
7.a Multicore systems:
initial reckoning

Where we enter into the world of multicore
processors and see that everything has changed.
To make sense of it, we first look inside the
processor and see what has happened there
(and still is), and then begin to reflect on what
the scheduling problem becomes when
parallelism enters the picture

A reconnaissance taxonomy /1

 Distributed systems are loosely coupled
 They do not share memory: capturing the global status of

computation is exceedingly costly
 Scheduling decisions are strictly per-processor

 Multiprocessors (nowadays multi-core) are tightly coupled
 They share memory: capturing global status and workload

information on all CPUs is cheap and straightforward
 They bring application-level parallelism to the fore
 Their architecture enables several variants of scheduling

 Modern multiprocessors are either homogeneous (aka
symmetric) or heterogeneous
 The former make for a much simpler problem
 The latter are the new normality and a harder problem

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 345 of 320

The origin of multicore processors

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 346 of 320

Courtesy of
IEEE Computer,
January 2011,
page 33

Understanding multicore hardware

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 347 of 320

Instruction
cache

Data
cache

Caches

Courtesy of

Cache coherence /1

 Now that cores have their own private L1 cache …

 … when jobs share data across cores, R/W
operations on the same memory location may see
different copies of it in their respective L1 cache

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 348 of 320

Cache coherence /2

 Naïve thoughts …
 Renounce caches

 Nay, that would bog performance
 Sharing L1 across cores

 Nay, parallelism would smash locality
 Use write-through caches

 Nay, local reads would lose remote writes

 Req-1: every read must see the effect of every write
 Either every write updates every L1 (write update)
 Or every write invalidates all L1 copies of same ref (write invalidate)

 Req-2: all reads must see the same order of writes
 Write requests’ propagation on the bus tells the order (snooping)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 349 of 320

Hardware interference /1

 Parallel execution on a multicore processor causes
opportunities of contention for the hardware
resources shared among the cores
 This phenomenon did not occur on single-core systems

 Such contention increases the WCET of running jobs
by causing them to hold the CPU without progressing (!)
 This is called stalling
 In single-core processors, a job may be held from

running while being ready, but is king when it runs

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 350 of 320

Fr
eq

ue
nc

y

With mild opponent

With fierce opponent

Hardware interference /2

 The WCET of even the
simplest single-path program
running alone on a CPU does
not stay the same when other
programs run on other CPUs

 The extent of slow-down is
proportional to the amount
of off-core work that the
programs happen to do

 The WCET no longer is a
composable value!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 351 of 320

Courtesy of

A reconnaissance taxonomy /2

 What scheduling choices do multiprocessors enable?
 Global vs. partitioned, or alternatives between them

 Global scheduling allows jobs to run on any core and move across
them freely during execution

 Partitioned scheduling translates into a task-to-core static assignment
problem, followed by single-core scheduling

 The good-old world of optimality falls apart
 EDF no longer optimal and not always better than FPS

 Global scheduling not always better than partitioned
scheduling
 Counterintuitive: having multiple assignment choices does not

beat having just one

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 352 of 320

A reconnaissance taxonomy /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 353 of 320

Global Partitioned

Clustered Hybrid (semi-partitioned)

Intermission: what is
going on?

Let us listen to the words of a language
designer, who explains what is changing in the
hardware space and what that implies for the
software. We will return to this line of argument
in the last lecture of this course

Parallel Lang Support 355

What’s the matter with the processor HW?

• Major, unstoppable shift to multicore, manycore,
heterogeneous (e.g. GPGPU) processors, cloud
computing

• Associated challenge
– It is already hard to write safe, correct sequential programs for

single-core processors
– Will programming for multicores exceed our abilities?

• Very opportune goal: provide programming language
support to make it easy and natural to write safe
(including predictable), correct parallel programs
– Perhaps even easier than it is to write safe, correct sequential

programs in many existing languages

• Is that possible?

Parallel Lang Support 356

Why are they all moving to multi/manycore?

• Power, power, power
– Speeding clock rates above 3 GHz increased power density

beyond what the chips (and customer pocketbooks) can bear
– More and more computing is moving to battery-operated mobile

platforms where low power is king

• With multi/manycore, the theoretical computing
performance-per-watt (PPW) can be increased by
adding cores, perhaps slowing clock rate a bit
– With single-core processor technology, PPW began to decrease

with increasing clock rates, due to increased power dissipation
(source-to-drain leakage)

• Clock rate doubling (one ramification of Moore’s
law) came to a screeching halt by the year 2005

Parallel Lang Support 357

The implications of going “multicore”

• Clock rate
– Clock rates that were doubling about every 2 years since 1985,

stalled at about 3 GHz by 2005
– Had they continued doubling, we would now be buying laptops

with clocks at about 50 GHz

• Cores/chip
– Scaling to smaller features has continued
– Now using added chip real estate for additional CPU cores
– The number of cores/chip has started doubling since 2005
– After that (15 years), mainstream commercial x86 chips came at

20-32 cores/chip, Xeon Phi at 70+, GPUs/Adapteva at 1000+

• Almost back on Moore’s Law exponential rocket
– But only if considering cores/chip x performance/core

Parallel Lang Support 358

What else is happening to the HW?

• HW is getting more complicated
• Not just a handful of really fast processors
• Today’s fastest computers have

– A giant network of nodes
– Each node is itself a heterogeneous conglomeration

– Multiple cores
– Vector units
– GPUs or other accelerators

• Our challenge is to figure how to program these beasts
– Ideally we want our programs to scale without rewriting, from one

core up to a giant server farm or supercomputer
– Our basic approach is to eliminate barriers to parallelization, and

remove the sequential bias of our programming languages

Parallel Lang Support 359

Concurrency vs. Parallelism

Concurrency
• Concurrent programming allows

the programmer to simplify the
application architecture by using
multiple logical threads of control
to reflect the natural patterns of
collaboration in the problem
domain
• Heavier-weight constructs can be

acceptable as they used rarely

Parallelism
• Parallel programming allows the

programmer to divide-and-
conquer the problem space, using
multiple threads to work in
parallel on independent parts of it
• Constructs should be light-weight

syntactically and at run time as
they are used very frequently

Collaboration Independence

We are heading toward parallelism within concurrency

Parallel Lang Support 360

Parallelism within concurrency (example)

Client First-level
dispatcher

Second-level
mapped and
reducer [1]

Service
worker 1

instance 1.1

Service
worker 1

instance 1.n

Second-level
mapper and
reducer [m]

Service
worker m

instance m.1

Service
worker m

instance m.n

Parallel unit

Concurrent unit

Concurrent aggregate

All falls apart

 In the multiprocessor world, low-utilization tasksets may be
deemed unfeasible: “ the Dhall’s effect ” [Dhall & Liu, 1978]

 The known exact schedulability tests have exponential
complexity
 The known sufficient tests with polynomial complexity are

pessimistic
 Single-core optimality criteria do not apply anymore
 Global scheduling is not always better than partitioned
 RM or DM priority assignments are not optimal for it

 The same priority level may have different effects on different cores
 No optimal priority assignment has been found to exist

with polynomial complexity

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 361 of 552

Dhall’s effect /1

Task

10 10 5 0.5

10 10 5 0.5

12 12 8 0.67

 Under EDF or FPS, global scheduling, would run and
first on either of the processors respectively

 But this would not leave sufficient time for to complete
 7 time units would be available on each processor, but 8 on neither

 Deadline miss even if the total system is underutilized (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 362 of 552

𝒎 ൌ 2

෍ 𝑈௜ ൌ 1.67 ൏ 𝑚
௜ୀଵ,..,𝒏ୀଷ

G-LLF fails too …

𝑆 ൌ 𝜏ଵ ൌ 4,3 , 𝜏ଶ ൌ 4,3 , 𝜏ଷ ൌ 10,5 ,𝐻ௌ ൌ 20

𝑈௦ ൌ
3
4 ൅

3
4 ൅

5
10 ൌ 2 ൌ 𝒎

 At 𝑡 ൌ 15, the remaining CPU time is 𝑇ோ ൌ 𝑚 ൈ 𝐻ௌ െ 𝑡 ൌ 𝟏𝟎
 Yet, the time needed is 𝑇ே ൌ 𝑒ଵ ൅ 𝑒ଶ ൅ 𝑒ଷ ൌ 𝟏𝟏

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 363 of 552

𝜏ଷ

𝜏ଶ

𝜏ଵ

𝜏ଶ

𝜏ଵ

𝜏ଶ𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଷ

𝜏ଶ

𝜏ଵ𝜏ଵ

3 4 7 8

𝐿ଵ ൌ 1

𝐿ଶ ൌ 1

𝐿ଷ ൌ 5 2

1

1

6 10

0 1

0

1 0

0

9 12

5 3

1

1

0

15

One CPU is idle

𝟎 : zero laxity

ሺ𝜑௜ ,𝒑𝒊, 𝒆𝒊,𝐷௜ሻ

Theorem (stating the obvious)
When the total utilization of a periodic task set is equal to
the number of processors, and all tasks have the same
initial release time (), then no feasible schedule can
allow any processor to remain idle for any length of time

Why does this happen?

 In the LLF example, at times and , one CPU
is left idle for 1 time unit
 Scheduling was greedy on an ill-based sense of urgency

 That waste will be missed out at time , when
tasks will have laxity with just CPUs available

 A “proper” scheduling algorithm should have noticed this
problem already at !

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 364 of 552

Dhall’s effect /2

Task

10 10 9 0.9

10 10 9 0.9

10 10 2 0.2

 Partitioned scheduling does not work well either
 After and are assigned to a CPU, has no place to run

 To find room for execution, 𝒇 would have to migrate from one CPU to
the other

 And 𝒅 and 𝒆 should also be willing to yield for 𝒇 to complete in time

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 365 of 320

𝒎 ൌ 2

෍ 𝑈௜ ൌ 𝑚
௜ୀଵ,..,𝒏ୀଷ

The oddity of software interference /1

 What does the software interference ௜ suffered by task
௜ in its busy period become on a multiprocessor?
 For partitioned scheduling, it reduces to the single-processor

case, so it poses no problem
 For global scheduling on an -processor system, it occurs

only when tasks are ready simultaneously
 This means that harmonic periods may be bad news!

 Multiprocessor interference for ௜ can be computed as
the sum of all time intervals when higher-priority
tasks execute in parallel on all processors
 Not the easiest of things to determine …

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 366 of 552

The oddity of software interference /2

 A very pessimistic bound for G-scheduling
considers all higher-priority tasks to interfere always

𝒌
𝒎𝒂𝒙

𝒌
𝟏
𝒎

𝑹𝒌
𝒎𝒂𝒙

𝑻𝒋 𝒋𝝉𝒋∈𝒉𝒑ሺ𝒌ሻ

 This naïve bound however is extremely pessimistic
 It can be improved, and has been, but for great

computational complexity, still without becoming exact

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 367 of 552

Global scheduling anomalies

 In single-core processor scheduling, the deadline-miss
ratio often depends on system load
 Ergo, increasing tasks’ period should decrease utilization and

thus decrease the deadline-miss ratio too
 Multiprocessor anomaly 1

 A decrease in processor demand from tasks can increase the
interference on tasks by changing the time windows in
which those tasks execute

 Multiprocessor anomaly 2
 A decrease in one task’s own processor demand may increase the

interference that it suffers

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 368 of 552

Credits to to B. Andersson and J. Jonsson
Proc. of RTSS WiP Session, 2000, pp. 53–56

Anomaly 1: decrease in utilization

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 369 of 552

Task 𝑻 𝑫 𝑪 𝑼
𝒂 3 3 2 0.67
𝒃 4 4 2 0.50
𝒄 12 12 8 0.67

𝑚 ൌ 2 processors, ∑ 𝑈௜ ൌ 1.83௜ୀଵ,..,௡ୀଷ ൏ 𝑚,
𝜏௖ is saturated (𝐶௖ ൅ 𝐼௖ ൌ 𝐷௖): any increase
in 𝐼௖ for the same 𝐶௖ would render 𝜏௖
unfeasible

P1

P2

a a a a

b b bc

c

c

c

3 6 9

4 8

c

Anomaly 1: continued

 With ௔ᇲ ௔ , decreases
 But now periods are harmonic and cause ௖ to suffer

more interference
 ௖ᇲ ௖ , which causes ௖ to miss its deadline

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 370 of 552

P1

P2

a a a

b b bc c

8

4 8

c

4

Anomaly 2: decrease in own demand

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 371 of 552

Task 𝑻 𝑫 𝑪 𝑼
𝒂 4 4 2 0.5
𝒃 5 5 3 0.6
𝒄 10 10 7 0.7

𝑚 ൌ 2 processors and 𝑈 ൌ 1.8
𝜏௖ with 𝐼௖ ൌ 3 is saturated

5 10

P1

P2 b

a a ac

c

c

4 8

b c

Anomaly 2: continued

 With ௖ᇲ ௖ , decreases
 But then ௖ᇲ ௖ , increases, for ௖ ’s 2nd job

 Which also shows that the critical-instant hypothesis no
longer holds!

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 372 of 552

10 20

P1

P2 b

a a

c

c

11

b c

c

12

15

16

a

b

13 18

The defeat of greedy schedulers

 Greedy algorithms are easy to explain, study, and
implement

 They work very well on single-core processors, where
the urgency of a job collapses into a single value, which can be
used to schedule jobs greedily

 Greedy algorithms fail on multiprocessors, where
computation (one’s own progress) and parallelism (use of
all cores) are distinct dimensions

 Optimality in multicore scheduling needs to use
different principles altogether

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 373 of 552

Enters proportionate fairness

 An airline has planes and flight crews, with
 All planes and crews are based in the same city

 Exactly crews are scheduled to work on any given days
 Due to seniority, job performance, or other factors, it may be

desirable to schedule some crews more often than others
 This notion reflects the crew work period

 For each crew , ௞ is the fraction of all days that crew
is desired to work, such that ௞௞

 The airline wants a scheduler that produces a schedule in
which every crew works at a balanced rate
 One where, after 𝑡 workdays (the hyperperiod), crew 𝑘 will have

worked either 𝑊௞ ൈ 𝑡 or 𝑊௞ ൈ 𝑡 workdays

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 374 of 552

Unveiling the analogy

 The airplanes are the CPUs ()
 The crews are the tasks ()

 Assigning to is a multiprocessor scheduling problem
 The contract with the crews is that each of them will

receive work according to their privilege ௐ೔
 For tasks, this is the utilization rate
 This is the first dimension of the multiprocessor scheduling

problem (progress)
 The contract with the airplanes is that they will all be

given a crew, ௜௜ୀଵ,..,௡
 This is the second dimension of the multiprocessor

scheduling problem (parallelism)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 375 of 552

P-fair scheduling [Baruah et al. 1996]

 Proportional progress is a form of proportionate fairness also
known as P-fairness
 Each task 𝜏௜ is assigned processing resources in proportion to its

weight 𝑊௜ ൌ ஼೔
்೔

so that its computation may progress steadily
 Think of real-time multimedia applications …

 At every time , task ௜ must have been scheduled
either ௜ or ௜ time units
 Perfectly analogous to the airline crew schedule problem
 Without loss of generality, preemption is assumed to occur solely at

integral time units
 The workload model is assumed to be periodic with implicit

deadlines

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 376 of 552

P-fair scheduling /2

 ௜ is the delta between the total resource
allocation that task ௜ should have received in
and what schedule gave it

 For a P-fair schedule , at time
 ௜ is ahead if and only if ௜

 ௜ is behind if and only if ௜

 ௜ is punctual if and only if ௜

 Scheduling occurs at “integral” units of time
 This reflects the analogy that the assignment of one crew is

for a full (integral) airplane service

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 377 of 552

P-fair scheduling /3

 is the characteristic (infinite) string of task ௫
over for with

௧ ௫ ௫
Above or below the integral approximation of the fluid rate curve

 is the characteristic substring
௧ାଵ ௧ାଶ ௧ᇱ of task ௫ at time

where 𝑡′ ൌ 𝑚𝑖𝑛 𝑖: 𝑖 ൐ 𝑡:𝜶௜ሺ𝑥ሻ ൌ 0
 For a P-fair schedule at time , task ௜ is

 Urgent : ௜ is behind and 𝒕 ௜ (௜ has credits to claim)
 Tnegru : ௜ is ahead and 𝒕 ௜ (௜ has stolen from others)
 Contending otherwise

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 378 of 552

The fluid rate curve

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 379 of 552

𝜶௧ୀସ 𝑖 ൌ 𝒔𝒊𝒈𝒏 𝑊௜ ൈ 4 ൅ 1 െ 𝑊௜ ൈ 4 െ 1 ൌ 3.125 െ 2 െ 1 ൌ ൅
At time 𝑡 ൌ 4 ൅ 1, if not scheduled at 𝑡 ൌ 4, task 𝜏௜ might have a credit that could not be satisfied

in one single round of scheduling:

100% workload

𝑾𝒊 ൌ
𝑪𝒊
𝑻𝒊
ൌ
𝟓
𝟖 ൌ 𝟎.𝟔𝟐𝟓

𝑊௜ ൈ 4

𝑊௜ ൈ 4 ൅ 1

𝑇௜ ൌ 8

𝐶௜ ൌ 5

𝑡 ൌ 5

Time supply

Time demand

𝑡 ൌ 4

𝑤௜ 𝑡 ൌ 4 ൌ 2

𝑤௜ 𝑡 ൌ 5 ൌ 2

൐ 1

Properties of a P-fair schedule

 For task ௜ ahead at time under
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is ahead at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ 0 and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is punctual at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ scheduled at t then 𝜏௜ is ahead at 𝑡 ൅ 1

 For task ௜ behind at time under
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is ahead at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ െ and 𝜏௜ not scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ 0 and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is punctual at 𝑡 ൅ 1
 If 𝜶𝒕 𝜏௜ ൌ ൅ and 𝜏௜ scheduled at 𝑡 then 𝜏௜ is behind at 𝑡 ൅ 1

urgent

tnegru

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 380 of 552

P-fair scheduling /4

 To preserve P-fairness
 Every task urgent at time must be scheduled at so that

P-fairness can be preserved
 No task tnegru at time can be scheduled at

 With resources, tasks, and ଴ tnegru, ଵ contending,
ଶ urgent tasks at time ଴ ଵ ଶ , two

situations must be avoided
 𝟐 , when all urgent tasks cannot be scheduled: some tasks

will never be able to catch up
 𝟎 , when some tnegru tasks will be scheduled

wasting CPU time on them that will be regretted later

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 381 of 552

P-fair scheduling /5

 The commandments of the PF scheduling algorithm
 Always schedule all urgent tasks
 Allocate the remaining resources to the ℎ𝑝 contending tasks according

to the total order function ⊇ with ties broken arbitrarily
 At time 𝑡, 𝑥 ⊇ 𝑦 : 𝜶ሺ𝑥, 𝑡ሻ ൒ 𝜶ሺ𝑦, 𝑡ሻ, where െ൏ 0 ൏ ൅

 With PF, we have ௫௫∈ሾ଴,௡ሿ
 Dummy task added to task set to fill utilization up to 𝑚

 No problematic situation can occur with the PF algorithm
 PF always has 𝑛ଶ ൑ 𝑚 and 𝑛଴ ൑ 𝑛 െ𝑚
 A property of seeking the closest approximation of the fluid rate

curve for all tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 382 of 552

Example (PF scheduling) /1

Task C T W

𝒗 1 3 ଵ
ଷ

𝒘 2 4 ଵ
ଶ

𝒙 5 7 ହ
଻

𝒚 8 11 ଼
ଵଵ

𝒛
ு
ଶ

ு
ଶ

 𝑚 ൌ 3 processors
 𝑛 ൌ 4 tasks

 𝑈 ൌ ∑ ಴೔
೅೔௜ୀ௩,௪,௫,௬ ൌ 2.27489 …

 𝜏௭ is a dummy task used to top
up system utilization to 𝑚
 𝑈௭ ൌ 𝑚 െ 𝑈

 𝜏௭’s period is set to the system
hyperperiod 𝐻
 This time we just halved it as 𝑇௭

and 𝐶௭ happen to be even

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 383 of 552

Example (PF scheduling) /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 384 of 552

These tasks are scheduled and they become ahead

Summary

 Multicore processors are the processor makers’
escape route to the doom of Moore’s law, yet their
advent shakes the foundations of real-time systems
theory that rest on the single-runner assumption

 We are confounded between the urge to schedule
greedily and the actual inanity of it

 We begin to see that optimality here is a very
different story

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 385 of 552

