7.b Seeking the lost
optimality

Where we reflect more deeply into what
became of optimality in the multicore
world, and look at two ways to achieve it
very differently from PFair

Rationale of the selection

Between 2003 and 2016, multiple research etforts
devised multicore scheduling algorithms capable of
achieving optimality lesser costly than with P-fair

We now look at two such results, which shine for

their originality, and shed light on first principles for

optimality in this world

0 Greg Levin e al. (2010), DP-FAIR: A Simple Model for
Understanding Optimal Multiprocessor Scheduling

0 Paul Regnier ez a/. (2011), RUN: Optimal Multiprocessor
Real-Time Scheduling via Reduction to Uniprocessor

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 387 of 552

DP-FAIR: A Simple Model for

Understanding Optimal

Multiprocessor Scheduling

Greg Levint Shelby Funk* Caitlin Sadowski?
lan Pyet Scott Brandtt

"University of California *University of Georgia
Santa Cruz Athens

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 396

" S Prbiem
|——
| I

Partitioned Schedulers Cannot
Be Optimal

m Example: 2 processors (m = 2); 3 tasks, each with 2
units of work required every 3 time units: (3,2)

CPU?2 | Task2

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 389

Global Schedulers May Succeed

m Same example, same taskset

Task 3 may now migrate between processors

cry 1 | TS

3
raan

CPU 2 -Task? . ‘

I I

3

0 1 2

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 390

" I e

Fluid Rate Curve

work (Implicit-deadline system)
completed

~

Fluid rate curve
Slope W = ; = U (Utilization)

Actual work curve
Slope = 0 (not running)
=1 (running)

e
7 peopiom

%

time

_

—

job rel
job release period T

deadline

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems FAN

" S Proem

|—|—--
(-

Feasible Work Region

work) of
completed work compiete ,
g)
|
|
|
|
|
|
|
I
I o)
' X
e
I o
| ()
|
|
|
|
|
|
|
L/
: time
—~ —
. |
job release period T deadline

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 392

The Grand Challenge (Mark 1)

e |

m Design an optimal scheduling algorithm for
periodic task sets on multiprocessors

A task set is feasible if there exists a schedule
that meets all deadlines

A scheduler is optimal if it can always chedule
any feasible task set

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 393

" Prosier
(e

e |

Necessary and Sufficient Conditions

m Any set of (independent) tasks needing at most
1 processor foreach task 7; (Vi=1,..,n:U; < 1)
m processors for all tasks (3;; U; < m)

IS feasible

m Proof. small scheduling intervals can approximate
the fluid rate curve

Status: solved (on paper). P-Fair (1996) was the first
such optimal algorithm

At what cost?

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 394

" S protiem

|—|—--
(-

The Grand Challenge (Mark 2)

m Design an optimal scheduling algorithm
with fewer context switches and migrations

m Finding a feasible schedule with the fewest
migrations is NP-Complete!

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 395

" probier

|—1—--
(-

The Grand Challenge (Mark 2)

m Design an optimal scheduling algorithm
with fewer context switches and migrations

m Status: solved, but ...

With solutions that are complex and confusing

m Our Contributions: A simple, unifying
theory for optimal global multiprocessor
scheduling and a simple optimal algorithm

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 396

" S <)
Greedy Algorithms Fail on

Multiprocessors /1

m Example (n = 3, m = 2), implicit deadlines

Task 1 : Work=9 , Period =10 T Jf

Task 2 : Work =9 , Period =10 _i
Task3:Wurk=8,Peri0d=40_ | +
0

10 40

Utilization: 9/10 + 9/10 + 8/40 = 2

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 397

" S
Greedy Algorithms Fail on
Multiprocessors /2

Task 1 Work =9, Period = 10 (¥
At t = O’ Task2:Work=9,Period=10__¢_

I

T, T, aAre the obvious Task 3 : Work =8, Period = 40
greedy choice

]
10

CPUN

CPU 2

o1 2 3 4 5 6 7 8 9 10 1112

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems

398

"
Greedy Algorithms Fail on
Multiprocessors /3

Task 1 : Work =9 , Period =10

Task 2 : Work =9 , Period =10
Even att = 8, Task 3 : Work =8 , Period = 40

T4, T, are the only
“reasonable” greedy choice

01 2 3 4 5 6 7 9 10 11 12

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 399

—
Greedy Algorithms Fail on
Multiprocessors /4

Task 1 : Work =9 , Period =10 _}_

Yet, if T, isn’t started by t =8, Task 2:Work=9,Period=10 f— .
the residual idle time won’t sk Work=0. Feriod =40 + !
suffice and a deadline miss will occur

I

CPU 1

CPU 2

o1 2 3 4 5 6 7 8 9¥10 11 12

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 400

"
Greedy Algorithms Fail on
Multiprocessors /5

Task 1 : Work =9 , Period = 10 _i
Task 2 : Work =9 , Period =10 _i

HOW can we “See” th|S Task 3 : Work =8 , Period = 40 _ | ¢
critical event at t = 87? 0

o1 2 3 4 5 6 7 89 10 11 12

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 401

"

Proportioned Algorithms Succeed
on Multiprocessors /1

. . . T
Subdivide 75 in —— = 4 Task 1 Work =9, Period = 10 ¥

i=1,2 .
i ’ Task 2 : Work =9 , Period = 10
subtasks with the same Task : W"r-k_z Perf‘-"d > H ¢ ¢
periOd as 74,73 and * — 0 1IO jlo :g-.lu:l

proportional workload % =2

il B

CPU 2

=

o1 2 3 4 5 6 7 8 9 10 1112

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 402

"
Proportioned Algorithms Succeed
on Multiprocessors /2

Task 1 : Work =9, Period =10 _i
1

The nNnew 1 has a zero- Task 2 : Work =9, Period =10
Iaxity evegt att =8 Task 3 : Work =2 , Period =10 h

o1 2 3 4 5 6 7 8v¥Y9 10 11 12

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 403

" S
Proportional Fairness

m Insight: scheduling is easier when all jobs have
the same deadline

Theorem [Hong, Leung: RTSS 1988, IEEE TCO 1992]

No optimal on-line scheduler can exist for a set of jobs with two or more
distinct deadlines on any (m > 1) multiprocessor system

m Application: apply all deadlines to all jobs
m Assign workloads proportional to utilization

m Work complete matches fluid rate curve at every
system deadline

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 404

" @

Proportional Fairness is the Key

m All optimal algorithms enforce proportional fairness at all
deadlines

P-Fair (1996): the extreme: proportional fairness at all times

BF, Boundary Fair

m D. Zhu, D. Mossé, and R. Melhem, Multiple-Resource Periodic Scheduling
Problem: how much fairness is necessary?, RTSS, 2003

LLREF, Largest Local Remaining Execution time First

m H. Cho, B. Ravindran, E.D. Jensen, An Optimal Real-Time Scheduling Algorithm
for Multiprocessors, RTSS, 2006

EKG, EDF with task splitting and k processors in a group

m B. Andersson, E. Tovar, Multiprocessor Scheduling with Few Preemptions,
RTCSA, 2006

m \Why do they all use proportional fairness?

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 405

Scheduling Multiple Tasks is

Complicated

work
completed

..

..

| !time

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 406

"

Scheduling Multiple Tasks with
Same Deadline is Easy

work
completed

" time

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 407

" J @

Actual Feasible Regions

work job deadlines

completed X\»

tirhe

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 408

" A
Restricted Feasible Regions
Under Deadline Partitioning

work
completed

all system deadlines

...................................

2020/2021 UniPD —T. Vardanega

Real-Time Kernels and Systems

409

" <)
The DP-Fair Scheduling Policy

m Partition time into slices based on all system deadlines

m Allocate each job a per-slice workload equal to its
utilization x the length of the slice

m Schedule jobs within each slice in any way that obeys the
following three rules:

Always run a job with zero local laxity
Never run a job with no workload remaining in the slice

Do not voluntarily allow more idle processor time than
(m —), U;) X (length of slice)

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 410

" J @

DP-Fair Work Allocation

work | |
|
completed | — -
| S Allocated
[| workload
| _ - - I
” - 1
: Q ol '
&\0 e I
l NP I
1 ~ \)\\\\/ < :
| er, - I
I o P I
7 - |
| e |
| P s 1
I e I
7’ - 1
| P -’ |
I P 1
| e I
. I
:/ W, :
. —— — time
|
! time slice !

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 411

" J @

DP-Fair Scheduling Rule #1

WOrK | When job hits zero i
completed local laxity, then run s A

to completion =

time

time slice

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 412

" J @

DP-Fair Scheduling Rule #2

When job o
work ! finishes local S o !
completed ! Workload, stop P — e
' |
. I
I |
I e :
: el |
— —— —+— time
! time slice |

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 413

" @
DP-Fair Scheduling Rule #3

Do not voluntarily allow idle time
idle ! in excess of this limit

Allowable

> idle time
time

| YT

. time slice

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 414

" <)
DF-Fair Guarantees Optimality

m \We say that a scheduling algorithm is
DP-Fair if it follows these three rules

m Theorem: Any DP-Fair scheduling
algorithm for periodic tasks is optimal

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 415

" J
DP-Fair Implications

m (Partition time into slices)
+ (Assign proportional workloads)

Optimal scheduling is almost trivial

Minimally restrictive rules allow great latitude for
algorithm design and adaptabillity

m \What is the simplest possible algorithm?

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems

416

(EXAMPLE OF EXAM ASSIGNMENT)
UNDERSTANDING THE RUN
ALGORITHM

PhD seminar on Real-Time Systems, University of Bologna, July 2014 s

il LG Ul YN 1 /7NN TR

RUN Assumptions -

Model parameters

m > 1 homogeneous (symmetric) processors
n implicit-deadline, independent, periodic tasks 7;,i € {1..n}

n=m+k k=0
Fixed-rate tasks U; = ot r U <m
T

Fully utilized system: no idle time (add filler task if needed)

Migration and preemption costs included in ¢;

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 418

n=>5
, A ‘ Legend
00 - O
\ J
| processor
k=n—m=2

(the excess)

\ J
I

m=3
. U;=0.6 V1;,i={1,..,n =5}
. Y1 U; = 3 = m (fully utilized system)

. What schedule), forS = {{Ti}, m} ?

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 419

Duality

. The (frimal) problem of scheduling

11 = (cl' Tl): oy Ty = (cn; Tn)}; m
has a dual problem that consists of scheduling

S' = {Tll = (Tl o Cl'Tl)' "'JT;l — (Tn — Cpy Tn)}, (n o m)
. With this definition of duality
Laxity in primal is work-remaining in the dual
A work-complete event in the primal is zero-laxity in the dual
And vice versa

. Corollary: any scheduling problem with m processors,
n = m + 1 tasks, and), U; = m may be scheduled by applying
EDF to its uniprocessor dual

If we can schedule n tasks on m processors, then we can also
schedule the dual of those n tasks on n — m processors

This is so because the scheduling events in the dual system map to
scheduling events in the primal system

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 420

The G-LLF example at page 363 ...

S={r, = (34),1, = (34),15 = (510)},n = 3, Hg = 20

U. = 3 + 3 + > = 2.0 = 2
— — — — . %m —
One CPU isidle > 4 4 1 O

Ty Ty Ty ¢T2 Ty Ty
Ly =5 2 0 : zero laxity 0 5 3 0
- / IIIIIIIIII
F 13 T3
—
3 4 6 7 8 o 10 12 15

Att = 15 the CPU time remaining is T, = m X (Hg —t) = 10
Yet, the time needed is Ty = e + e, +e3 =11

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 421 of 552

Duality solves that unsolvable problem

S={t;=B4), 1, =34, 13 =510}, n=3U;=34+3+>=20 >m=
1 1 5
Sp ={t1, = (1,4), 75, = (1,4),73, = (5,10)}, Us, = +t;t=10=n—-m

The dual (LLF) schedule leaves no idle time

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 422

n=>5
, A ‘ Legend
00 - O
\ J
| processor
k=n—m=2

(the excess)

\ J
I

m=3
. U; =06 Vt,i=1{1,..,n=5}
. Y1 U; = 3 = m (fully utilized system)

. What schedule X for § = {{Ti}, m} ?

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 423

Example /2

e Consider the dual of this {n = 5, m = 3} system

- The dual should run on m* processors

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 424

Example /3

m-=2=k%k

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 425

o(U,U;) = (U; X T; + U; X T, (T, U T;))

ee0se

PACK PACK PACK m
e e o
° ¥ =0@¢p
Reduction
f v

\ Y 7
n* =3 ' | /
i kf=n"—-m"=3-2=1
| J
|

2020/2021 UniPD —T. Vardanega Real-Time Kernels and Systems 426

Example /5

The (n* = 3, m* = 2) system still cannot be
partitioned feasibly

Yet, applying duality to it seems promising
since the dual would need n* —m* =1
processor, which would REDUCE the problem
TO a UNIPROCESSOR case

\ J
!

m*=1=k*

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 427

Example /6

6 6 &

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 428

Example /7

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 429

Why does reduction terminate? /1

T|+1
Lemma: y = ‘GEB(P (U1TL) ‘ = [l l }
1/ -
Intuition
0.5(=4, =3=>m = 3
k=n-m=4-3=1
0
1lgr N\ NVF(P \()
In the dual system
YU =n—-m=1=>m"=1
0.5 n* = 1 (after packing)
k™ =n* —m™ = 0 no leftover
0

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 430

Why does reduction terminate? /2

2

|T|+1
ifi) ‘ < [
)

* Reduction ¥ = o®¢ terminates
as every step of it lowers the

residual workload and the # of
processors needed to run it

* The packing operation (at least)

Lemma: ¥ = |c@o (U
10m N\ 7 N\ N\ 7
0.5/
0 4 L
LIJ?
1{g —
0.5/
0

2020/2021 UniPD — T. Vardanega

halves the number of tasks to
schedule

 Termination theorem: after a
finite number p of reduction
steps, the system is reduced to a
uniprocessor with full workload

Real-Time Kernels and Systems 431

How does RUN work /1 -

* Two basic operators

— @: Dual
— o: Pack

* A higher-order ¥ = c@®¢: Reduce operation lowers
(at least halving) the size of the problem at every step

* Theorem (validity of the dual): X valid < 2™ valid
* Every dual task represents the idle time of its primal

— Finding a feasible schedule for the dual (easier)
determines a feasible schedule for its primal

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 432

How does RUN work /2

Algorithm 1: Outline of the RUN algorithm

I. OFF-LINE;

A. Generate a reduction sequence for T;

B. Invert the sequence to form a server tree; Servers are aggregates of tasks

C. For each proper subsystem 7" of T;

Define the client/server at each virtual level; Fach task in a server is a client of it

II. ON-LINE;
Upon a scheduling event: ;

A. If the event is a job release event at level 0 ;

1. Update deadline sets of servers on path up to root;
2. Create jobs for each of these servers accordingly;

B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to
schedule at level 0;

C. Assign the m chosen jobs to processors, according to some task-to-processor
assignment scheme;

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 433

Example: off-line phase

Reduction Tree, built from the leaves

Level2 @ (dual) :\'S;"Z‘.HO} :\'S’;‘\){lb}* ’ s* ,{5}* () =a(n) — o) =1
on)=3
Levell @ (dual) ':: O3 oy : 3 ’ (p(U) =n-m=2
S =0(Us,Ug) =

((0.4 +0.2),(5u 10))
=(0.6,5)

Level 0 n=6m-=3

71 = (6,10),7, = (6,10), T3 = (6,10),74 = (6,10),75 = (2,5), 74 = (2,10),

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 434

Example: on-line phase (seen at time t = 7)

Reduction Tree, used from the root

St = (2,10),85 = (2,10), 85 = (3,5) » U* = 1.0

! 1 | | |
Sk S S5 S Level 2
] T !
S; S Si Level 1
' - eve
ST S: | S3 ! St
Pl Ts Ty T, Ty Ty Ts
T, P Level 0
P3 T, T

| |
0 5 (b 10
Att = 7,ajob of S; ends; Sg becomes runnable
Its dual, Sg, (U = 2), should become idle, hence
S, = 0(S3,54) should have a scheduling event,
where S, should become runnable
EDF Tts dual S, (U = 3), should become idle, hence
S5 = (135, Tg) should have a scheduling event,
where Tg should become runnable

Situation at &t = 7

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 435

PROXIMA

Putting RUN into practice

Implementation and evaluation

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega £ >
University of Padua, ltaly % .

26" EUROMICRO Conference on Real-time Systems (ECRTS)
Madrid, 9 July 2014

This project and the research leading to these results WWW. p ro Xi ma- p ro je Ct. eu

has received funding from the European
Community’s Seventh Framework Programme [FP7 /

2007-2013] under grant agreement 611085

RUN implementation

1 For real
» On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
» Relying on standard RTOS support

d Main implementation choices and challenges

» Scheduling on the reduction tree
- How to organize the data structure
- How to perform virtual scheduling and trigger tree updates
- Intrinsic influence of the packing policy
» Mixing global and local scheduling
- Global release event queue vs. local level-0 ready queue

- Handling simultaneous scheduling events
Job release, budget exhaustion (possibly from different sub-trees)

» Meeting the full-utilization requirement
- Variability of tasks’ WCET and less-than-full utilization

ey PROXIMA B

Empirical evaluation

J Real implementation instead of plain simulation

d Focus on scheduling interference
» Cost of scheduling primitives
» Incurred preemptions and migrations

d RUN compared against P-EDF and G-EDF, already native
on LITMUSRT

» RUN shares something in common with both

[Much better than Pfair (S-PD? in LITMUSRT)

» RUN has superior performance for preemptions and migrations

ey PROXIMA B

Experimental setup
d LITMUSRT on an 8-core AMD Opteron™ 2356

Jd Measurement runs for RUN, P-EDF, G-EDF
» Hundreds of automatically generated task sets
» Harmonic and non-harmonic, with global utilization @ 50%-100%
» Representative of small up to large tasks

J Two-step process
» Preliminary empirical determination of overheads

Collect Determine Perform
measurements per-job actual
on overheads upper bound evaluation

ey PROXIMA B

Primitive overheads and empirical bound

100 T T T I T T
RUN
80 GEDF mm _
_ PEDF mmmmm
3 60 -
(O}
E 40 | _
|_
20 -
|

0

REL SCHED CSW CLK LAT TUP

 Expectations confirmed
» P-EDF needs lighter-weight scheduling primitives
» RUN reduces to P-ED when a perfect portioning exists

O Tree update (TUP) triggered upon
» Budget exhaustion event
» Jobrelease - REL includes TUP

L Empirical upper bound on RUN scheduling overhead
OH{et, = REL+SCHED+CLK +kx (TUP+SCHED+max(PRE, MIG))

k=[(3p+1)/2] SCHED =SCHED + CSW + LAT

PROXIMA |

Empirical schedulable utilization

100 %

10

80 %
60 %
40 %

20 %

Unfeasible task set rat

0 %

4 45 5 55 6 65 7 75 8
Utilization cap

P-EDF ---+--
o0 [CEDF
O In either P- or G-EDF, some task sets gzgg I
exhibited deadline misses 5300 L
L RUN suffered no misses ever 200 -
> Empirical evidence of optimality 108 i

4 45 5 55 6 65 7 : 8
Utilization cap

ey PROXIMA B

Kernel interference

J Average preemptions and migrations

Avg preemptions
= ol N N
(@) U o U
~ ~ ~ ~
| |

(9
~
|

4

100 %
80 %

o 60 %

Rat

40 %
20 %
0 %

O-level wzzzz7

4 45 5 55 6 65 7 72747678 8

Utilization cap

2-level »ooos

= NN
U O WU
~ N~ K

Avg migrations
-
o
~

|
G-EDF
- RUN

....... @ enenn .

—
—
)—

| | | &
5 55 6 6.5 7
Utilization cap

7.5 8

(Reduction tree)

09/07/2014 PRO IMA I

Scheduling cost

1 Average cost of core scheduling primitives

Average job release

4 4.5 5 D9 6 6.5 7 D 8

%0) I ! I T T T
P-EDF ---=--
[2{] | J——

%
3
Average schedule 3o
=
=

4 4.5 5 5.5 6 6.5 7 7.5 8
Utilization cap offset 0, 0.5

ey PROXIMA B

Per-job scheduling overhead

60 | | | | | | | 60
50
40
=
030
£
=20
10 | 4 10
0]]]]]]] 0]]]]]]]
4 4.5 5 5.5 6 6.5 7 7.5 8 4 4.5 D DD 6 6.5 ¥ 7.5 8
6 2 | | | | | | I E 2 I I | | | | |
S1s) 1 815t]
S 1| 4 o 1f gt
-‘é 05 | o o s . - § 0.5 | y =5 . _
< 0 . 1 1 1 il]] < 0 1 1 1 1 Lo T I
4 45 5 55 6 65 7 75 8 4 45 5 55 6 65 7 75 8
2 | | | | | | | 2 | I | | | | |
0 P-EDF ---=-- L P-EDF ---=--
S 1 [G-EDF 1 S 1> [G-EDF 7
2 1 L RUN - s Q L. RUN == F— -
S 1t RUN i : 1 RUN
0 0.5 e 4 ©05 F
o =T -a--a--n"" "1 o
0 L L 0 —
4 45 5 55 6 65 7 75 8 4 45 5 55 6 65 7 75 8
Utilization cap Utilization cap
Harmonic task set Non-harmonic task set

09/07/2014 PRO IMA I

Evaluation against S-PD? (Pfair)

80 k P EDIF | | | | | | 70 k G E[I)F | I | | |
2’0 TG EpF et OOKT RUN e i
SPOKFRUN e /7] 850k |- Pfair - 1
850 k - Pfair —-—=-— g 1 ®a0k - Fam
040 k // 1 © /
S30k -] 80k Al T
20 k | -
10k - 4 ok J— .
0 k amoe == ot G L — ars =i 0 k e il 4 F e
4 45 5 55 6 65 7 75 8 4 45 5 55 6 65 7 75 8
Utilization cap Utilization cap

Observed preemptions and migrations

4 45 5 5.5 6 6.5 7 7.5 8
Utilization cap

Per-job kernel overhead

09/07/2014 PRO IMA I

Summary

The DP-Fair algorithm shows that optimal
scheduling for multicore processors need 7o be
oreedy and instead can dispatch parsimonionsly

0 Yet, this algorithm proved very difficult to implement as
it required non-standard scheduling events

The RUN algorithm shows how the principle of
duality allows reducing multicore scheduling to a
(simple) uniprocessor case

0 This algorithm, although unusual, was easier to
implement and proved as efficient as on paper

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 446 of 552

Selected readings

S. Funk, G. Levin, G., ¢t a/. (2011)
DP-FAIR: a unifying theory for optimal hard real-time

minltiprocessor scheduling

DOI: 10.1007/s11241-011-9130-0

E. Massa, G. Lima, P. Regnier (2016)
From RUN to QPS: new trends for optimal real-time

minltiprocessor scheduling

DOI: 10.1504/1JES.2016.080390

D. Compagnin, E. Mezzetti, T. Vardanega (2014)
Putting RUN into Practice: Implementation and Evalnation
DOI: 10.1109/ECRTS.2014.27

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 447 of 552

