
4.b A look under the hood

Where we understand how real-time
programming abstractions become “real”,
how much that can cost, and how RTA
equations can capture their overhead

System calls /1

 Most of the RTOS services execute in response to direct or
indirect invocations made by application tasks
 In general-purpose systems, such invocations are termed system calls

 For safety reasons, the system call APIs of GPOSs are not
directly exposed to the application
 System calls are “hidden” in procedures exported to the

programming language via compiler libraries (OS bindings)
 Those library procedures do all of the preparatory work for correct

invocation of the designated system call on behalf of the application
 Thanks to that “hiding”, the GPOS does not share memory

with the application

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 266 of 550

System calls /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 267 of 550

System calls /3

 In embedded systems, the RTOS and the application
often share memory
 Address-space separation would be too costly for them
 The RTOS is compiled with the application in a single binary
 Hence, real-time embedded programs must be much more

trustworthy than general-purpose applications

 The RTOS must protect its own data structures from
the risk of race condition arising from concurrent tasks
 RTOS services must therefore disable preemption selectively

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 268 of 550

Runtime support (aka the RTOS) /1

 If the programming language provides the abstraction
of application-level “task”, then the runtime support of
that language realizes its implementation
 As in Ada, Java, and more recently C11

 For programming languages that do not provide such
abstraction, tasks exist only in the RTOS to which the
implementation is bound
 As in old-style C

 For a real-time embedded systems, the two (runtime
and RTOS), by and large, are functionally equivalent
 Where I am saying RTOS in the sequel, I also mean runtime

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 269 of 550

Runtime support (aka the RTOS) /2

 Application-level tasks issue jobs: now we know how
 The jobs are the unit of CPU assignment
 The scheduler decides which job gets the CPU
 The dispatcher gets jobs to run and operates context switches

 The RTOS knows all tasks, and manages their life cycle
 The task abstraction exists thanks to a descriptor: the Task Control

Block (TCB)
 One such TCB exists per task, stored in RAM

 The insertion of a task in a state queue (e.g., ready) happens by placing a
pointer from a queue place to the corresponding TCB

 End-of-life task disposal requires removing its TCB and releasing all
of its memory
 Its stack and its global data placed in the heap

 This is onerous: real-time embedded systems prefer infinite tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 270 of 550

Task control block (example)

Thread	ID

Start	address

Context

Task	parameters

Scheduling	information

Synchronization	information

Time	usage	information

Timer	information

…

Task	type
Phase
Period

Relative	deadline
Event	list

…

Assigned	priority

Current	priority

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 271 of 550

Runtime support (aka the RTOS) /3

 The Model of Computation of the application tasks defines
what tasks can do and their life cycle

 The MoC should be fully determined by the RTOS
 Outside or inside of the programming language, contingent

on the binding of it with the RTOS
 For Ada, we know it is inside of it

 At one extreme, the MoC may also be defined by the
user, making “creative” use of the RTOS API
 Very risky: the user determines whether the execution

semantics of the program eventually conforms with the
assumptions made in feasibility analysis

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 272 of 550

Runtime support (aka the RTOS) /4

 Periodic task
 An RTOS thread that hangs on a periodic suspension point

 After release, it executes the application-code of the job and then
makes a suspension call until the next release

 Sporadic task
 An RTOS thread whose suspension point is not released

periodically but with guaranteed minimum distance
 After release, it executes the job and then calls a wait-for-signal service

 Aperiodic task
 Indistinguishable from the rest, other than its being placed in

a server’s backlog queue and not in the ready queue

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 273 of 550

Task states /1

2020/2021 UniPD – T. Vardanega

Inheritance	blocking

How	to	represent
that	state	and	the
transitions	to	and	from	it
with	the	least	overhead?

Real-Time Kernels and Systems 274 of 550

Task states /2

 Tasks enter the suspended state only voluntarily
 By making a primitive invocation that causes them to hang on

a periodic / sporadic suspension point

 The RTOS needs specialized structures to handle the
distinct forms of suspension
 A time-based queue for periodic suspension
 An event-based queue for sporadic suspension

 How to assure minimum separation between subsequent releases?
 The inversion of control pattern that we have seen in the model discussed

earlier allows doing that transparently

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 275 of 550

Context switch /1

 At time of execution, the processor has a context
defined by the contents of its registers at that time

 As tasks share the processor transparently to one
another, their progress of execution at time is
captured by their own context

 The task context (which would be the thread context in
a GPOS) is comprised of
 The processor context
 The task execution memory (stack, heap, task control block)

 Upon preemption, the context of the outgoing task is
saved in RTOS memory, and replaced by the context of
the incoming task

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 276 of 550

Context switch /2

 The time and space overhead incurred at preemption
may be considerable
 Should be accounted for in schedulability analysis

 Under preemptive scheduling, every task run incurs no
less than two context switches
 At activation, to install its execution context
 At resumption after preemption (if any), to restore it
 At completion, to clean it up

 The corresponding time cost should be charged to the
WCET of the task’s jobs
 This requires knowing the internals of RTOS

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 277 of 550

Priority levels /1

 The feasibility analysis techniques that we have studied
assume tasks (and jobs) to have distinct priorities
 Each index in the RTA equations denotes a single task

 Concrete systems may not have sufficient priorities
 In that case, jobs may have to share priority levels

 For jobs at the same level of priority, we might use FIFO or
round-robin
 FIFO is better in the RT domain: predictability wins over fairness!

 If priority levels were shared, we would have a worsening of
worst-case situation to contemplate in the analysis
 Job 𝐽 might be released last after all other jobs at its level of priority

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 278 of 550

Example: FIFO within priorities

2020/2021 UniPD – T. Vardanega

𝜋ଵ

𝜏 𝜏

𝜏𝜏௦ 𝜏

low

high
FIFO

Running

Ready

𝜋 ஐೞ

Real-Time Kernels and Systems 279 of 550

The ready queue

Priority levels /2

 Let denote the set of jobs with ,
excluding itself

 The time demand equation for in the interval
 becomes

𝒊 𝒊 𝒊 𝒋∈𝑺 𝒊
𝑺ሺ𝒊ሻ

𝒊

𝒌𝒌ୀ𝟏,..,𝒊ି𝟏
𝒌

 This obviously worsens ’s response time
 The notion of schedulability loss helps quantify the

penalization that results from that additional overhead

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 280 of 550

Priority levels /3

 When the assigned priorities exceed the
available priorities ଵ ஐೞ , (), we need
a ௦ mapping function to collapse into

 The resulting function is known as the priority grid
 All assigned priorities in range ሺ0,𝜋ଵሿ will take value 𝜋ଵ
 For 1 ൏ 𝑘 Ω௦, the assigned priorities in range ሺ𝜋ିଵ,𝜋ሿ will

take value 𝜋

 Two main techniques are used to produce such grids
 Uniform mapping

 Constant ratio mapping [Lehoczky & Sha, 1986]

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 281 of 550

Priority levels /4

 Uniform mapping (ஐ
ஐೞ

)

 𝜋 ← 𝑘, … , 𝑘𝑄 ; 𝜋ାଵ ← 𝑘𝑄 1, … , ሺ𝑘 1ሻ𝑄 ; 𝑘 ൌ 1, … ,Ω௦ െ 1
 Example (Ω ൌ 9,Ω௦ ൌ 3,𝑄 ൌ ଽ

ଷ
ൌ 3)

𝝅𝟏 ൌ 𝟏,𝝅𝟐 ൌ 𝟐,𝝅𝛀𝒔ୀ𝟑 ൌ 𝟑 ⇒ 𝜋ଵ ← 1. . 3 , 𝜋ଶ← 4. . 6 ,𝜋ଷ ← 7. . 9

 Constant ratio mapping (ሺగషభାଵሻ
గ ௦)

 Collapses subsets of ℛ into 𝜋 values of ℋ in a logarithmic grid such that
the ratio 0 ൏ 𝒈 1 of two adjacent points in ℋ is constant

 Example (Ω ൌ 9,Ω௦ ൌ 3, g ൌ ଵ
ଶ
)

𝝅𝟏 ൌ 𝟏,𝝅𝟐 ൌ 𝟒, 𝝅𝟑 ൌ 𝟏𝟎 ⇒ 𝜋ଵ ← 1 ,𝜋ଶ ← 2. . 4 ,𝜋ଷ ← 5. . 9

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 282 of 550

Priority levels /5

2020/2021 UniPD – T. Vardanega

1

2

3

4

5

6

4 ..6

7

8

9

𝛀𝒏

𝛀𝒔
ൌ

𝟗
𝟑 ൌ 𝟑

1

2

3

4

5

6

7

8

9

1

2 .. 4

5 ..9

Uniform	mapping Constant	ratio	mapping

7 .. 9

1 ..3 𝝅𝟏 ൌ 𝟏

𝝅𝟐 ൌ 𝟐

𝝅𝟏 ൌ 𝟏

𝝅𝟐 ൌ 𝟒

𝝅𝟑 ൌ 𝟏𝟎

Real-Time Kernels and Systems 283 of 550

𝝅𝟑 ൌ 𝟑

𝒈 ൌ ሺ𝝅𝒊ష𝟏ା𝟏ሻ
𝝅𝒊

ൌ 𝟏
𝟐

With 𝐠 ൌ 𝟏, every task
would have its own priority

Priority levels /6

 The constant-ratio mapping degrades the schedulable utilization
of RMS gracefully
 For large 𝑛, implicit deadlines, and 𝑔 ൌ 𝑚𝑖𝑛ଵழஸஐೞ

ሺగೕషభାଵሻ
గೕ

,
the schedulable utilization that CRM can achieve approximates

𝑓 𝑔 ൌ ቐ
𝑙𝑛 2𝑔 1 െ 𝑔, ଵ

ଶ
൏ 𝑔 1

𝑔, 0 ൏ 𝑔 ଵ
ଶ

 The ሺሻ
ሺଶሻ

ratio represents the limit of relative schedulability of
CRM in relation to RMS’ utilization bound
Example
Ω௦ ൌ 256,Ω ൌ 100,000 → 𝑔 ≅ 0.956,

𝑓 𝑔

Ω 2
ଵ
Ω െ 1

ൌ 0.9986

256 priority levels (a one-byte value) should suffice for RMS

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 284 of 550

Time management /1

 The system clock abstraction is composed of
 A HW part decremented by one unit at every clock pulse,

as determined by the clock rate
 A periodic-counting register, automatically reset to a default tick size

when it reaches the triggering edge (0), and trips the clock tick
 A SW part incremented by SW at the clock tick

 The system clock effectively counts clock ticks
 A queue of time events, fired and not serviced

 Pending until they are serviced
 A handler of clock-tick interrupts

 Which increments the clock-tick counter and, every 𝑁 0
occurrences, also services the pending time events

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 285 of 550

Time management /2

 The frequency of the clock tick determines the
resolution (granularity) of the system clock
 It should be an integer divisor of the tick size so that the

RTOS may service time events at exactly every
clock ticks

 Clock-tick interrupts maintain the system clock
 More frequent, tolerable overhead

 One such interrupt in handles scheduling events
 Less frequent, high overhead

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 286 of 550

Time management /3

 The clock resolution is an important design parameter
 The finer the resolution the better the clock accuracy, at the

cost of a higher interrupt overhead
 There must be a sound balance between the clock

accuracy needed by the application and the clock
resolution that can be afforded by the system
 Latency is intrinsic in any query to read the clock
 The ORK runtime for the Leon microprocessor takes 493

clock cycles to read the clock (www.dit.upm.es/~ork/)
 @ 40 MHz, 500 clock cycles correspond to 12.5 𝜇sec

 The clock resolution cannot be finer-grained than the
worst-case latency incurred reading the clock (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 287 of 550

Time management /4

 Beside periodic clocks, if the processor allows, the
RTOS may also support one-shot (aka interval) timers
 They operate in a programmed (non-repetitive) way so that

time events suffer no latency from resolution problems
 The RTOS scans the queue of the programmed time events to

set the next interrupt alarm due from the interval timer
 Interval timers are costly

 They have to be written by SW and the value to set depends
on the time events pending in the queue

 Their resolution is limited by the time overhead of its
handling by the RTOS: 7,061 clock cycles in ORK for Leon

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 288 of 550

Time management /5

 The accuracy of a time event is the delta between when
the time set and when the event triggers

 It depends on three fundamental factors
 The frequency at which the time-event queues are inspected

 Without interval timer, it would be at every 𝑁 clock ticks
 With interval timer, it would be at every interval expiry

 The policy used to service the time-event queues
 Expiry-based, LIFO, FIFO

 The time overhead cost of handling the event queue

 The release time of periodic tasks is naturally exposed to jitter (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 289 of 550

The scheduler /1

 This is a distinct part of the RTOS that does not execute
in response to explicit application invocations
 Except when using cooperative scheduling

 The scheduler acts when the ready queue changes
 The corresponding time events are termed dispatching points

 When the MoC is defined outside of the programming
language, the scheduler “activation” is periodic in
response to clock interrupts
 The poor RTOS has no other way to know when to schedule!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 290 of 550

The scheduler /2

 If execution-time-based scheduling (e.g. LLF) is used
 The scheduler must increment the execution-time budget

counter of the running job at every clock interrupt
 Possibly service the queue of time-based events pending
 Possibly attend to the ready queue

 GPOS have a tick size in the region of
 This is much too coarse-grained for RTOS, but too high frequency

incurs excessive overhead

 The scheduler should support event-driven execution
with minimum latency

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 291 of 550

Tick scheduling /1

 The tick scheduler may acknowledge a job’s release
time up to one clock tick later than it arrived
 This delay has negative impact on the job’s response time
 We must assume a logical place where jobs in the “release

time arrived but not yet acknowledged” state are held

 The time and space overhead of transferring jobs
from that logical place to the ready queue is not null
 It must be accounted for in the schedulability test along

with the overhead of handling clock interrupts

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 292 of 320

Example
𝑻 ൌ 𝝉𝟏 ൌ 𝟎.𝟏,𝟒,𝟏,𝟒 , 𝝉𝟐 ൌ 𝟎.𝟏,𝟓,𝟏.𝟖,𝟓 , 𝝉𝟑 ൌ 𝟎,𝟐𝟎,𝟓,𝟐𝟎
𝝉𝟑 with a first no-preemption section of duration 𝟏.𝟏 time units

With RTA and event-driven scheduling, 𝑹𝟏 ൌ 𝟐.𝟏,𝑹𝟐 ൌ 𝟑.𝟗,𝑹𝟑 ൌ 𝟏𝟒.𝟒 ሺOKሻ
What with tick scheduling, clock period 𝟏 and

time overhead 𝟎.𝟎𝟓 𝟎.𝟎𝟔 ൈ 𝒏 per tick handling and queue movement?

0 1 2 3 4 5 6

𝟏

𝝉𝟑

Deadline miss

Release
at tick

yield
𝟐

𝟑

𝝉𝟏, 𝝉𝟐 𝝉𝟏 𝝉𝟐

1-tick delay

2020/2021 UniPD – T. Vardanega

ሺ𝜑 , 𝑝 , 𝑒 ,𝐷ሻ

Real-Time Kernels and Systems 293 of 320

Tick scheduling /2

 The effect of tick scheduling is captured in RTA for job by
 Introducing a notional task 𝜏 ൌ ሺ𝑝, 𝑒ሻ with highest priority, to

account for the 𝑒 cost of handling clock interrupts with period 𝑝
 For every job 𝐽 ∶ 𝜋 𝜋 , adding to 𝑒 the time overhead 𝑚 due to

moving 𝐽 to the ready queue
 ሺ𝐾 1ሻ times for the 𝐾 times that job 𝐽 may self suspend

 For every job 𝐽:𝜋 ൏ 𝜋, introducing a distinct notional task 𝜏ఊ ൌ
ሺ𝑝 ,𝑚ሻ to account for the time cost of moving 𝐽 to the ready queue

 Computing 𝐵ሺ𝑛𝑝ሻ as function of 𝑝: 𝐽 may suffer up to 𝑝 units of
delay after becoming ready even without not-preemptive execution
 𝐵ሺ𝑛𝑝ሻ ൌ ሺ 𝑚𝑎𝑥ሺ

ఏೖ
బ
ሻ 1ሻ𝑝 before including non-preemption

 Where 𝜃 is the maximum time of non-preemptive execution by any job 𝐽

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 294 of 320

I/O subsystems

 When the I/O subsystem is an active resource (in
the taxonomy seen in §1), it would need its own
scheduler

 Methods to serve I/O access requests may employ
 Run-to-completion non-preemptive FIFO semantics
 Non-preemptive time-division (quantized) schemes
 Priority-driven scheduling as seen for CPU scheduling

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 295 of 550

Interrupt handling /1

 HW interrupts are the most efficient manner for the
processor to notify the application about the
occurrence of external events that need attention
 E.g., asynchronous completion of I/O operations delegated

to external units like DMA (direct memory access)

 Frequency and load of the interrupt handling
service vary with the source of the interrupt

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 296 of 550

Interrupt handling /2

 For better efficiency, the interrupt handling service
is subdivided in an immediate part and a deferred part
 The immediate part executes at the level of interrupt

priorities, above all SW priorities
 The deferred part executes as a normal SW activity

 The RTOS must allow the application to tell which
code to associate to either part
 Interrupt service can also have a device-independent part and

a device-specific part

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 297 of 550

Interrupt handling /3

 When the HW interface asserts an interrupt, the
processor saves state registers (e.g., PC, PSW) in the
interrupt stack and jumps to the address of the needed
interrupt service routine (ISR)
 At this time, interrupts are disabled to prevent race conditions

on arrival of further interrupts
 Interrupts arriving at that time may be lost or kept pending

(depending on the HW)

 Interrupts operate at an assigned level of priority so
that interrupt service incurs scheduling if interrupts nest

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 298 of 550

Interrupt handling /4

 Depending on the HW, the interrupt source is
determined by polling or via an interrupt vector
 Polling is HW independent hence more generally

applicable but it increases latency of interrupt service
 Vectoring needs specialized HW but it incurs less latency

 Once the interrupt source is determined, registers
are restored and interrupts are enabled again

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 299 of 550

Interrupt handling /5

 The worst-case latency of interrupt handling is determined
by the time needed to perform the following actions
1. Complete the current instruction
2. Save the processor registers and the general context of the task

being interrupted
3. Clear the processor pipeline
4. Acquire the interrupt vector
5. Activate the trap to kernel mode (for kernels with more privileges)
6. Disable interrupts, so that the immediate part of the ISR can

execute at the highest priority
7. Identify the interrupt source and jump to the corresponding ISR
8. Begin execution of the selected ISR

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 300 of 550

Interrupt handling /6

 To reduce distributed overhead, the deferred part of
the ISR must be preemptable
 Hence it must execute at software priority

 But it still may directly or indirectly operate on data
structures critical to the system
 Which must be protected by access control protocols
 If we can do that, then we do not need the RTOS to

spawn its own tasks for deferred interrupt handling
 So that the application has better control

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 301 of 550

Interrupt handling /7

 Using the code patterns we saw in §4.a, the deferred
part of interrupt handling would map to a sporadic task
released by the immediate part of the ISR

 For better responsiveness, aperiodic servers could be used
 So that total interference from interrupts is still bounded, but

a given quota of them may receive full service within
replenishment intervals

 During those intervals, bandwidth preservation retains the
unused reserve of execution budget, which can help serve
occasional bursts

 These solutions need specialized support from the RTOS

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 302 of 550

2020/2021 UniPD – T. Vardanega

Putting it all together

IICSTSCCS
T
JRCCSBR R

extInt
R
clock

ihpj

j
j

A
j

n
i

ii
n
i

n
i

n
i

)(

1)21(1

Blocking time
(resource access
protocol or kernel)

“In” context switch “Out” context switch
Interference from
the clock

Interference from
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a
suspension call𝑅 ൌ 𝐵 𝐶𝑆1 𝐶

𝑅 ൌ 𝑅 𝐽ௐ

𝑅 is a compositional term Its RHS benefits from composable terms

Real-Time Kernels and Systems 303 of 550

Summary

 We have seen how an RTOS (or runtime) supports
the application-level abstractions that recur in the
real-time systems theory

 We have appreciated how complex those abstraction
services may be

 We have understood that they may cause latency in
the occurrence of scheduling and dispatching events

 We have realized that their impact should be captured
in the Response-Time Analysis equation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 304 of 550

Selected readings

 T. Vardanega, J. Zamorano, J.A. de la Puente
(2005), On the Dynamic Semantics and the Timing
Behavior of Ravenscar Kernels
DOI: 10.1023/B:TIME.0000048937.17571.2b
 Again …

 P. Carletto, T. Vardanega (2017), Ravenscar-EDF:
Comparative Benchmarking of an EDF Variant of a
Ravenscar Runtime
DOI: 10.1007/978-3-319-60588-3_2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 305 of 550

