
6.a End-to-end analysis

Where we appreciate how worst-case offset-
based analysis serves very well the purpose 
of performing end-to-end response-time 
analysis of concatenation of tasks deployed 
on single-CPU systems (in addition to 
distributed systems as seen in §5)



Transactions (precedence chains) /1

 A term that denotes causal relations between tasks
 “Transactions” express dependency relations that cannot be 

captured with classic workload models
 Chains of dependencies in job releases

 Originated in the analysis of distributed systems, where the 
use of offsets helps contain the pessimism of release jitter

 They become useful also for the analysis of “collaboration 
(release) patterns” employed for single-CPU systems
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Transactions /2

 Two main kinds of dependency are of interest here
 Direct-precedence relation (e.g., producer-consumer)

  cannot proceed until completes regardless of priority assignment

 Indirect-priority relation
  does not suffer interference from (under FPS and synchronous 

release of and  for priorities increasing with values)
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 p1=4

  p1=5 p2=3 p3=6



The call-back problem /1

 In §3.b we have seen that real-time tasks cannot
make direct in-out calls to one another
 If they did, the worst-case wait time of their 

synchronization would be unbounded in the general case

 Direct synchronization is therefore banned
 But in the real world we may need the corresponding 

semantic effects

 The Ada Ravenscar profile call-back pattern shows us 
how to achieve those effects indirectly
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The call-back problem /2

 This pattern creates a concatenation of tasks ଵ ଶ ଷ , 
which has an end-to-end deadline and an end-to-end
feasibility concern 
 ଷ’s deadline in relation to ଵ’s release
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[cyclic]
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Q1

𝝉𝟑 (Callback) 
[sporadic] Q2

fetch request (release event)

deposit request

deposit result

𝝉ଵ 𝝉ଶ 𝝉ଷ

End-to-end deadline

fetch result (release event)



The call-back problem /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 312 of  550

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5

Classic (independent-task) RTA 𝑅 ൌ 𝐶  𝐵  ∑ ோ
்ೕ

𝐶∈ሺሻ

𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ   7

This analysis assumes a critical instant in which all tasks 
become ready simultaneously, and misses out completely that 
𝜏ଷ’s release is to be preceded by the completion of  𝜏ଶ and 𝜏ଵ



MAST “understands” transactions

 Modeling and Analysis Suite for Real-Time Systems 
(MAST, http://mast.unican.es)
 Developed at University of Cantabria, Spain
 Open source
 Implements several analysis techniques

 For uniprocessor and distributed (no-shared memory) processor 
systems

 Under FPS or EDF, alone or in combination
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MAST: real-time model
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MAST: transaction

 To model causal relations between activities and 
form concatenations with them
 Triggered by external events with various release 

patterns: periodic, sporadic, aperiodic, in burst, …
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MAST: operations

 The MAST model of a system includes the 
description of all the operations that it comprises
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MAST: an example transaction
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MAST: example shared resources
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MAST: example tasks
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MAST model of the call-back pattern
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Worst-case offset-based analysis
𝑅ଵ ൌ 12,𝑂ଵ ൌ 0, 𝐽ଵ ൌ 0
𝑅ଶ ൌ 20,𝑂ଶ ൌ 𝑅ଵ௦௧, 𝐽ଶ ൌ 𝑅ଵ െ 𝑅ଵ௦௧
𝑅ଷ ൌ 27

The call-back problem /4
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Relative to the beginning of  the transaction,
𝑶𝟑 ൌ 𝑹𝟐, not knowing the best case

Classic RTA
𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ 7

𝑅 ൌ 𝐶  𝐵  
𝑅 െ 𝑂  𝐽  𝑂  𝐽

𝑇
𝐶

∈ሺሻ

െ 𝑂  𝐽

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5



Summary

 We have taken a deeper look into how “transactions” 
can help reason about end-to-end response time of 
concatenations

 We have seen how MAST can be used to model 
systems with transactions and analyze them with the 
worst-case dynamic offset (WCDO) technique 
developed by the University of Cantabria
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6.b WCET analysis

Where we learn how the worst-case 
execution-time (WCET) value used in 
response-time analysis can be determined, 
and explore the taxonomy of WCET analysis 
techniques



Worst-case execution time (WCET)

 Across all input data and all initial logical states
 So that all execution paths of the program can be traversed
 May be prohibitively difficult to determine and provide

 For any hardware state
 So that the worst-case execution conditions are in effect on the processor
 Increasingly hard on modern processors, full of access restrictions and of 

state-perturbing features
 Out-of-order execution pipelines, caches, branch predictors, speculative execution

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator of it
 The high-watermark value can be much smaller than the WCET !

 Static WCET analysis
 Uses an abstract model of the HW and of the program
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Computing the WCET

 The exact WCET is not generally computable 
 Another kind of halting problem

 Yet, WCET bounds are essential to feasibility analysis
 Must be safe, to upper bound all possible executions
 Must be tight, to avoid costly over-dimensioning
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Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control flow 
and on the fine-grained behavior of the HW
 High-level analysis addresses program execution

 Control flow analysis builds a control flow graph (CFG) for it

 Low-level analysis determines the timing cost of individual 
processor instructions on the abstract model of the HW
 Not constant in modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)
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Static WCET analysis /2
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 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with 
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers
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Static WCET analysis /3
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Implicit path enumeration technique

 The program’s CFG is augmented with flow graph constraints
 The WCET is computed with 

integer linear programming or 
constraint programming

  
 𝑥 : execution frequency of edge 𝑖
 𝑡 : execution time of edge 𝑖

 While respecting the given
flow-graph constraints
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CFG Flow graph constraints



Static WCET analysis /4

 High-level analysis /2
 Using the IPET requires employing several techniques

 Control-flow analysis to construct the CFG
 Value analysis to resolve memory accesses
 Data-flow analysis to find loop bounds for graph constraints

 Automated information extraction is insufficient 
 User annotation of flow facts is needed

 To help detect infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and memory references
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Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features 

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible
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Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update  function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature
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Understanding the cache

 Cache holds 2 lines of 2ୀ ൌ 64 bytes each: this yields space locality
 RAM has 2 addresses, for 𝑚 ≫ 𝑛

 RAM address is read as [tag (𝑚 െ 𝑘 െ 𝑛 bits): index (𝑘 bits) : offset (𝑛 bits)]
 Three strategies map RAM addresses to cache lines

 Chance of access conflict as high as size of tag field
 Direct mapping: each memory address maps to a single cache line

 Index tells cache line, offset tells position in it, tag tells hit or miss
 N-way set associative: each memory address maps to a single cache set

 The cache is divided into sets, each holding 𝑠 ൌ 2 or 4 lines
 Index tells cache set, offset tells position in cache line, tag tells hit or miss across 

the set: lower chance of access conflicts
 Fully associative: each memory address maps to any cache line

 No index field: tag-based matching search across the entire cache (very complex!)
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Understanding the cache
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Direct	mapping	(by	index)
Each memory address maps to a unique cache line:

the index field gives its placement;
the tag field tells match or miss

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache lines:

the index field tells the set; 
the tag field tells match or miss across the set

offsetindextag
031

datatag V

offsetindextag
031

datatag V
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Static WCET analysis: the big picture

 Open problems
 Can we trust the abstract model of the processor hardware?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

 Are we free from timing anomalies?
 When the local worst case does not lead to global worst case

Analysis framework 
and 

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds
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Timing anomaly: example

 Assume there is dependency between (some) instructions 
because of shared HW resources (as in pipeline stages) 

 And opportunistic scheduling is made of individual requests

 Faster execution of A leads to worse overall execution, owing to 
the order in which the instructions are executed
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Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor and on the final executable 

 WCET analysis helps software design before coding: analysis loses 
value if the program is modified (!)

 Yet, understanding that safeness is not guaranteed (!)
 Hybrid approaches leverage

 The measurement of basic blocks on the real HW 
 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)
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Hybrid analysis /2

 Approaches to collect timing information 
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation affects the timing behavior of the program (aka the 

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results is contingent on the coverage of 
the executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement 
 Worst-case state dependence is gone if HW response time is randomized 
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Hybrid analysis: the big picture

 Open problems
 Can we trust the observations and the consequent estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May be costly to have, subtly different, or too late to arrive

Program 
executable

User annotations WCET
estimates

Target Hardware
(black box)

Execution 
traces

Path 
info
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Summary

 We have reckoned with the challenge WCET analysis
 We have seen how static WCET analysis works and where 

its weaknesses are
 We have learned what high-level analysis is
 And what low-level analysis does

 We have seen how measurement-based analysis is more 
pragmatic, but riskier: hybrid methods work are safer

 For HW with deterministic behavior, the uncertainty on the 
WCET bound is epistemic: we may not know enough

 For HW with randomized behavior, knowledge is aleatory
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