
6.a End-to-end analysis

Where we appreciate how worst-case offset-
based analysis serves very well the purpose
of performing end-to-end response-time
analysis of concatenation of tasks deployed
on single-CPU systems (in addition to
distributed systems as seen in §5)

Transactions (precedence chains) /1

 A term that denotes causal relations between tasks
 “Transactions” express dependency relations that cannot be

captured with classic workload models
 Chains of dependencies in job releases

 Originated in the analysis of distributed systems, where the
use of offsets helps contain the pessimism of release jitter

 They become useful also for the analysis of “collaboration
(release) patterns” employed for single-CPU systems

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 308 of 550

Transactions /2

 Two main kinds of dependency are of interest here
 Direct-precedence relation (e.g., producer-consumer)

 cannot proceed until completes regardless of priority assignment

 Indirect-priority relation
 does not suffer interference from (under FPS and synchronous

release of and for priorities increasing with values)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 309 of 550

 p1=4

 p1=5 p2=3 p3=6

The call-back problem /1

 In §3.b we have seen that real-time tasks cannot
make direct in-out calls to one another
 If they did, the worst-case wait time of their

synchronization would be unbounded in the general case

 Direct synchronization is therefore banned
 But in the real world we may need the corresponding

semantic effects

 The Ada Ravenscar profile call-back pattern shows us
how to achieve those effects indirectly

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 310 of 550

The call-back problem /2

 This pattern creates a concatenation of tasks ଵ ଶ ଷ ,
which has an end-to-end deadline and an end-to-end
feasibility concern
 ଷ’s deadline in relation to ଵ’s release

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 311 of 550

𝝉𝟏 (Producer)
[cyclic]

𝝉𝟐 (Consumer)
[sporadic]

Q1

𝝉𝟑 (Callback)
[sporadic] Q2

fetch request (release event)

deposit request

deposit result

𝝉ଵ 𝝉ଶ 𝝉ଷ

End-to-end deadline

fetch result (release event)

The call-back problem /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 312 of 550

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5

Classic (independent-task) RTA 𝑅 ൌ 𝐶 𝐵 ∑ ோ
்ೕ

𝐶∈ሺሻ

𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ 7

This analysis assumes a critical instant in which all tasks
become ready simultaneously, and misses out completely that
𝜏ଷ’s release is to be preceded by the completion of 𝜏ଶ and 𝜏ଵ

MAST “understands” transactions

 Modeling and Analysis Suite for Real-Time Systems
(MAST, http://mast.unican.es)
 Developed at University of Cantabria, Spain
 Open source
 Implements several analysis techniques

 For uniprocessor and distributed (no-shared memory) processor
systems

 Under FPS or EDF, alone or in combination

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 313 of 550

MAST: real-time model

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 314 of 550

MAST: transaction

 To model causal relations between activities and
form concatenations with them
 Triggered by external events with various release

patterns: periodic, sporadic, aperiodic, in burst, …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 315 of 550

MAST: operations

 The MAST model of a system includes the
description of all the operations that it comprises

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 316 of 550

Simple
operation BCET

ACET
WCET

Shared Resource
List

Composite
OperationName

SO 2SO 1 CO 1

Name

Simple Operation

BCET

ACET
WCET

Shared Resource
List

Composite Operation

Name

SO 2SO 1 CO 1

Name

Composite
Operation

SO 2SO 1 CO 1

Name

Enclosing Operation

CO 2SO 3 EO 1

Name
WCETBCET ACET

Composite
OperationName

Message Transmission
Name

Best Message Size
Avg Message Size
Worst Message Size

MAST: an example transaction

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 317 of 550

Event
Handler

Event
Handler

External
event

Operation
e11

Activity

Operation
e22

Scheduling
Server S2

Activity

Tr1

e1 e2 e3

Scheduling
Server S1

Timing
Requirements

Timing
Requirements

MAST: example shared resources

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 318 of 550

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 2

Q1

Put_Q1 BCET

ACET
WCET

Shared Resource
List

Simple operation

WCET = 1

Q1

Get_Q1

Simple
operation

Shared Resource
List

Name

Shared Resource

ICP

Ceiling = NA

Q1

MAST: example tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 319 of 550

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 8

None

Produce_SO

Composite
Operation

SO 2SO 1

Name

Enclosing Operation

Put_Q1Produce_SO

Produce_EO
WCET=10

External
event

Operation
Produce_EO

Activity

Producer

E1 O1

Scheduling
Server Producer_SS

D = 40

Composite
Operation

SO 2SO 1

Name

Scheduling Server

CPU1.PS

Producer_SS

FPP Priority = 4

Event
Handler

T=40

MAST model of the call-back pattern

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 320 of 550

External
event

Operation
Produce_EO

Activity

Producer_TR

E1
O1

Scheduling
Server Producer_SS

D = 40

Event
Handler

T=40

Operation
Consume_EO

Activity

O2

Scheduling
Server Consumer_SS

D = 40

Operation
Callback_EO

Activity

O3

Scheduling
Server Callback_SS

D = 40
Event

Handler
Event

Handler

Worst-case offset-based analysis
𝑅ଵ ൌ 12,𝑂ଵ ൌ 0, 𝐽ଵ ൌ 0
𝑅ଶ ൌ 20,𝑂ଶ ൌ 𝑅ଵ௦௧, 𝐽ଶ ൌ 𝑅ଵ െ 𝑅ଵ௦௧
𝑅ଷ ൌ 27

The call-back problem /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 321 of 550

Relative to the beginning of the transaction,
𝑶𝟑 ൌ 𝑹𝟐, not knowing the best case

Classic RTA
𝑅ଵ ൌ 17
𝑅ଶ ൌ 25
𝑅ଷ ൌ 7

𝑅 ൌ 𝐶 𝐵
𝑅 െ 𝑂 𝐽 𝑂 𝐽

𝑇
𝐶

∈ሺሻ

െ 𝑂 𝐽

Id Task 𝑻𝒊 𝑪𝒊 Priority Blocking

𝜏ଵ Producer (periodic) 40 10 4 𝐵ଵ ൌ 2
𝜏ଶ Consumer (sporadic) 40 10 2 (L) 𝐵ଶ ൌ 0
𝜏ଷ Call-back (sporadic) 40 5 5 (H) 𝐵ଷ ൌ 2

Q1 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଵ,𝑃ଶ ൌ 4
Q2 Ceiling priority ൌ 𝑚𝑎𝑥 𝑃ଶ,𝑃ଷ ൌ 5

Summary

 We have taken a deeper look into how “transactions”
can help reason about end-to-end response time of
concatenations

 We have seen how MAST can be used to model
systems with transactions and analyze them with the
worst-case dynamic offset (WCDO) technique
developed by the University of Cantabria

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 322 of 550

6.b WCET analysis

Where we learn how the worst-case
execution-time (WCET) value used in
response-time analysis can be determined,
and explore the taxonomy of WCET analysis
techniques

Worst-case execution time (WCET)

 Across all input data and all initial logical states
 So that all execution paths of the program can be traversed
 May be prohibitively difficult to determine and provide

 For any hardware state
 So that the worst-case execution conditions are in effect on the processor
 Increasingly hard on modern processors, full of access restrictions and of

state-perturbing features
 Out-of-order execution pipelines, caches, branch predictors, speculative execution

 Measurement-based WCET analysis
 On either the real HW or a cycle-accurate simulator of it
 The high-watermark value can be much smaller than the WCET !

 Static WCET analysis
 Uses an abstract model of the HW and of the program

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 324 of 320

Computing the WCET

 The exact WCET is not generally computable
 Another kind of halting problem

 Yet, WCET bounds are essential to feasibility analysis
 Must be safe, to upper bound all possible executions
 Must be tight, to avoid costly over-dimensioning

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 325 of 320

Static WCET analysis /1

 To analyze a program without executing it
 Needs an abstract model of the target HW
 As well as the binary executable of the program

 Execution time depends on the program’s control flow
and on the fine-grained behavior of the HW
 High-level analysis addresses program execution

 Control flow analysis builds a control flow graph (CFG) for it

 Low-level analysis determines the timing cost of individual
processor instructions on the abstract model of the HW
 Not constant in modern HW
 Must be aware of the HW inner workings (pipeline, caches, etc.)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 326 of 320

Static WCET analysis /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 327 of 320

 High-level analysis /1
 Must analyze all possible execution paths of the program

 Builds the CFG as a superset of all possible execution paths
 The unit of that analysis is the basic block

 The longest sequence of program instructions with
single entry and single exit (no branches, no loops)

 Path analysis faces multiple challenges
 Input-data dependency
 Infeasible paths
 Loop bounds and recursion depth
 Dynamic calls through pointers

2020/2021 UniPD – T. Vardanega

Static WCET analysis /3

Real-Time Kernels and Systems 328 of 320

Implicit path enumeration technique

 The program’s CFG is augmented with flow graph constraints
 The WCET is computed with

integer linear programming or
constraint programming

 𝑥 : execution frequency of edge 𝑖
 𝑡 : execution time of edge 𝑖

 While respecting the given
flow-graph constraints

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 329 of 320

CFG Flow graph constraints

Static WCET analysis /4

 High-level analysis /2
 Using the IPET requires employing several techniques

 Control-flow analysis to construct the CFG
 Value analysis to resolve memory accesses
 Data-flow analysis to find loop bounds for graph constraints

 Automated information extraction is insufficient
 User annotation of flow facts is needed

 To help detect infeasible paths
 To refine loop bounds
 To define frequency relations between basic blocks
 To specify the target of dynamic calls and memory references

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 330 of 320

2020/2021 UniPD – T. Vardanega

Static WCET analysis /5

 Low-level analysis /1
 Requires abstract modeling of all HW features

 Processor, memory subsystem, buses, peripherals, …
 It is conservative : it must never underestimate actual costs
 All possible HW states should be accounted for

 HW modeling faces multiple challenges
 Precise modeling of complex hardware is difficult

 Inherent complexity (e.g., out-of-order pipelines)
 Lack of comprehensive information (intellectual property, patents, …)
 Differences between specification and implementation (!)

 Exhaustive representation of all HW states is computationally infeasible

Real-Time Kernels and Systems 331 of 320

Static WCET analysis /6

 Low-level analysis /2
 Concrete HW states

 Determined by the history of execution
 Cannot compute all HW states for all possible executions

 Invariant HW states are grouped into execution contexts
 Conservative overestimations are made to reduce the research space

 Abstract interpretation
 Computes abstract states and specific operators in the abstract domain

 Update function to keep the abstract state current along the exec path
 Join function to merge control flows after a branch

 Some techniques are specific to each HW feature

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 332 of 320

Understanding the cache

 Cache holds 2 lines of 2ୀ ൌ 64 bytes each: this yields space locality
 RAM has 2 addresses, for 𝑚 ≫ 𝑛

 RAM address is read as [tag (𝑚 െ 𝑘 െ 𝑛 bits): index (𝑘 bits) : offset (𝑛 bits)]
 Three strategies map RAM addresses to cache lines

 Chance of access conflict as high as size of tag field
 Direct mapping: each memory address maps to a single cache line

 Index tells cache line, offset tells position in it, tag tells hit or miss
 N-way set associative: each memory address maps to a single cache set

 The cache is divided into sets, each holding 𝑠 ൌ 2 or 4 lines
 Index tells cache set, offset tells position in cache line, tag tells hit or miss across

the set: lower chance of access conflicts
 Fully associative: each memory address maps to any cache line

 No index field: tag-based matching search across the entire cache (very complex!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 333 of 320

Understanding the cache

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 334 of 550

Direct	mapping	(by	index)
Each memory address maps to a unique cache line:

the index field gives its placement;
the tag field tells match or miss

Set‐associative	mapping	(by	set)
Each memory address maps to a set of cache lines:

the index field tells the set;
the tag field tells match or miss across the set

offsetindextag
031

datatag V

offsetindextag
031

datatag V

1. closure2. look-up 1. closure2. look-up

memory

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 335 of 320

2020/2021 UniPD – T. Vardanega

Static WCET analysis: the big picture

 Open problems
 Can we trust the abstract model of the processor hardware?
 How much overestimation do we incur?

 Inclusion of infeasible paths
 Overestimation is inevitable in abstract state computation

 Intrinsic weakness of user annotations
 Labor intensive and error prone

 Are we free from timing anomalies?
 When the local worst case does not lead to global worst case

Analysis framework
and

Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

Real-Time Kernels and Systems 336 of 320

2020/2021 UniPD – T. Vardanega

Timing anomaly: example

 Assume there is dependency between (some) instructions
because of shared HW resources (as in pipeline stages)

 And opportunistic scheduling is made of individual requests

 Faster execution of A leads to worse overall execution, owing to
the order in which the instructions are executed

Real-Time Kernels and Systems 337 of 320

Hybrid analysis /1

 To obtain realistic (less pessimistic) WCET estimates
 On the real target processor and on the final executable

 WCET analysis helps software design before coding: analysis loses
value if the program is modified (!)

 Yet, understanding that safeness is not guaranteed (!)
 Hybrid approaches leverage

 The measurement of basic blocks on the real HW
 To avoid pessimism from abstract modeling

 Static analysis techniques to combine the obtained measures
 Knowledge of the program execution paths

 Newer approaches explore probabilistic properties (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 338 of 320

2020/2021 UniPD – T. Vardanega

Hybrid analysis /2

 Approaches to collect timing information
 Software instrumentation

 The program is augmented with instrumentation code
 Instrumentation affects the timing behavior of the program (aka the

probe effect) and causes problems to deciding what’s the final system
 Hardware instrumentation

 Depends on specialized HW features (e.g., debug interface)

 Confidence in the results is contingent on the coverage of
the executions and on the exploration of worst-case states
 Exposed to the same problems as static analysis and measurement
 Worst-case state dependence is gone if HW response time is randomized

Real-Time Kernels and Systems 339 of 320

2020/2021 UniPD – T. Vardanega

Hybrid analysis: the big picture

 Open problems
 Can we trust the observations and the consequent estimates?

 Contingent on worst-case input and worst-case HW state
 Consideration of infeasible paths

 Needs the real execution environment or an identical copy of it
 May be costly to have, subtly different, or too late to arrive

Program
executable

User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces

Path
info

Real-Time Kernels and Systems 340 of 320

Summary

 We have reckoned with the challenge WCET analysis
 We have seen how static WCET analysis works and where

its weaknesses are
 We have learned what high-level analysis is
 And what low-level analysis does

 We have seen how measurement-based analysis is more
pragmatic, but riskier: hybrid methods work are safer

 For HW with deterministic behavior, the uncertainty on the
WCET bound is epistemic: we may not know enough

 For HW with randomized behavior, knowledge is aleatory

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 341 of 320

Selected readings

 R. Wilhelm et al. (2008), The worst-case execution-time
problem—overview of methods and survey of tools
DOI: 10.1145/1347375.1347389

 F.J. Cazorla et al. (2019), Probabilistic worst-case timing
analysis: taxonomy and comprehensive survey
DOI: 10.1145/3301283

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 342 of 320

