest (absolute) allowable activation time
 Withhold activation (if triggered) until that time

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 241 of 550

Sporadic thread with minimum
separation (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 242 of 550

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive) is

pragma Priority(Thread_Priority);
end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

ms

Sporadic thread (body)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 243 of 550

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;

begin
loop
delay until Next_Release;
OBCS.Wait;
Release_Time := Clock;
OPCS.Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);

end loop;
end Sporadic_Thread;

These three statements notionally still form a single point of activation

Critique

 May incur some temporal drift as the clock is read after
task release
 Preemption may hit just after release before reading the clock
 Separation may become larger than required

 Better read clock at place and time of task release
 Within the synchronization agent
 Which is protected and thus less exposed to general

interference

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 244 of 550

Minimum inter-arrival time /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 245 of 550

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;

begin
loop
delay until Next_Release;
OBCS.Wait(Release_Time);
OPCS.Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);

end loop;
end Sporadic_Thread;

Recording release time /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 246 of 550

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry Wait(Release_Time : out Time);

private
Occurred : Boolean := False;

end OBCS;

Recording release time /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 247 of 550

protected body OBCS is
procedure Signal is
begin

Occurred := True;
end Signal;

entry Wait(Release_Time : out Time) when Occurred is
begin

Release_Time := Clock;
Occurred := False;

end Wait;
end OBCS;

Deadline miss /1

 May result from
 Higher priority tasks executing more often than expected

 Can be prevented with inter-arrival time enforcement

 Overruns in the same or higher priority tasks
 Programming error in the functional code
 Inaccurate WCET analysis

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 248 of 550

Deadline miss /2

 May be detected with the help of timing events
 A mechanism for requiring some application-level action to be

executed at a given time
 Under the Ravenscar Profile, timing events can only exist at

library level

 Timing events are statically allocated
 Minor optimization possible for periodic tasks

 Which however breaks the symmetry of code patterns

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 249 of 550

Timing events

 Lightweight mechanism for defining code to be
executed at a specified time
 Does not require an application-level task
 Analogous to interrupt handling

 The code is defined as an event handler
 An (access to) a protected procedure

 Directly invoked by the runtime

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 250 of 550

Ada.Real_Time.Timing events

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 251 of 550

package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Cyclic thread with deadline miss
detection (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 252 of 550

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Thread body

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 253 of 550

Deadline_Miss : Timing_Event; -- static, local per component
task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Canceled : Boolean := False;

begin
loop
delay until Next_Time;
Set_Handler(Deadline_Miss,

Next_Time + Milliseconds(Deadline),
Deadline_Miss_Handler); -- application-specific

OPCS.Cyclic_Operation;
Cancel_Handler(Deadline_Miss, Canceled);
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Thread body (streamlined)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 254 of 550

Deadline_Miss : Timing_Event; -- static, local per component
task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Canceled : Boolean := False;

begin
loop
-- setting again cancels any previous event
Set_Handler(Deadline_Miss,

Next_Time + Milliseconds(Deadline),
Deadline_Miss_Handler); -- application-specific

delay until Next_Time;
OPCS.Cyclic_Operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Watch out!
What about
the critical

instant?

Sporadic thread with deadline miss
detection (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 255 of 550

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Thread body

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 256 of 550

Deadline_Miss : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Miss,

Release_Time + Milliseconds(Deadline),

Deadline_Miss_Handler); -- application-specific

OPCS.Sporadic_Operation;

Cancel_Handler(Deadline_Miss, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Can’t streamline as the
deadline cannot be
computed until
returning from Wait

Execution-time overruns

 Tasks may execute for longer than stipulated owing to
 Programming errors in the functional code
 Inaccurate WCET values used in feasibility analysis

 Optimistic vs. pessimistic

 WCET overruns can be detected at run time with the
help of execution-time timers
 Not included in Ravenscar
 Extended profile

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 257 of 550

Execution-time timers

 A user-defined event can be fired when a CPU
clock reaches a specified value
 An event handler is automatically invoked by the runtime

at that point
 The handler is an (access to) a protected procedure

 Basic mechanism for execution-time monitoring

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 258 of 550

Ada.Execution_Time.Timers /1

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 259 of 550

with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Ada.Execution_Time.Timers /2

 Mechanism built on execution time clocks
 Needs an interval timer
 To update at every dispatching point
 To raise «zero events» that signify execution-time

overruns

 Sensible handling of those zero events requires
other sophisticated features

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 260 of 550

Cyclic thread with WCET overrun
detection (spec)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 261 of 550

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Thread body

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 262 of 550

task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Id : aliased constant Task_ID := Current_Task;
WCET_Timer : Timer(Id'access);

begin
loop
delay until Next_Time;
Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),
WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

Summary

 We have seen how one particular programming
language is able to capture all design and execution
aspects that descend from the real-time systems
theory that we seen so far

 We have seen how design and code patterns may be
used to make sure that the application program
conforms with the required semantics

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 263 of 550

Selected readings

 T. Vardanega, J. Zamorano, J.A. de la Puente
(2005), On the Dynamic Semantics and the Timing
Behavior of Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2b

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 264 of 550

