7.b Seeking the lost optimality

Where we reflect more deeply into what became of optimality in the multicore world, and look at two ways to achieve it very differently from PFair

Rationale of the selection

- Between 2003 and 2016, multiple research efforts devised multicore scheduling algorithms capable of achieving optimality lesser costly than with P-fair
- We now look at two such results, which shine for their originality, and shed light on first principles for optimality in this world
 - □ Greg Levin *et al.* (2010), DP-FAIR: A Simple Model for Understanding Optimal Multiprocessor Scheduling
 - □ Paul Regnier *et al.* (2011), RUN: Optimal Multiprocessor Real-Time Scheduling via Reduction to Uniprocessor

DP-FAIR: A Simple Model for Understanding Optimal Multiprocessor Scheduling

Greg Levin[†] Shelby Funk[‡] Caitlin Sadowski[†] Ian Pye[†] Scott Brandt[†]

†University of California Santa Cruz [‡]University of Georgia Athens

Partitioned Schedulers Cannot Be Optimal

■ Example: 2 processors (m = 2); 3 tasks, each with 2 units of work required every 3 time units: (3,2)

Global Schedulers May Succeed

Same example, same taskset

Task 3 may now *migrate* between processors

Fluid Rate Curve

Feasible Work Region

The Grand Challenge (Mark 1)

- Design an optimal scheduling algorithm for periodic task sets on multiprocessors
 - A task set is *feasible* if there exists a schedule that meets all deadlines
 - A scheduler is optimal if it can always chedule any feasible task set

Necessary and Sufficient Conditions

- Any set of (independent) tasks needing at most
 - \square 1 processor for each task τ_i ($\forall i = 1, ..., n: U_i \leq 1$)
 - \square m processors for all tasks $(\sum_i U_i \leq m)$

is feasible

- Proof: small scheduling intervals can approximate the fluid rate curve
 - Status: solved (on paper). P-Fair (1996) was the first such optimal algorithm
 - At what cost?

The Grand Challenge (Mark 2)

- Design an optimal scheduling algorithm with fewer context switches and migrations
 - Finding a feasible schedule with *the fewest* migrations is NP-Complete!

The Grand Challenge (Mark 2)

- Design an optimal scheduling algorithm with fewer context switches and migrations
- Status: solved, but ...
 - With solutions that are complex and confusing
- Our Contributions: A simple, unifying theory for optimal global multiprocessor scheduling and a simple optimal algorithm

Example (n = 3, m = 2), implicit deadlines

Utilization: 9/10 + 9/10 + 8/40 = 2

Yet, if τ_3 isn't started by t=8, Task 2:W the residual idle time won't suffice and a deadline miss will occur

Proportioned Algorithms Succeed on Multiprocessors /1

Subdivide τ_3 in $\frac{T_3}{T_{i=1,2}}=4$ subtasks with the same period as τ_1,τ_2 and proportional workload $\frac{C_3}{4}=2$

Proportioned Algorithms Succeed on Multiprocessors /2

Proportional Fairness

Insight: scheduling is easier when all jobs have the same deadline

Theorem [Hong, Leung: RTSS 1988, IEEE TCO 1992] No optimal on-line scheduler can exist for a set of jobs with two or more distinct deadlines on any (m > 1) multiprocessor system

- Application: apply all deadlines to all jobs
 - Assign workloads proportional to utilization
 - Work complete matches fluid rate curve at every system deadline

Proportional Fairness is the Key

- All optimal algorithms enforce proportional fairness at all deadlines
 - □ **P-Fair** (1996): the extreme: proportional fairness at all times
 - □ BF, Boundary Fair
 - D. Zhu, D. Mossé, and R. Melhem, Multiple-Resource Periodic Scheduling Problem: how much fairness is necessary?, RTSS, 2003
 - □ LLREF, Largest Local Remaining Execution time First
 - H. Cho, B. Ravindran, E.D. Jensen, An Optimal Real-Time Scheduling Algorithm for Multiprocessors, RTSS, 2006
 - □ EKG, EDF with task splitting and k processors in a group
 - B. Andersson, E. Tovar, Multiprocessor Scheduling with Few Preemptions, RTCSA, 2006
- Why do they all use proportional fairness?

Scheduling Multiple Tasks is Complicated

Actual Feasible Regions

Restricted Feasible Regions Under Deadline Partitioning

The DP-Fair Scheduling Policy

- Partition time into slices based on all system deadlines
- Allocate each job a per-slice workload equal to its utilization × the length of the slice
- Schedule jobs within each slice in any way that obeys the following three rules:
 - 1. Always run a job with zero *local laxity*
 - 2. Never run a job with no workload remaining in the slice
 - 3. Do not voluntarily allow more idle processor time than $(m \sum U_i) \times ($ length of slice)

DP-Fair Work Allocation

DP-Fair Scheduling Rule #1

DP-Fair Scheduling Rule #2

DP-Fair Scheduling Rule #3

DF-Fair Guarantees Optimality

We say that a scheduling algorithm is DP-Fair if it follows these three rules

■ **Theorem:** Any DP-Fair scheduling algorithm for periodic tasks is optimal

DP-Fair Implications

- (Partition time into slices)
 - + (Assign proportional workloads)

Optimal scheduling is almost trivial

- Minimally restrictive rules allow great latitude for algorithm design and adaptability
- What is the simplest possible algorithm?

(EXAMPLE OF EXAM ASSIGNMENT) UNDERSTANDING THE RUN ALGORITHM

PhD seminar on Real-Time Systems, University of Bologna, July 2014

RUN Assumptions

Model parameters

- m > 1 homogeneous (symmetric) processors
- n implicit-deadline, independent, periodic tasks τ_i , $i \in \{1...n\}$
- $n = m + k, k \ge 0$
- Fixed-rate tasks $U_i = \frac{c_i}{T_i}$ $\sum_{i=1}^n U_i \leq m$
- Fully utilized system: no idle time (add filler task if needed)
- Migration and preemption costs included in c_i

Example /1

Legend

task

Rate

processor

- $U_i = 0.6 \ \forall \tau_i, i = \{1, ..., n = 5\}$
- $\sum_{i=1}^{n} U_i = 3 = m$ (fully utilized system)
- What schedule \sum for $\mathbf{S} = \{\{\boldsymbol{\tau_i}\}, \boldsymbol{m}\}$?

Duality

- The (primal) problem of scheduling $S=\{\tau_1=(c_1,T_1),\dots,\tau_n=(c_n,T_n)\},m$ has a $\frac{dual}{dual}$ problem that consists of scheduling $S'=\{\tau_1'=(T_1-c_1,T_1),\dots,\tau_n'=(T_n-c_n,T_n)\},(n-m)$
- With this definition of duality
 - Laxity in primal is work-remaining in the dual
 - A work-complete event in the primal is zero-laxity in the dual
 - And vice versa
- Corollary: any scheduling problem with m processors, n=m+1 tasks, and $\sum_1^n U_i=m$ may be scheduled by applying EDF to its uniprocessor dual
 - If we can schedule n tasks on m processors, then we can also schedule the dual of those n tasks on n-m processors
 - This is so because the scheduling events in the dual system map to scheduling events in the primal system

The G-LLF example at page 363 ...

- At t = 15 the CPU time remaining is $T_R = m \times (H_S t) = 10$
- Yet, the time needed is $T_N = e_1 + e_2 + e_3 = 11$

Duality solves that unsolvable problem

$$S = \{\tau_1 = (3,4), \tau_2 = (3,4), \tau_3 = (5,10)\}, n = 3, U_S = \frac{3}{4} + \frac{3}{4} + \frac{5}{10} = 2.0 \rightarrow m = 2$$

$$S_D = \{\tau_{1_D} = (1,4), \tau_{2_D} = (1,4), \tau_{3_D} = (5,10)\}, U_{S_D} = \frac{1}{4} + \frac{1}{4} + \frac{5}{10} = 1.0 = n - m$$

The dual (LLF) schedule leaves no idle time

Legend

task

Rate

processor

- $U_i = 0.6 \ \forall \tau_i, i = \{1, ..., n = 5\}$
- $\sum_{i=1}^{n} U_i = 3 = m$ (fully utilized system)
- . What schedule Σ for $\mathbf{S} = \{\{\boldsymbol{\tau_i}\}, \boldsymbol{m}\}$?

• Consider the dual of this $\{n = 5, m = 3\}$ system

The dual should run on m^* processors

The $(n^*=3,m^*=2)$ system still cannot be partitioned feasibly Yet, applying duality to it seems promising since the dual would need $n^*-m^*=1$ processor, which would **R**EDUCE the problem TO a **UN**IPROCESSOR case

$$m^{**} = 1 = k^*$$

Why does reduction terminate? /1

Lemma:
$$\psi = \left| \sigma \bigoplus \phi \left(\bigcup_{i=1}^{4} \tau_{i} \right) \right| \leq \left[\frac{|\tau|+1}{2} \right]$$

Intuition

$$\sum_{1}^{n=4} U_i = 3 \Rightarrow m = 3$$

 $\mathbf{k} = n - m = 4 - 3 = 1$

In the dual system

$$\sum_{1}^{4} U_{i}^{*} = n - m = 1 \Rightarrow m^{*} = 1$$

 $n^{*} = 1$ (after packing)
 $k^{*} = n^{*} - m^{*} = 0$ no leftover

Why does reduction terminate? /2

Lemma:
$$\Psi = \left| \sigma \bigoplus \phi \left(\bigcup_{i=1}^{4} \tau_{i} \right) \right| \leq \left[\frac{|\tau|+1}{2} \right]$$

- Reduction $\Psi = \sigma \oplus \varphi$ terminates as every step of it lowers the residual workload and the # of processors needed to run it
- The packing operation (at least)
 halves the number of tasks to
 schedule
- Termination theorem: after a finite number p of reduction steps, the system is reduced to a uniprocessor with full workload

How does RUN work /1

- Two basic operators
 - φ: Dual
 - σ: Pack
- A higher-order $\Psi = \sigma \oplus \varphi$: **Reduce** operation lowers (at least halving) the size of the problem at every step
- **Theorem** (validity of the dual): Σ valid $\Leftrightarrow \Sigma^*$ valid
- Every dual task represents the idle time of its primal
 - Finding a feasible schedule for the dual (easier)
 determines a feasible schedule for its primal

How does RUN work /2

Algorithm 1: Outline of the RUN algorithm

I. OFF-LINE;

A. Generate a reduction sequence for \mathcal{T} ;

B. Invert the sequence to form a server tree; Servers are aggregates of tasks

C. For each proper subsystem \mathcal{T} of \mathcal{T} ;

Define the client/server at each virtual level; Each task in a server is a client of it

II. ON-LINE:

Upon a scheduling event:;

A. If the event is a job release event at level 0;

- Update deadline sets of servers on path up to root;
- Create jobs for each of these servers accordingly;
- B. Apply Rules 1 & 2 to schedule jobs from root to leaves, determining the m jobs to schedule at level 0;
- C. Assign the m chosen jobs to processors, according to some task-to-processor assignment scheme;

Example: off-line phase

Example: on-line phase (seen at time t = 7)

Reduction Tree, used from the root

Situation at t = 7

$$S_6^* = (2,10), S_7^* = (2,10), S_8^* = (3,5) \rightarrow U^* = 1.0$$

At t = 7, a job of S_7^* ends; S_8^* becomes runnable Its dual, S_8 , (U = 2), should become idle, hence $S_7 = \sigma(S_3^*, S_4^*)$ should have a scheduling event, where S_4^* should become runnable Its dual S_4 , (U = 3), should become idle, hence $S_5 = \sigma(\tau_5, \tau_6)$ should have a scheduling event, where τ_6 should become runnable

Putting RUN into practice

Implementation and evaluation

Davide Compagnin, Enrico Mezzetti and Tullio Vardanega University of Padua, Italy

26th EUROMICRO Conference on Real-time Systems (ECRTS) Madrid, 9 July 2014

www.proxima-project.eu

RUN implementation

- □ For real
 - On top of LITMUSRT Linux test-bed (UNC, now MP-SWI)
 - Relying on standard RTOS support
- Main implementation choices and challenges
 - Scheduling on the reduction tree
 - How to organize the data structure
 - How to perform virtual scheduling and trigger tree updates
 - Intrinsic influence of the packing policy
 - Mixing global and local scheduling
 - Global release event queue vs. local *level-0* ready queue
 - Handling simultaneous scheduling events
 - Job release, budget exhaustion (possibly from different sub-trees)
 - Meeting the full-utilization requirement
 - Variability of tasks' WCET and less-than-full utilization

Empirical evaluation

- Real implementation instead of plain simulation
- □ Focus on scheduling interference
 - Cost of scheduling primitives
 - Incurred preemptions and migrations
- □ RUN compared against P-EDF and G-EDF, already native on LITMUS^{RT}
 - RUN shares something in common with both
- Much better than Pfair (S-PD² in LITMUS^{RT})
 - RUN has superior performance for preemptions and migrations

Experimental setup

- □ LITMUSRT on an 8-core AMD OpteronTM 2356
- Measurement runs for RUN, P-EDF, G-EDF
 - Hundreds of automatically generated task sets
 - Harmonic and non-harmonic, with global utilization @ 50%-100%
 - Representative of small up to large tasks
- Two-step process
 - Preliminary empirical determination of overheads

Collect measurements on overheads

Determine per-job upper bound

Perform actual evaluation

Primitive overheads and empirical bound

- Expectations confirmed
 - P-EDF needs lighter-weight scheduling primitives
 - > RUN reduces to P-ED when a perfect portioning exists
- ☐ Tree update (TUP) triggered upon
 - Budget exhaustion event
 - ➤ Job release → REL includes TUP
- Empirical upper bound on RUN scheduling overhead

$$OH_{RUN}^{Job} = REL + S\widehat{CHED} + CLK + k \times (TUP + S\widehat{CHED} + max(PRE, MIG))$$

$$k = \lceil (3p+1)/2 \rceil \qquad S\widehat{CHED} = SCHED + CSW + LAT$$

Empirical schedulable utilization

Kernel interference

Average preemptions and migrations

Scheduling cost

Average cost of core scheduling primitives

Average job release

Average schedule

Per-job scheduling overhead

Harmonic task set

Non-harmonic task set

Evaluation against S-PD² (Pfair)

Observed preemptions and migrations

Per-job kernel overhead

Summary

- The DP-Fair algorithm shows that optimal scheduling for multicore processors need *not* be greedy and instead can dispatch *parsimoniously*
 - Yet, this algorithm proved very difficult to implement as it required non-standard scheduling events
- The RUN algorithm shows how the principle of *duality* allows reducing multicore scheduling to a (simple) uniprocessor case
 - □ This algorithm, although unusual, was easier to implement and proved as efficient as on paper

Selected readings

- S. Funk, G. Levin, G., et al. (2011)
 DP-FAIR: a unifying theory for optimal hard real-time multiprocessor scheduling
 DOI: 10.1007/s11241-011-9130-0
- E. Massa, G. Lima, P. Regnier (2016) From RUN to QPS: new trends for optimal real-time multiprocessor scheduling DOI: 10.1504/IJES.2016.080390
- D. Compagnin, E. Mezzetti, T. Vardanega (2014) Putting RUN into Practice: Implementation and Evaluation DOI: 10.1109/ECRTS.2014.27