
4.b A look under the hood

Where we understand how real-time 
programming abstractions become “real”, 
how much that can cost, and how RTA 
equations can capture their overhead



System calls /1

 Most of the RTOS services execute in response to direct or 
indirect invocations made by application tasks
 In general-purpose systems, such invocations are termed system calls

 For safety reasons, the system call APIs of GPOSs are not
directly exposed to the application
 System calls are “hidden” in procedures exported to the 

programming language via compiler libraries (OS bindings)
 Those library procedures do all of the preparatory work for correct 

invocation of the designated system call on behalf of the application
 Thanks to that “hiding”, the GPOS does not share memory 

with the application
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System calls /2
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System calls /3

 In embedded systems, the RTOS and the application 
often share memory
 Address-space separation would be too costly for them
 The RTOS is compiled with the application in a single binary
 Hence, real-time embedded programs must be much more 

trustworthy than general-purpose applications

 The RTOS must protect its own data structures from 
the risk of race condition arising from concurrent tasks
 RTOS services must therefore disable preemption selectively
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Runtime support (aka the RTOS) /1

 If the programming language provides the abstraction 
of application-level “task”, then the runtime support of 
that language realizes its implementation
 As in Ada, Java, and more recently C11

 For programming languages that do not provide such 
abstraction, tasks exist only in the RTOS to which the 
implementation is bound
 As in old-style C

 For a real-time embedded systems, the two (runtime 
and RTOS), by and large, are functionally equivalent
 Where I am saying RTOS in the sequel, I also mean runtime
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Runtime support (aka the RTOS) /2

 Application-level tasks issue jobs: now we know how 
 The jobs are the unit of CPU assignment
 The scheduler decides which job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 The RTOS knows all tasks, and manages their life cycle
 The task abstraction exists thanks to a descriptor: the Task Control 

Block (TCB) 
 One such TCB exists per task, stored in RAM

 The insertion of a task in a state queue (e.g., ready) happens by placing a 
pointer from a queue place to the corresponding TCB

 End-of-life task disposal requires removing its TCB and releasing all 
of its memory 
 Its stack and its global data placed in the heap

 This is onerous: real-time embedded systems prefer infinite tasks
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Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority
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Runtime support (aka the RTOS) /3

 The Model of Computation of the application tasks defines 
what tasks can do and their life cycle

 The MoC should be fully determined by the RTOS
 Outside or inside of the programming language, contingent 

on the binding of it with the RTOS
 For Ada, we know it is inside of it

 At one extreme, the MoC may also be defined by the 
user, making “creative” use of the RTOS API
 Very risky: the user determines whether the execution 

semantics of the program eventually conforms with the 
assumptions made in feasibility analysis
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Runtime support (aka the RTOS) /4

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release, it executes the application-code of the job and then 
makes a suspension call until the next release

 Sporadic task
 An RTOS thread whose suspension point is not released 

periodically but with guaranteed minimum distance
 After release, it executes the job and then calls a wait-for-signal service

 Aperiodic task
 Indistinguishable from the rest, other than its being placed in 

a server’s backlog queue and not in the ready queue
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Task states /1

2020/2021 UniPD – T. Vardanega

Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least	overhead?
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Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on 

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the 
distinct forms of suspension
 A time-based queue for periodic suspension
 An event-based queue for sporadic suspension

 How to assure minimum separation between subsequent releases?
 The inversion of control pattern that we have seen in the model discussed 

earlier allows doing that transparently
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Context switch /1

 At time of execution, the processor has a context
defined by the contents of its registers at that time

 As tasks share the processor transparently to one 
another, their progress of execution at time is 
captured by their own context

 The task context (which would be the thread context in 
a GPOS) is comprised of
 The processor context
 The task execution memory (stack, heap, task control block)

 Upon preemption, the context of the outgoing task is 
saved in RTOS memory, and replaced by the context of 
the incoming task
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Context switch /2

 The time and space overhead incurred at preemption 
may be considerable
 Should be accounted for in schedulability analysis

 Under preemptive scheduling, every task run incurs no 
less than two context switches
 At activation, to install its execution context
 At resumption after preemption (if any), to restore it
 At completion, to clean it up

 The corresponding time cost should be charged to the 
WCET of the task’s jobs
 This requires knowing the internals of RTOS
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Priority levels /1

 The feasibility analysis techniques that we have studied 
assume tasks (and jobs) to have distinct priorities
 Each index in the RTA equations denotes a single task

 Concrete systems may not have sufficient priorities
 In that case, jobs may have to share priority levels

 For jobs at the same level of priority, we might use FIFO or 
round-robin
 FIFO is better in the RT domain: predictability wins over fairness!

 If priority levels were shared, we would have a worsening of 
worst-case situation to contemplate in the analysis
 Job 𝐽 might be released last after all other jobs at its level of priority
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Example: FIFO within priorities
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𝜋ଵ

𝜏 𝜏

𝜏𝜏௦ 𝜏

low

high
FIFO

Running

Ready

𝜋 ஐೞ
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Priority levels /2

 Let denote the set of jobs  with  , 
excluding  itself

 The time demand equation for  in the interval 
  becomes 

𝒊 𝒊 𝒊 𝒋∈𝑺 𝒊
𝑺ሺ𝒊ሻ

𝒊

𝒌𝒌ୀ𝟏,..,𝒊ି𝟏
𝒌

 This obviously worsens ’s response time
 The notion of schedulability loss helps quantify the 

penalization that results from that additional overhead
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Priority levels /3

 When the assigned priorities  exceed the 
available priorities ଵ ஐೞ , ( ), we need 
a  ௦ mapping function to collapse into 

 The resulting function is known as the priority grid
 All assigned priorities in range ሺ0,𝜋ଵሿ will take value 𝜋ଵ
 For 1 ൏ 𝑘  Ω௦, the assigned priorities in range ሺ𝜋ିଵ,𝜋ሿ will 

take value 𝜋

 Two main techniques are used to produce such grids
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]
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Priority levels /4

 Uniform mapping ( ஐ
ஐೞ

)

 𝜋 ← 𝑘, … , 𝑘𝑄 ;  𝜋ାଵ ← 𝑘𝑄  1, … , ሺ𝑘  1ሻ𝑄  ;  𝑘 ൌ 1, … ,Ω௦ െ 1
 Example (Ω ൌ 9,Ω௦ ൌ 3,𝑄 ൌ ଽ

ଷ
ൌ 3)

𝝅𝟏 ൌ 𝟏,𝝅𝟐 ൌ 𝟐,𝝅𝛀𝒔ୀ𝟑 ൌ 𝟑 ⇒ 𝜋ଵ ← 1. . 3 ,  𝜋ଶ← 4. . 6 ,𝜋ଷ ← 7. . 9

 Constant ratio mapping ( ሺగషభାଵሻ
గ ௦)

 Collapses subsets of ℛ into 𝜋 values of ℋ in a logarithmic grid such that 
the ratio 0 ൏ 𝒈  1 of two adjacent points in ℋ is constant

 Example (Ω ൌ 9,Ω௦ ൌ 3, g ൌ ଵ
ଶ
)

𝝅𝟏 ൌ 𝟏,𝝅𝟐 ൌ 𝟒, 𝝅𝟑 ൌ 𝟏𝟎 ⇒ 𝜋ଵ ← 1 ,𝜋ଶ ← 2. . 4 ,𝜋ଷ ← 5. . 9
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Priority levels /5
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Uniform	mapping Constant	ratio	mapping

7 .. 9

1 ..3 𝝅𝟏 ൌ 𝟏

𝝅𝟐 ൌ 𝟐

𝝅𝟏 ൌ 𝟏

𝝅𝟐 ൌ 𝟒

𝝅𝟑 ൌ 𝟏𝟎
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𝝅𝟑 ൌ 𝟑

𝒈 ൌ ሺ𝝅𝒊ష𝟏ା𝟏ሻ
𝝅𝒊

ൌ 𝟏
𝟐

With 𝐠 ൌ 𝟏, every task 
would have its own priority



Priority levels /6

 The constant-ratio mapping degrades the schedulable utilization 
of RMS gracefully
 For large 𝑛, implicit deadlines, and 𝑔 ൌ 𝑚𝑖𝑛ଵழஸஐೞ

ሺగೕషభାଵሻ
గೕ

, 
the schedulable utilization that CRM can achieve approximates

𝑓 𝑔 ൌ ቐ
𝑙𝑛 2𝑔  1 െ 𝑔,  ଵ

ଶ
൏ 𝑔  1

𝑔,                           0 ൏ 𝑔  ଵ
ଶ

 The ሺሻ
ሺଶሻ

ratio represents the limit of relative schedulability of 
CRM in relation to RMS’ utilization bound
Example
Ω௦ ൌ 256,Ω ൌ 100,000 → 𝑔 ≅ 0.956,

𝑓 𝑔

Ω 2
ଵ
Ω െ 1

ൌ 0.9986

256 priority levels (a one-byte value) should suffice for RMS
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Time management /1

 The system clock abstraction is composed of 
 A HW part decremented by one unit at every clock pulse, 

as determined by the clock rate
 A periodic-counting register, automatically reset to a default tick size

when it reaches the triggering edge (0), and trips the clock tick
 A SW part incremented by SW at the clock tick

 The system clock effectively counts clock ticks
 A queue of time events, fired and not serviced

 Pending until they are serviced
 A handler of clock-tick interrupts

 Which increments the clock-tick counter and, every 𝑁  0
occurrences, also services the pending time events
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Time management /2

 The frequency of the clock tick determines the 
resolution (granularity) of the system clock
 It should be an integer divisor of the tick size so that the

RTOS may service time events at exactly every
clock ticks

 Clock-tick interrupts maintain the system clock
 More frequent, tolerable overhead

 One such interrupt in handles scheduling events
 Less frequent, high overhead
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Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy, at the 

cost of a higher interrupt overhead
 There must be a sound balance between the clock 

accuracy needed by the application and the clock 
resolution that can be afforded by the system
 Latency is intrinsic in any query to read the clock
 The ORK runtime for the Leon microprocessor takes 493 

clock cycles to read the clock (www.dit.upm.es/~ork/) 
 @ 40 MHz, 500 clock cycles correspond to 12.5 𝜇sec

 The clock resolution cannot be finer-grained than the 
worst-case latency incurred reading the clock (!)
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Time management /4

 Beside periodic clocks, if the processor allows, the 
RTOS may also support one-shot (aka interval) timers
 They operate in a programmed (non-repetitive) way so that 

time events suffer no latency from resolution problems
 The RTOS scans the queue of the programmed time events to 

set the next interrupt alarm due from the interval timer
 Interval timers are costly

 They have to be written by SW and the value to set depends 
on the time events pending in the queue

 Their resolution is limited by the time overhead of its 
handling by the RTOS: 7,061 clock cycles in ORK for Leon 
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Time management /5

 The accuracy of a time event is the delta between when 
the time set and when the event triggers

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected

 Without interval timer, it would be at every 𝑁 clock ticks
 With interval timer, it would be at every interval expiry

 The policy used to service the time-event queues
 Expiry-based, LIFO, FIFO

 The time overhead cost of handling the event queue

 The release time of periodic tasks is naturally exposed to jitter (!)
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The scheduler /1

 This is a distinct part of the RTOS that does not execute 
in response to explicit application invocations
 Except when using cooperative scheduling

 The scheduler acts when the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming 
language, the scheduler “activation” is periodic in 
response to clock interrupts
 The poor RTOS has no other way to know when to schedule!
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The scheduler /2

 If execution-time-based scheduling (e.g. LLF) is used 
 The scheduler must increment the execution-time budget 

counter of the running job at every clock interrupt
 Possibly service the queue of time-based events pending
 Possibly attend to the ready queue

 GPOS have a tick size in the region of 
 This is much too coarse-grained for RTOS, but too high frequency 

incurs excessive overhead

 The scheduler should support event-driven execution 
with minimum latency
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Tick scheduling /1

 The tick scheduler may acknowledge a job’s release 
time up to one clock tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release 

time arrived but not yet acknowledged” state are held

 The time and space overhead of transferring jobs 
from that logical place to the ready queue is not null 
 It must be accounted for in the schedulability test along 

with the overhead of handling clock interrupts
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Example
𝑻 ൌ 𝝉𝟏 ൌ 𝟎.𝟏,𝟒,𝟏,𝟒 , 𝝉𝟐 ൌ 𝟎.𝟏,𝟓,𝟏.𝟖,𝟓 , 𝝉𝟑 ൌ 𝟎,𝟐𝟎,𝟓,𝟐𝟎
𝝉𝟑 with a first no-preemption section of duration 𝟏.𝟏 time units

With RTA and event-driven scheduling, 𝑹𝟏 ൌ 𝟐.𝟏,𝑹𝟐 ൌ 𝟑.𝟗,𝑹𝟑 ൌ 𝟏𝟒.𝟒 ሺOKሻ
What with tick scheduling, clock period 𝟏 and 

time overhead 𝟎.𝟎𝟓  𝟎.𝟎𝟔 ൈ 𝒏 per tick handling and queue movement?

0 1 2 3 4 5 6

𝟏

𝝉𝟑

Deadline miss

Release 
at tick

yield
𝟐

𝟑

𝝉𝟏, 𝝉𝟐 𝝉𝟏 𝝉𝟐

1-tick delay
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ሺ𝜑 , 𝑝 , 𝑒 ,𝐷ሻ
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Tick scheduling /2

 The effect of tick scheduling is captured in RTA for job  by
 Introducing a notional task 𝜏 ൌ ሺ𝑝, 𝑒ሻ with highest priority, to 

account for the 𝑒 cost of handling clock interrupts with period 𝑝
 For every job 𝐽 ∶ 𝜋  𝜋 , adding to 𝑒 the time overhead 𝑚 due to 

moving 𝐽 to the ready queue
 ሺ𝐾  1ሻ times for the 𝐾 times that job 𝐽 may self suspend

 For every job 𝐽:𝜋 ൏ 𝜋, introducing a distinct notional task 𝜏ఊ ൌ
ሺ𝑝 ,𝑚ሻ to account for the time cost of moving 𝐽 to the ready queue

 Computing 𝐵ሺ𝑛𝑝ሻ as function of 𝑝:  𝐽 may suffer up to 𝑝 units of 
delay after becoming ready even without not-preemptive execution 
 𝐵ሺ𝑛𝑝ሻ ൌ ሺ 𝑚𝑎𝑥ሺ

ఏೖ
బ
ሻ  1ሻ𝑝 before including non-preemption

 Where 𝜃 is the maximum time of non-preemptive execution by any job 𝐽
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I/O subsystems

 When the I/O subsystem is an active resource (in 
the taxonomy seen in §1), it would need its own 
scheduler

 Methods to serve I/O access requests may employ
 Run-to-completion non-preemptive FIFO semantics
 Non-preemptive time-division (quantized) schemes 
 Priority-driven scheduling as seen for CPU scheduling
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Interrupt handling /1

 HW interrupts are the most efficient manner for the 
processor to notify the application about the 
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated 

to external units like DMA (direct memory access)

 Frequency and load of the interrupt handling 
service vary with the source of the interrupt
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Interrupt handling /2

 For better efficiency, the interrupt handling service 
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt 

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which 
code to associate to either part
 Interrupt service can also have a device-independent part and 

a device-specific part
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Interrupt handling /3

 When the HW interface asserts an interrupt, the 
processor saves state registers (e.g., PC, PSW) in the 
interrupt stack and jumps to the address of the needed 
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions 

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending 

(depending on the HW)

 Interrupts operate at an assigned level of priority so 
that interrupt service incurs scheduling if interrupts nest
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Interrupt handling /4

 Depending on the HW, the interrupt source is 
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally 

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers 
are restored and interrupts are enabled again
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Interrupt handling /5

 The worst-case latency of interrupt handling is determined 
by the time needed to perform the following actions
1. Complete the current instruction
2. Save the processor registers and the general context of the task 

being interrupted
3. Clear the processor pipeline
4. Acquire the interrupt vector
5. Activate the trap to kernel mode (for kernels with more privileges)
6. Disable interrupts, so that the immediate part of the ISR can 

execute at the highest priority
7. Identify the interrupt source and jump to the corresponding ISR
8. Begin execution of the selected ISR
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Interrupt handling /6

 To reduce distributed overhead, the deferred part of 
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data 
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to 

spawn its own tasks for deferred interrupt handling
 So that the application has better control
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Interrupt handling /7

 Using the code patterns we saw in §4.a, the deferred 
part of interrupt handling would map to a sporadic task 
released by the immediate part of the ISR

 For better responsiveness, aperiodic servers could be used
 So that total interference from interrupts is still bounded, but 

a given quota of them may receive full service within 
replenishment intervals

 During those intervals, bandwidth preservation retains the 
unused reserve of execution budget, which can help serve 
occasional bursts

 These solutions need specialized support from the RTOS
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Putting it all together
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𝑅 is a compositional term Its RHS benefits from composable terms
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Summary

 We have seen how an RTOS (or runtime) supports 
the application-level abstractions that recur in the 
real-time systems theory

 We have appreciated how complex those abstraction 
services may be

 We have understood that they may cause latency in 
the occurrence of scheduling and dispatching events

 We have realized that their impact should be captured 
in the Response-Time Analysis equation
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