
6.a End-to-end analysis

Where we appreciate how worst-case offset-
based analysis serves very well the purpose 
of performing end-to-end response-time 
analysis of concatenation of tasks deployed 
on single-CPU systems (in addition to 
distributed systems as seen in §5)



Transactions (precedence chains) /1

 A term that denotes causal relations between tasks
 “Transactions” express dependency relations that cannot be 

captured with classic workload models
 Chains of dependencies in job releases

 Originated in the analysis of distributed systems, where the 
use of offsets helps contain the pessimism of release jitter

 They become useful also for the analysis of “collaboration 
(release) patterns” employed for single-CPU systems
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





Transactions /2

 Two main kinds of dependency are of interest here
 Direct-precedence relation (e.g., producer-consumer)

  cannot proceed until completes regardless of priority assignment

 Indirect-priority relation
  does not suffer interference from (under FPS and synchronous 

release of and  for priorities increasing with values)
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 

 p1=4

  p1=5 p2=3 p3=6



The call-back problem /1

 In §3.b we have seen that real-time tasks cannot
make direct in-out calls to one another
 If they did, the worst-case wait time of their 

synchronization would be unbounded in the general case

 Direct synchronization is therefore banned
 But in the real world we may need the corresponding 

semantic effects

 The Ada Ravenscar profile call-back pattern shows us 
how to achieve those effects indirectly
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The call-back problem /2

 This pattern creates a concatenation of tasks ଵ ଶ ଷ , 
which has an end-to-end deadline and an end-to-end
feasibility concern 
 ଷ’s deadline in relation to ଵ’s release
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𝝉𝟏 (Producer) 
[cyclic]
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[sporadic]

Q1

𝝉𝟑 (Callback) 
[sporadic] Q2

fetch request (release event)

deposit request

deposit result

𝝉ଵ 𝝉ଶ 𝝉ଷ

End-to-end deadline

fetch result (release event)



The call-back problem /3
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Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5

Classic (independent-task) RTA 𝑅௜ ൌ 𝐶௜ ൅ 𝐵௜ ൅ ∑ ோ೔
்ೕ

𝐶௝௝∈௛௣ሺ௜ሻ

𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ   7

This analysis assumes a critical instant in which all tasks 
become ready simultaneously, and misses out completely that 
𝜏ଷ’s release is to be preceded by the completion of  𝜏ଶ and 𝜏ଵ



MAST “understands” transactions

 Modeling and Analysis Suite for Real-Time Systems 
(MAST, http://mast.unican.es)
 Developed at University of Cantabria, Spain
 Open source
 Implements several analysis techniques

 For uniprocessor and distributed (no-shared memory) processor 
systems

 Under FPS or EDF, alone or in combination
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MAST: real-time model
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MAST: transaction

 To model causal relations between activities and 
form concatenations with them
 Triggered by external events with various release 

patterns: periodic, sporadic, aperiodic, in burst, …
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MAST: operations

 The MAST model of a system includes the 
description of all the operations that it comprises
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MAST: an example transaction
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MAST: example shared resources
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MAST: example tasks
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MAST model of the call-back pattern
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Worst-case offset-based analysis
𝑅ଵ ൌ 12,𝑂ଵ ൌ 0, 𝐽ଵ ൌ 0
𝑅ଶ ൌ 20,𝑂ଶ ൌ 𝑅ଵ௕௘௦௧, 𝐽ଶ ൌ 𝑅ଵ െ 𝑅ଵ௕௘௦௧
𝑅ଷ ൌ 27

The call-back problem /4
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Relative to the beginning of  the transaction,
𝑶𝟑 ൌ 𝑹𝟐, not knowing the best case

Classic RTA
𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ 7

𝑅௜ ൌ 𝐶௜ ൅ 𝐵௜ ൅ ෍
𝑅௜ െ 𝑂௝ ൅ 𝐽௝ ൅ 𝑂௜ ൅ 𝐽௜

𝑇௝
𝐶௝

௝∈௛௣ሺ௜ሻ

െ 𝑂௜ ൅ 𝐽௜

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5



Summary

 We have taken a deeper look into how “transactions” 
can help reason about end-to-end response time of 
concatenations

 We have seen how MAST can be used to model 
systems with transactions and analyze them with the 
worst-case dynamic offset (WCDO) technique 
developed by the University of Cantabria
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6.b WCET analysis

Where we learn how the worst-case 
execution-time (WCET) value used in 
response-time analysis can be determined, 
and explore the taxonomy of WCET analysis 
techniques



Worst-case execution time (WCET)

 Across all input data and all initial logical states
 So that all execution paths of the program can be traversed
 May be prohibitively difficult to determine and provide

 For any hardware state
 So that the worst-case execution conditions are in effect on the processor
 Increasingly hard on modern processors, full of access restrictions and of 

state-perturbing features
 Out-of-order execution pipelines, caches, branch predictors, speculative execution

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator of it
 The high-watermark value can be much smaller than the WCET !

 Static WCET analysis
 Uses an abstract model of the HW and of the program
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Computing the WCET

 The exact WCET is not generally computable 
 Another kind of halting problem

 Yet, WCET bounds are essential to feasibility analysis
 Must be safe, to upper bound all possible executions
 Must be tight, to avoid costly over-dimensioning
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Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control flow 
and on the fine-grained behavior of the HW
 High-level analysis addresses program execution

 Control flow analysis builds a control flow graph (CFG) for it

 Low-level analysis determines the timing cost of individual 
processor instructions on the abstract model of the HW
 Not constant in modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)
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Static WCET analysis /2
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 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with 
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers
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Static WCET analysis /3
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Implicit path enumeration technique

 The program’s CFG is augmented with flow graph constraints
 The WCET is computed with 

integer linear programming or 
constraint programming

 ௜ ௜௜
 𝑥௜ : execution frequency of edge 𝑖
 𝑡௜ : execution time of edge 𝑖

 While respecting the given
flow-graph constraints
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CFG Flow graph constraints



Static WCET analysis /4

 High-level analysis /2
 Using the IPET requires employing several techniques

 Control-flow analysis to construct the CFG
 Value analysis to resolve memory accesses
 Data-flow analysis to find loop bounds for graph constraints

 Automated information extraction is insufficient 
 User annotation of flow facts is needed

 To help detect infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and memory references
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Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features 

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible
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Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update  function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature
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Understanding the cache

 Cache holds 2௞ lines of 2௡ୀ଺ ൌ 64 bytes each: this yields space locality
 RAM has 2௠ addresses, for 𝑚 ≫ 𝑛

 RAM address is read as [tag (𝑚 െ 𝑘 െ 𝑛 bits): index (𝑘 bits) : offset (𝑛 bits)]
 Three strategies map RAM addresses to cache lines

 Chance of access conflict as high as size of tag field
 Direct mapping: each memory address maps to a single cache line

 Index tells cache line, offset tells position in it, tag tells hit or miss
 N-way set associative: each memory address maps to a single cache set

 The cache is divided into sets, each holding 𝑠 ൌ 2 or 4 lines
 Index tells cache set, offset tells position in cache line, tag tells hit or miss across 

the set: lower chance of access conflicts
 Fully associative: each memory address maps to any cache line

 No index field: tag-based matching search across the entire cache (very complex!)
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Understanding the cache
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Direct	mapping	(by	index)
Each memory address maps to a unique cache line:

the index field gives its placement;
the tag field tells match or miss

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache lines:

the index field tells the set; 
the tag field tells match or miss across the set

offsetindextag
031

datatag V

offsetindextag
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datatag V

1. closure2. look-up 1. closure2. look-up

memory



2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 335 of  320



2020/2021 UniPD – T. Vardanega

Static WCET analysis: the big picture

 Open problems
 Can we trust the abstract model of the processor hardware?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

 Are we free from timing anomalies?
 When the local worst case does not lead to global worst case

Analysis framework 
and 

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds
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Timing anomaly: example

 Assume there is dependency between (some) instructions 
because of shared HW resources (as in pipeline stages) 

 And opportunistic scheduling is made of individual requests

 Faster execution of A leads to worse overall execution, owing to 
the order in which the instructions are executed
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Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor and on the final executable 

 WCET analysis helps software design before coding: analysis loses 
value if the program is modified (!)

 Yet, understanding that safeness is not guaranteed (!)
 Hybrid approaches leverage

 The measurement of basic blocks on the real HW 
 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 338 of  320



2020/2021 UniPD – T. Vardanega

Hybrid analysis /2

 Approaches to collect timing information 
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation affects the timing behavior of the program (aka the 

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results is contingent on the coverage of 
the executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement 
 Worst-case state dependence is gone if HW response time is randomized 
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Hybrid analysis: the big picture

 Open problems
 Can we trust the observations and the consequent estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May be costly to have, subtly different, or too late to arrive

Program 
executable

User annotations WCET
estimates

Target Hardware
(black box)

Execution 
traces

Path 
info
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Summary

 We have reckoned with the challenge WCET analysis
 We have seen how static WCET analysis works and where 

its weaknesses are
 We have learned what high-level analysis is
 And what low-level analysis does

 We have seen how measurement-based analysis is more 
pragmatic, but riskier: hybrid methods work are safer

 For HW with deterministic behavior, the uncertainty on the 
WCET bound is epistemic: we may not know enough

 For HW with randomized behavior, knowledge is aleatory
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 R. Wilhelm et al. (2008), The worst-case execution-time 
problem—overview of methods and survey of tools
DOI: 10.1145/1347375.1347389

 F.J. Cazorla et al. (2019), Probabilistic worst-case timing 
analysis: taxonomy and comprehensive survey
DOI: 10.1145/3301283
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