
6.a End-to-end analysis

Where we appreciate how worst-case offset-
based analysis serves very well the purpose
of performing end-to-end response-time
analysis of concatenation of tasks deployed
on single-CPU systems (in addition to
distributed systems as seen in §5)

Transactions (precedence chains) /1

 A term that denotes causal relations between tasks
 “Transactions” express dependency relations that cannot be

captured with classic workload models
 Chains of dependencies in job releases

 Originated in the analysis of distributed systems, where the
use of offsets helps contain the pessimism of release jitter

 They become useful also for the analysis of “collaboration
(release) patterns” employed for single-CPU systems

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 308 of 550

  





Transactions /2

 Two main kinds of dependency are of interest here
 Direct-precedence relation (e.g., producer-consumer)

  cannot proceed until completes regardless of priority assignment

 Indirect-priority relation
  does not suffer interference from (under FPS and synchronous

release of and  for priorities increasing with values)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 309 of 550

 

 p1=4

  p1=5 p2=3 p3=6

The call-back problem /1

 In §3.b we have seen that real-time tasks cannot
make direct in-out calls to one another
 If they did, the worst-case wait time of their

synchronization would be unbounded in the general case

 Direct synchronization is therefore banned
 But in the real world we may need the corresponding

semantic effects

 The Ada Ravenscar profile call-back pattern shows us
how to achieve those effects indirectly

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 310 of 550

The call-back problem /2

 This pattern creates a concatenation of tasks ଵ ଶ ଷ ,
which has an end-to-end deadline and an end-to-end
feasibility concern
 ଷ’s deadline in relation to ଵ’s release

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 311 of 550

𝝉𝟏 (Producer)
[cyclic]

𝝉𝟐 (Consumer)
[sporadic]

Q1

𝝉𝟑 (Callback)
[sporadic] Q2

fetch request (release event)

deposit request

deposit result

𝝉ଵ 𝝉ଶ 𝝉ଷ

End-to-end deadline

fetch result (release event)

The call-back problem /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 312 of 550

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5

Classic (independent-task) RTA 𝑅௜ ൌ 𝐶௜ ൅ 𝐵௜ ൅ ∑ ோ೔
்ೕ

𝐶௝௝∈௛௣ሺ௜ሻ

𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ 7

This analysis assumes a critical instant in which all tasks
become ready simultaneously, and misses out completely that
𝜏ଷ’s release is to be preceded by the completion of 𝜏ଶ and 𝜏ଵ

MAST “understands” transactions

 Modeling and Analysis Suite for Real-Time Systems
(MAST, http://mast.unican.es)
 Developed at University of Cantabria, Spain
 Open source
 Implements several analysis techniques

 For uniprocessor and distributed (no-shared memory) processor
systems

 Under FPS or EDF, alone or in combination

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 313 of 550

MAST: real-time model

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 314 of 550

MAST: transaction

 To model causal relations between activities and
form concatenations with them
 Triggered by external events with various release

patterns: periodic, sporadic, aperiodic, in burst, …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 315 of 550

MAST: operations

 The MAST model of a system includes the
description of all the operations that it comprises

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 316 of 550

Simple
operation BCET

ACET
WCET

Shared Resource
List

Composite
OperationName

SO 2SO 1 CO 1

Name

Simple Operation

BCET

ACET
WCET

Shared Resource
List

Composite Operation

Name

SO 2SO 1 CO 1

Name

Composite
Operation

SO 2SO 1 CO 1

Name

Enclosing Operation

CO 2SO 3 EO 1

Name
WCETBCET ACET

Composite
OperationName

Message Transmission
Name

Best Message Size
Avg Message Size
Worst Message Size

MAST: an example transaction

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 317 of 550

Event
Handler

Event
Handler

External
event

Operation
e11

Activity

Operation
e22

Scheduling
Server S2

Activity

Tr1

e1 e2 e3

Scheduling
Server S1

Timing
Requirements

Timing
Requirements

MAST: example shared resources

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 318 of 550

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 2

Q1

Put_Q1 BCET

ACET
WCET

Shared Resource
List

Simple operation

WCET = 1

Q1

Get_Q1

Simple
operation

Shared Resource
List

Name

Shared Resource

ICP

Ceiling = NA

Q1

MAST: example tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 319 of 550

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 8

None

Produce_SO

Composite
Operation

SO 2SO 1

Name

Enclosing Operation

Put_Q1Produce_SO

Produce_EO
WCET=10

External
event

Operation
Produce_EO

Activity

Producer

E1 O1

Scheduling
Server Producer_SS

D = 40

Composite
Operation

SO 2SO 1

Name

Scheduling Server

CPU1.PS

Producer_SS

FPP Priority = 4

Event
Handler

T=40

MAST model of the call-back pattern

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 320 of 550

External
event

Operation
Produce_EO

Activity

Producer_TR

E1
O1

Scheduling
Server Producer_SS

D = 40

Event
Handler

T=40

Operation
Consume_EO

Activity

O2

Scheduling
Server Consumer_SS

D = 40

Operation
Callback_EO

Activity

O3

Scheduling
Server Callback_SS

D = 40
Event

Handler
Event

Handler

Worst-case offset-based analysis
𝑅ଵ ൌ 12,𝑂ଵ ൌ 0, 𝐽ଵ ൌ 0
𝑅ଶ ൌ 20,𝑂ଶ ൌ 𝑅ଵ௕௘௦௧, 𝐽ଶ ൌ 𝑅ଵ െ 𝑅ଵ௕௘௦௧
𝑅ଷ ൌ 27

The call-back problem /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 321 of 550

Relative to the beginning of the transaction,
𝑶𝟑 ൌ 𝑹𝟐, not knowing the best case

Classic RTA
𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ 7

𝑅௜ ൌ 𝐶௜ ൅ 𝐵௜ ൅ ෍
𝑅௜ െ 𝑂௝ ൅ 𝐽௝ ൅ 𝑂௜ ൅ 𝐽௜

𝑇௝
𝐶௝

௝∈௛௣ሺ௜ሻ

െ 𝑂௜ ൅ 𝐽௜

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5

Summary

 We have taken a deeper look into how “transactions”
can help reason about end-to-end response time of
concatenations

 We have seen how MAST can be used to model
systems with transactions and analyze them with the
worst-case dynamic offset (WCDO) technique
developed by the University of Cantabria

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 322 of 550

6.b WCET analysis

Where we learn how the worst-case
execution-time (WCET) value used in
response-time analysis can be determined,
and explore the taxonomy of WCET analysis
techniques

Worst-case execution time (WCET)

 Across all input data and all initial logical states
 So that all execution paths of the program can be traversed
 May be prohibitively difficult to determine and provide

 For any hardware state
 So that the worst-case execution conditions are in effect on the processor
 Increasingly hard on modern processors, full of access restrictions and of

state-perturbing features
 Out-of-order execution pipelines, caches, branch predictors, speculative execution

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator of it
 The high-watermark value can be much smaller than the WCET !

 Static WCET analysis
 Uses an abstract model of the HW and of the program

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 324 of 320

Computing the WCET

 The exact WCET is not generally computable
 Another kind of halting problem

 Yet, WCET bounds are essential to feasibility analysis
 Must be safe, to upper bound all possible executions
 Must be tight, to avoid costly over-dimensioning

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 325 of 320

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control flow
and on the fine-grained behavior of the HW
 High-level analysis addresses program execution

 Control flow analysis builds a control flow graph (CFG) for it

 Low-level analysis determines the timing cost of individual
processor instructions on the abstract model of the HW
 Not constant in modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 326 of 320

Static WCET analysis /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 327 of 320

 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers

2020/2021 UniPD – T. Vardanega

Static WCET analysis /3

Real-Time Kernels and Systems 328 of 320

Implicit path enumeration technique

 The program’s CFG is augmented with flow graph constraints
 The WCET is computed with

integer linear programming or
constraint programming

 ௜ ௜௜
 𝑥௜ : execution frequency of edge 𝑖
 𝑡௜ : execution time of edge 𝑖

 While respecting the given
flow-graph constraints

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 329 of 320

CFG Flow graph constraints

Static WCET analysis /4

 High-level analysis /2
 Using the IPET requires employing several techniques

 Control-flow analysis to construct the CFG
 Value analysis to resolve memory accesses
 Data-flow analysis to find loop bounds for graph constraints

 Automated information extraction is insufficient
 User annotation of flow facts is needed

 To help detect infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and memory references

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 330 of 320

2020/2021 UniPD – T. Vardanega

Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Real-Time Kernels and Systems 331 of 320

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 332 of 320

Understanding the cache

 Cache holds 2௞ lines of 2௡ୀ଺ ൌ 64 bytes each: this yields space locality
 RAM has 2௠ addresses, for 𝑚 ≫ 𝑛

 RAM address is read as [tag (𝑚 െ 𝑘 െ 𝑛 bits): index (𝑘 bits) : offset (𝑛 bits)]
 Three strategies map RAM addresses to cache lines

 Chance of access conflict as high as size of tag field
 Direct mapping: each memory address maps to a single cache line

 Index tells cache line, offset tells position in it, tag tells hit or miss
 N-way set associative: each memory address maps to a single cache set

 The cache is divided into sets, each holding 𝑠 ൌ 2 or 4 lines
 Index tells cache set, offset tells position in cache line, tag tells hit or miss across

the set: lower chance of access conflicts
 Fully associative: each memory address maps to any cache line

 No index field: tag-based matching search across the entire cache (very complex!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 333 of 320

Understanding the cache

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 334 of 550

Direct	mapping	(by	index)
Each memory address maps to a unique cache line:

the index field gives its placement;
the tag field tells match or miss

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache lines:

the index field tells the set;
the tag field tells match or miss across the set

offsetindextag
031

datatag V

offsetindextag
031

datatag V

1. closure2. look-up 1. closure2. look-up

memory

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 335 of 320

2020/2021 UniPD – T. Vardanega

Static WCET analysis: the big picture

 Open problems
 Can we trust the abstract model of the processor hardware?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

 Are we free from timing anomalies?
 When the local worst case does not lead to global worst case

Analysis framework
and

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

Real-Time Kernels and Systems 336 of 320

2020/2021 UniPD – T. Vardanega

Timing anomaly: example

 Assume there is dependency between (some) instructions
because of shared HW resources (as in pipeline stages)

 And opportunistic scheduling is made of individual requests

 Faster execution of A leads to worse overall execution, owing to
the order in which the instructions are executed

Real-Time Kernels and Systems 337 of 320

Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor and on the final executable

 WCET analysis helps software design before coding: analysis loses
value if the program is modified (!)

 Yet, understanding that safeness is not guaranteed (!)
 Hybrid approaches leverage

 The measurement of basic blocks on the real HW
 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 338 of 320

2020/2021 UniPD – T. Vardanega

Hybrid analysis /2

 Approaches to collect timing information
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation affects the timing behavior of the program (aka the

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results is contingent on the coverage of
the executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement
 Worst-case state dependence is gone if HW response time is randomized

Real-Time Kernels and Systems 339 of 320

2020/2021 UniPD – T. Vardanega

Hybrid analysis: the big picture

 Open problems
 Can we trust the observations and the consequent estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May be costly to have, subtly different, or too late to arrive

Program
executable

User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces

Path
info

Real-Time Kernels and Systems 340 of 320

Summary

 We have reckoned with the challenge WCET analysis
 We have seen how static WCET analysis works and where

its weaknesses are
 We have learned what high-level analysis is
 And what low-level analysis does

 We have seen how measurement-based analysis is more
pragmatic, but riskier: hybrid methods work are safer

 For HW with deterministic behavior, the uncertainty on the
WCET bound is epistemic: we may not know enough

 For HW with randomized behavior, knowledge is aleatory

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 341 of 320

Selected readings

 R. Wilhelm et al. (2008), The worst-case execution-time
problem—overview of methods and survey of tools
DOI: 10.1145/1347375.1347389

 F.J. Cazorla et al. (2019), Probabilistic worst-case timing
analysis: taxonomy and comprehensive survey
DOI: 10.1145/3301283

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 342 of 320

