
7.a Multicore systems: 
initial reckoning

Where we enter into the world of multicore 
processors and see that everything has changed. 
To make sense of it, we first look inside the 
processor and see what has happened there 
(and still is), and then begin to reflect on what 
the scheduling problem becomes when 
parallelism enters the picture



A reconnaissance taxonomy /1

 Distributed systems are loosely coupled
 They do not share memory: capturing the global status of 

computation is exceedingly costly
 Scheduling decisions are strictly per-processor

 Multiprocessors (nowadays multi-core) are tightly coupled
 They share memory: capturing global status and workload 

information on all CPUs is cheap and straightforward
 They bring application-level parallelism to the fore
 Their architecture enables several variants of scheduling

 Modern multiprocessors are either homogeneous (aka 
symmetric) or heterogeneous
 The former make for a much simpler problem
 The latter are the new normality and a harder problem
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The origin of multicore processors
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Courtesy of 
IEEE Computer, 
January 2011, 
page 33



Understanding multicore hardware
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Cache coherence /1

 Now that cores have their own private L1 cache …

 … when jobs share data across cores, R/W 
operations on the same memory location may see 
different copies of it in their respective L1 cache
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Cache coherence /2

 Naïve thoughts …
 Renounce caches

 Nay, that would bog performance
 Sharing L1 across cores

 Nay, parallelism would smash locality
 Use write-through caches

 Nay, local reads would lose remote writes

 Req-1: every read must see the effect of every write
 Either every write updates every L1 (write update)
 Or every write invalidates all L1 copies of same ref (write invalidate)

 Req-2: all reads must see the same order of writes 
 Write requests’ propagation on the bus tells the order (snooping)
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Hardware interference /1

 Parallel execution on a multicore processor causes 
opportunities of contention for the hardware 
resources shared among the cores
 This phenomenon did not occur on single-core systems

 Such contention increases the WCET of running jobs 
by causing them to hold the CPU without progressing (!)
 This is called stalling
 In single-core processors, a job may be held from 

running while being ready, but is king when it runs 
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Hardware interference /2

 The WCET of even the 
simplest single-path program 
running alone on a CPU does 
not stay the same when other 
programs run on other CPUs

 The extent of slow-down is 
proportional to the amount 
of off-core work that the 
programs happen to do

 The WCET no longer is a 
composable value! 
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A reconnaissance taxonomy /2

 What scheduling choices do multiprocessors enable?
 Global vs. partitioned, or alternatives between them

 Global scheduling allows jobs to run on any core and move across 
them freely during execution

 Partitioned scheduling translates into a task-to-core static assignment 
problem, followed by single-core scheduling

 The good-old world of optimality falls apart
 EDF no longer optimal and not always better than FPS

 Global scheduling not always better than partitioned 
scheduling
 Counterintuitive: having multiple assignment choices does not

beat having just one
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A reconnaissance taxonomy /3
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Global Partitioned

Clustered Hybrid (semi-partitioned)



Intermission: what is 
going on?

Let us listen to the words of a language 
designer, who explains what is changing in the 
hardware space and what that implies for the 
software. We will return to this line of argument 
in the last lecture of this course
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What’s the matter with the processor HW?

• Major, unstoppable shift to multicore, manycore, 
heterogeneous (e.g. GPGPU) processors, cloud 
computing

• Associated challenge 
– It is already hard to write safe, correct sequential programs for 

single-core processors 
– Will programming for multicores exceed our abilities?

• Very opportune goal: provide programming language 
support to make it easy and natural to write safe 
(including predictable), correct parallel programs
– Perhaps even easier than it is to write safe, correct sequential 

programs in many existing languages

• Is that possible?
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Why are they all moving to multi/manycore?

• Power, power, power
– Speeding clock rates above 3 GHz increased power density 

beyond what the chips (and customer pocketbooks) can bear
– More and more computing is moving to battery-operated mobile 

platforms where low power is king

• With multi/manycore, the theoretical computing 
performance-per-watt (PPW) can be increased by 
adding cores, perhaps slowing clock rate a bit
– With single-core processor technology, PPW began to decrease

with increasing clock rates, due to increased power dissipation 
(source-to-drain leakage)

• Clock rate doubling (one ramification of Moore’s 
law) came to a screeching halt by the year 2005
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The implications of going “multicore”

• Clock rate
– Clock rates that were doubling about every 2 years since 1985, 

stalled at about 3 GHz by 2005
– Had they continued doubling, we would now be buying laptops 

with clocks at about 50 GHz

• Cores/chip
– Scaling to smaller features has continued
– Now using added chip real estate for additional CPU cores
– The number of cores/chip has started doubling since 2005
– After that (15 years), mainstream commercial x86 chips came at 

20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+

• Almost back on Moore’s Law exponential rocket
– But only if considering cores/chip x performance/core
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What else is happening to the HW?

• HW is getting more complicated
• Not just a handful of really fast processors
• Today’s fastest computers have

– A giant network of nodes
– Each node is itself a heterogeneous conglomeration

– Multiple cores
– Vector units
– GPUs or other accelerators 

• Our challenge is to figure how to program these beasts
– Ideally we want our programs to scale without rewriting, from one 

core up to a giant server farm or supercomputer
– Our basic approach is to eliminate barriers to parallelization, and 

remove the sequential bias of our programming languages
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Concurrency vs. Parallelism

Concurrency
• Concurrent programming allows 

the programmer to simplify the 
application architecture by using 
multiple logical threads of control 
to reflect the natural patterns of 
collaboration in the problem 
domain
• Heavier-weight constructs can be 

acceptable as they used rarely

Parallelism
• Parallel programming allows the 

programmer to divide-and-
conquer the problem space, using 
multiple threads to work in 
parallel on independent parts of it
• Constructs should be light-weight

syntactically and at run time as 
they are used very frequently 

Collaboration Independence

We are heading toward parallelism within concurrency
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Parallelism within concurrency (example)

Client First-level 
dispatcher

Second-level 
mapped and 
reducer [1]

Service 
worker 1 

instance 1.1

Service 
worker 1 

instance 1.n

Second-level 
mapper and 
reducer [m]

Service 
worker m 

instance m.1

Service 
worker m 

instance m.n

Parallel unit

Concurrent unit

Concurrent aggregate



All falls apart

 In the multiprocessor world, low-utilization tasksets may be 
deemed unfeasible: “ the Dhall’s effect ” [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential 
complexity
 The known sufficient tests with polynomial complexity are 

pessimistic
 Single-core optimality criteria do not apply anymore
 Global scheduling is not always better than partitioned
 RM or DM priority assignments are not optimal for it

 The same priority level may have different effects on different cores
 No optimal priority assignment has been found to exist 

with polynomial complexity
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Dhall’s effect /1

Task

10 10 5 0.5

10 10 5 0.5

12 12 8 0.67

 Under EDF or FPS, global scheduling, would run and 
first on either of the processors respectively

 But this would not leave sufficient time for to complete 
 7 time units would be available on each processor, but 8 on neither

 Deadline miss even if the total system is underutilized (!)
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G-LLF fails too …

𝑆 ൌ 𝜏ଵ ൌ 4,3 , 𝜏ଶ ൌ 4,3 , 𝜏ଷ ൌ 10,5 ,𝐻ௌ ൌ 20

𝑈௦ ൌ
3
4 ൅

3
4 ൅

5
10 ൌ 2 ൌ 𝒎

 At 𝑡 ൌ 15, the remaining CPU time is 𝑇ோ ൌ 𝑚 ൈ 𝐻ௌ െ 𝑡 ൌ 𝟏𝟎
 Yet, the time needed is 𝑇ே ൌ 𝑒ଵ ൅ 𝑒ଶ ൅ 𝑒ଷ ൌ 𝟏𝟏
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𝜏ଷ

𝜏ଶ

𝜏ଵ

𝜏ଶ

𝜏ଵ

𝜏ଶ𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଵ𝜏ଵ

3 4 7 8

𝐿ଵ ൌ 1

𝐿ଶ ൌ 1

𝐿ଷ ൌ 5 2

1

1

6 10

0 1

0

1 0

0

9 12

5 3

1

1

0

15

One CPU is idle

𝟎 : zero laxity

ሺ𝜑௜ ,𝒑𝒊, 𝒆𝒊,𝐷௜ሻ



Theorem (stating the obvious)
When the total utilization of a periodic task set is equal to 
the number of processors, and all tasks have the same 
initial release time ( ), then no feasible schedule can 
allow any processor to remain idle for any length of time

Why does this happen?

 In the LLF example, at times and , one CPU 
is left idle for 1 time unit
 Scheduling was greedy on an ill-based sense of urgency

 That waste will be missed out at time , when 
tasks will have laxity with just CPUs available

 A “proper” scheduling algorithm should have noticed this 
problem already at !
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Dhall’s effect /2

Task

10 10 9 0.9

10 10 9 0.9

10 10 2 0.2

 Partitioned scheduling does not work well either
 After and are assigned to a CPU, has no place to run

 To find room for execution, 𝒇 would have to migrate from one CPU to 
the other

 And 𝒅 and 𝒆 should also be willing to yield for 𝒇 to complete in time
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The oddity of software interference /1

 What does the software interference ௜ suffered by task 
௜ in its busy period become on a multiprocessor?
 For partitioned scheduling, it reduces to the single-processor 

case, so it poses no problem
 For global scheduling on an -processor system, it occurs 

only when tasks are ready simultaneously
 This means that harmonic periods may be bad news!

 Multiprocessor interference for ௜ can be computed as 
the sum of all time intervals when higher-priority 
tasks execute in parallel on all processors
 Not the easiest of things to determine …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 366 of  552



The oddity of software interference /2

 A very pessimistic bound for G-scheduling 
considers all higher-priority tasks to interfere always

𝒌
𝒎𝒂𝒙

𝒌
𝟏
𝒎

𝑹𝒌
𝒎𝒂𝒙

𝑻𝒋 𝒋𝝉𝒋∈𝒉𝒑ሺ𝒌ሻ

 This naïve bound however is extremely pessimistic 
 It can be improved, and has been, but for great 

computational complexity, still without becoming exact
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Global scheduling anomalies

 In single-core processor scheduling, the deadline-miss 
ratio often depends on system load
 Ergo, increasing tasks’ period should decrease utilization and 

thus decrease the deadline-miss ratio too
 Multiprocessor anomaly 1

 A decrease in processor demand from tasks can increase the 
interference on tasks by changing the time windows in 
which those tasks execute

 Multiprocessor anomaly 2
 A decrease in one task’s own processor demand may increase the 

interference that it suffers
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Credits to to B. Andersson and J. Jonsson
Proc. of RTSS WiP Session,  2000, pp. 53–56



Anomaly 1: decrease in utilization
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Task 𝑻 𝑫 𝑪 𝑼
𝒂 3 3 2 0.67
𝒃 4 4 2 0.50
𝒄 12 12 8 0.67

𝑚 ൌ 2 processors, ∑ 𝑈௜ ൌ 1.83௜ୀଵ,..,௡ୀଷ ൏ 𝑚, 
𝜏௖ is saturated (𝐶௖ ൅ 𝐼௖ ൌ 𝐷௖): any increase 
in 𝐼௖ for the same 𝐶௖ would render 𝜏௖
unfeasible

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c



Anomaly 1: continued

 With ௔ᇲ ௔ , decreases
 But now periods are harmonic and cause ௖ to suffer 

more interference
 ௖ᇲ ௖ , which causes ௖ to miss its deadline
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Anomaly 2: decrease in own demand
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Task 𝑻 𝑫 𝑪 𝑼
𝒂 4 4 2 0.5
𝒃 5 5 3 0.6
𝒄 10 10 7 0.7

𝑚 ൌ 2 processors and 𝑈 ൌ 1.8
𝜏௖ with 𝐼௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c



Anomaly 2: continued

 With ௖ᇲ ௖ , decreases
 But then ௖ᇲ ௖ , increases, for ௖ ’s 2nd job

 Which also shows that the critical-instant hypothesis no 
longer holds!
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The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and 
implement 

 They work very well on single-core processors, where 
the urgency of a job collapses into a single value, which can be 
used to schedule jobs greedily

 Greedy algorithms fail on multiprocessors, where 
computation (one’s own progress) and parallelism (use of 
all cores) are distinct dimensions

 Optimality in multicore scheduling needs to use 
different principles altogether
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Enters proportionate fairness

 An airline has planes and flight crews, with 
 All planes and crews are based in the same city

 Exactly crews are scheduled to work on any given days
 Due to seniority, job performance, or other factors, it may be 

desirable to schedule some crews more often than others
 This notion reflects the crew work period

 For each crew , ௞ is the fraction of all days that crew 
is desired to work, such that ௞௞

 The airline wants a scheduler that produces a schedule in 
which every crew works at a balanced rate 
 One where, after 𝑡 workdays (the hyperperiod), crew 𝑘 will have 

worked either 𝑊௞ ൈ 𝑡 or 𝑊௞ ൈ 𝑡 workdays
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Unveiling the analogy

 The airplanes are the CPUs ( )
 The crews are the tasks ( )

 Assigning to is a multiprocessor scheduling problem
 The contract with the crews is that each of them will 

receive work according to their privilege ௐ೔
 For tasks, this is the utilization rate
 This is the first dimension of the multiprocessor scheduling 

problem (progress)
 The contract with the airplanes is that they will all be 

given a crew, ௜௜ୀଵ,..,௡
 This is the second dimension of the multiprocessor 

scheduling problem (parallelism)
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P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness also 
known as P-fairness
 Each task 𝜏௜ is assigned processing resources in proportion to its 

weight 𝑊௜ ൌ   ஼೔
்೔

so that its computation may progress steadily
 Think of real-time multimedia applications …

 At every time , task ௜ must have been scheduled 
either ௜ or ௜ time units
 Perfectly analogous to the airline crew schedule problem
 Without loss of generality, preemption is assumed to occur solely at 

integral time units
 The workload model is assumed to be periodic with implicit 

deadlines
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P-fair scheduling /2

 ௜ is the delta between the total resource 
allocation that task ௜ should have received in 
and what schedule gave it

 For a P-fair schedule , at time 
 ௜ is ahead if and only if ௜

 ௜ is behind if and only if ௜

 ௜ is punctual if and only if ௜

 Scheduling occurs at “integral” units of time
 This reflects the analogy that the assignment of one crew is 

for a full (integral) airplane service
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P-fair scheduling /3

 is the characteristic (infinite) string of task ௫
over for with

௧ ௫ ௫
Above or below the integral approximation of the fluid rate curve

 is the characteristic substring
௧ାଵ ௧ାଶ ௧ᇱ of task ௫ at time 

where 𝑡′ ൌ 𝑚𝑖𝑛 𝑖: 𝑖 ൐ 𝑡:𝜶௜ሺ𝑥ሻ ൌ 0
 For a P-fair schedule at time , task ௜ is

 Urgent : ௜ is behind and 𝒕 ௜ ( ௜ has credits to claim)
 Tnegru : ௜ is ahead and 𝒕 ௜ ( ௜ has stolen from others)
 Contending otherwise

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 378 of  552



The fluid rate curve
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𝜶௧ୀସ 𝑖 ൌ 𝒔𝒊𝒈𝒏 𝑊௜ ൈ 4 ൅ 1 െ 𝑊௜ ൈ 4 െ 1 ൌ 3.125 െ 2 െ 1 ൌ ൅
At time 𝑡 ൌ 4 ൅ 1, if  not scheduled at 𝑡 ൌ 4, task 𝜏௜ might have a credit that could not be satisfied 

in one single round of  scheduling:

100% workload

𝑾𝒊 ൌ
𝑪𝒊
𝑻𝒊
ൌ
𝟓
𝟖 ൌ 𝟎.𝟔𝟐𝟓

𝑊௜ ൈ 4

𝑊௜ ൈ 4 ൅ 1

𝑇௜ ൌ 8

𝐶௜ ൌ 5

𝑡 ൌ 5

Time supply

Time demand

𝑡 ൌ 4

𝑤௜ 𝑡 ൌ 4 ൌ 2

𝑤௜ 𝑡 ൌ 5 ൌ 2

൐ 1



Properties of a P-fair schedule 

 For task ௜ ahead at time under 
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is ahead at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ 0 and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is punctual at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ scheduled at t then 𝜏௜ is ahead at 𝑡 ൅ 1

 For task ௜ behind at time under 
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is ahead at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ 0 and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is punctual at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1

urgent

tnegru
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P-fair scheduling /4

 To preserve P-fairness
 Every task urgent at time must be scheduled at so that 

P-fairness can be preserved
 No task tnegru at time can be scheduled at 

 With resources, tasks, and ଴ tnegru, ଵ contending, 
ଶ urgent tasks at time ଴ ଵ ଶ , two 

situations must be avoided
 𝟐 , when all urgent tasks cannot be scheduled: some tasks 

will never be able to catch up
 𝟎 , when some tnegru tasks will be scheduled 

wasting CPU time on them that will be regretted later
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P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Always schedule all urgent tasks
 Allocate the remaining resources to the ℎ𝑝 contending tasks according 

to the total order function ⊇ with ties broken arbitrarily
 At time 𝑡, 𝑥 ⊇ 𝑦 : 𝜶ሺ𝑥, 𝑡ሻ ൒ 𝜶ሺ𝑦, 𝑡ሻ, where െ൏ 0 ൏ ൅

 With PF, we have ௫௫∈ሾ଴,௡ሿ
 Dummy task added to task set to fill utilization up to 𝑚

 No problematic situation can occur with the PF algorithm
 PF always has 𝑛ଶ ൑ 𝑚 and 𝑛଴ ൑ 𝑛 െ𝑚
 A property of seeking the closest approximation of the fluid rate 

curve for all tasks
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Example (PF scheduling) /1

Task C T W

𝒗 1 3 ଵ
ଷ

𝒘 2 4 ଵ
ଶ

𝒙 5 7 ହ
଻

𝒚 8 11 ଼
ଵଵ

𝒛
ு
ଶ

ு
ଶ

 𝑚 ൌ 3 processors
 𝑛 ൌ 4 tasks

 𝑈 ൌ ∑ ಴೔
೅೔௜ୀ௩,௪,௫,௬ ൌ 2.27489 …

 𝜏௭ is a dummy task used to top 
up system utilization to 𝑚
 𝑈௭ ൌ 𝑚 െ 𝑈

 𝜏௭’s period is set to the system 
hyperperiod 𝐻
 This time we just halved it as 𝑇௭

and 𝐶௭ happen to be even
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Example (PF scheduling) /2
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These tasks are scheduled and they become ahead



Summary

 Multicore processors are the processor makers’ 
escape route to the doom of Moore’s law, yet their 
advent shakes the foundations of real-time systems 
theory that rest on the single-runner assumption

 We are confounded between the urge to schedule 
greedily and the actual inanity of it

 We begin to see that optimality here is a very 
different story
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