
7.c Global resource sharing

Where we continue to lift unrealistic
workload-model restrictions, allowing tasks
to share protected resources across cores
under partitioned or global scheduling

Contention and blocking

 Parallelism breaks the single-runner premise on which
single-core access control solutions rested
 Suspending on wait does not favour earlier release of

shared resources because parallelism gets in the way
 Suspending does not stop other tasks, including lower-

priority local ones, from making access requests that may
cause future priority-inversion (PI) damage

 Spinning helps prevent PI, at the cost of wasting
CPU cycles

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 449 of 552

Multiprocessor PCP /1

 P-FPS with strict resource-to-CPU binding
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a global shared resource is called

the synchronization processor (SP) for that resource
 All use requirements for shared resources are known statically

 The protected methods of a resource execute on its SP
 The processor to which a task is assigned is the local

processor (LP) for all of the jobs of that task
 Jobs that call protected methods that are remote, employ

“distributed transactions” to execute them on the resource’s SP

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 450 of 552

Multiprocessor PCP /2

 A task is permitted to use local and global resources
 Local resources reside on the task’s LP, governed by single-

processor PCP
 Resources are global when their SP differs from any client

task’s LP

 To protect against parallel contention, resource access
control protocols need actual locks
 The consequent overhead makes lock-free algorithms attractive

 SPs use M-PCP to control access to global resources
that they host

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 451 of 552

Multiprocessor PCP /3

 The execution that holds a global lock should not be
preempted locally
 All global protected methods that run on an SP must execute

at ceiling priorities higher than all tasks local to it
 This privilege breaks independence!

 Task ௛ that is denied access to global shared resource
௚ suspends on its LP, and waits in a priority-based queue

for ௚
 Suspension causes the nesting of global resources that reside

on distinct SPs to be liable to circular-wait deadlock
 This is why other protocols prefer ௛ to spin

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 452 of 552

Multiprocessor PCP /4

 When ௛ suspends on access to ௚, any lower-
priority task ௟ local to ௛’s LP, may acquire global
resources on ௚’s SP
 If those resources had higher ceiling priority than ௚,

their execution would delay the progress of ௛ further

 This situation causes ௛ to suffer an anomalous
form of PI
 The action of a lower-priority task (௟) delays the release

of ௚, which in turn delays ௛ longer

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 453 of 552

Blocking under M-PCP

 With M-PCP, tasks may damage task ௜ in many ways!
1. Local blocking (once per release): when 𝜏௜ finds a local resource held by a

local 𝑙𝑝 task that got running as a consequence of 𝜏௜’s suspension on
access to a locked global resource

2. Remote blocking (once per request): when 𝜏௜ finds a global resource held
by a 𝑙𝑝 task running on the global resource’s SP that it seeks

3. Local preemption (multiple times): when remote tasks of any priority
execute global critical sections on 𝜏௜’s LP

4. Local preemption (once per release): when local 𝑙𝑝 tasks execute global
critical sections on 𝜏௜’s LP

5. Remote preemption (once per request): when ℎ𝑝 global critical sections
execute on the SP where 𝜏௜’s global resource resides

6. Deferred interference: as local ℎ𝑝 tasks resume after suspending on
access to global resources because of blocking effects

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 454 of 320

Multiprocessor SRP

 P-EDF with shared resources bound to SPs
[Gai, Lipari, Di Natale, 2001]
 Normal stack-based ceiling to control access to local resources

 Tasks that lock a global resource execute its critical sections
at the highest local priority
 The wait time is shorter if the lock-holder cannot be preempted, but

this privilege breaks independence
 Tasks that request a global resource ீ already locked, are

held in a FIFO queue on ீ ’s SP and spin on their LP
 This policy upper-bounds the requesting task’s wait time to 𝒎െ 𝟏

executions of the longest critical section of 𝜌ீ
 The spinning time adds to the task’s WCET

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 455 of 552

Summing up

 Lock-based resource access control protocols under
partitioned scheduling may use either suspension or spinning

 With suspension, the task that cannot acquire the lock, is
placed in a priority-ordered queue (FIFO would be better)
 The use of inheritance boosting may reduce the wait time

 With spinning, the task busy-waits and its request is placed
in a FIFO queue attached to the resource
 Inhibiting preemption of the spinning task reduces wait time, at the

cost of breaking independence
 Also the lock holder may enjoy non-preemption

 Widening the breakage of independence

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 456 of 552

locking protocols : G-EDF /1

 Global scheduling: shared resources are obviously global
 Before requesting a resource, a task must acquire one of 𝑚 general

priority-queue, PQ, locks (hence, up to 𝑚 simultaneous requestors)
 If the resource is busy, the requestor suspends on a per-resource

FIFO queue, FQ (of 𝑚 positions)
 On preemption, the lock-holder inherits the highest priority of the

tasks waiting in the chain of queues (FQ and PQ)
 Worst-case per-request blocking is executions of the

longest critical section for the resource
 When FQ is full with 𝑚 𝑙𝑝-jobs, and 𝑚 ℎ𝑝-tasks run (including the

job of interest) that all want to access the same resource
 The other tasks suffer inheritance blocking

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 457 of 552

locking protocols : G-EDF /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 458 of 552

PQ

FQ

Inheritance boosting

𝜷𝒌 ൌ ሺ𝟐𝒎െ 𝟏ሻ𝝎𝒌

(Job-Level Fixed Priority)

locking protocols : P-EDF /1

 Partitioned scheduling: shared resources are local or global
 One priority queue (PQ) per processor: the task at head of PQ

acquires a token that allows contending for global resources
 Hence, up to 𝑚 simultaneous requestors

 Pending requests for G-resources are held in a per-resource FQ
 The waiting tasks suspend

 On preemption, lock-holders’ priority is inheritance-boosted from FQ
 Worst-case blocking has three components

 Local, when lock-holder is a local 𝑙𝑝-task (per release)
 Remote direct, when requestor is last in FQ (per request)
 Remote transitive, when a local 𝑙𝑝-task has acquired PQ token and is

last in FQ (per release)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 459 of 552

locking protocols : P-EDF /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 460 of 552

Blocking 1 (per release): lock holder is local lower-priority
Blocking 2 (per request): requestor is last in FQ
Blocking 3 (per release): token holder is local lower-priority and last in FQ

FQ

PQ

independence preservation /1

 Suspension-based, clusters of size
 Global scheduling per cluster, partitioned cluster assignment
 Per cluster: one C-FQ + C-PQ, for Ο 𝑐 local blocking
 Per resource: one global R-FQ

 Head of C-FQ is copied in R-FQ and removed only after service
 R-FQ contains ൑ 1 request per cluster, for Ο ೘

೎ global blocking
 Independence is preserved by inter-cluster migration

 Preempted lock-holder (head of R-FQ) can migrate with inheritance
boosting to another cluster and CPU along the R-FQ

 Worst-case per-request blocking occurs when requestor is
last in R-FQ and last out from C-FQ

𝒊,𝒌 𝒌 𝒌

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 461 of 552

independence preservation /2

2020/2021 UniPD – T. Vardanega

𝑣 ൌ ௠
௖

𝑐

Real-Time Kernels and Systems 462 of 552

𝜷𝒊,𝒌 ൌ
𝒎
𝒄 െ 𝟏 ൅

𝒎
𝒄 ൈ 𝒄 െ 𝟏 𝝎𝒌 ൌ 𝒎െ 𝟏 𝝎𝒌

R-FQ

C-FQ
C-PQ

Last in R-FQ Last out from C-FQ

independence preservation /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 463 of 552

migration

spinning

● 𝑡 ൌ 3: 𝜏ଶ suspends and 𝜏ଵ resumes execution
● 𝑡 ൌ 4: 𝜏ଷ migrates to cluster1 where it impersonates 𝜏ଶ and preempts 𝜏ଵ

[Brandenburg, 2013]

 Theorem
 Under non-global scheduling (with cluster size),

no resource access control protocol can simultaneously
 Prevent unbounded PI blocking
 Preserve independence (if you don’t contend you are left alone)
 Avoid migration

 Seeking independence preservation and bounded
PI-blocking requires inter-cluster job migration (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 464 of 552

MrsP [Burns, Wellings, 2013] /1

 Goal 1: allow global resources with P-FPS, with an
RTA identical to the single-processor case
 The cost of accessing global resources should be inflated

to reflect serialization of parallel contention

 Goal 2: preserve the single-processor PCP benefit
that, when a job starts running, all the resources
that it may use, should be available
 This requires spinning because suspending on wait would

wreak havoc

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 465 of 552

MrsP [Burns, Wellings, 2013] /2

 Spinning at the highest local priority may delay local
urgent tasks and thus decrease overall feasibility

 Spinning at the local resource ceiling priority is better
 With all cores using PCP, at most one task per core may contend

globally, which assures global blocking
 Requests are served in global R-FQ

 To bound blocking, spinning tasks “donate” their
cycles to preempted lock-holder
 Lock-holder migrates to the processor of a spinning task and

runs in its stead until lock release or another migration

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 466 of 552

MrsP [Burns, Wellings, 2013] /3

 Partitioned scheduling (), with spinning at local
ceiling when waiting for global resource
 Combined with PCP, this assures local blocking at most once

before execution, which allows using canonical RTA
 Worst-case wait 𝜷𝒊,𝒌 ൌ ሺ𝒎 െ 𝟏ሻ ൈ𝒎𝒂𝒙𝒌 𝝎𝒌

 Computed across resources used by tasks with ceiling not
inferior to ௜ ’s priority

 Cost of spinning adds to task’s WCET
 Earlier release of resource obtained by migrating pre-

empted lock holder to the CPU where the first
contender in the global R-FQ is currently spinning

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 467 of 552

MrsP [Burns, Wellings, 2013] /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 468 of 552

R-FQ

𝜷𝒊,𝒌 ൌ ሺ𝒎 െ 𝟏ሻ ൈ𝒎𝒂𝒙𝒌 𝝎𝒌

(SRP: Stack Resource Protocol)

MrsP [Burns, Wellings, 2013] /5

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 469 of 552

spinning

migration

s

(spinning)

● 𝑡 ൌ 3: 𝜏ଶ starts spinning at local ceiling priority
● 𝑡 ൌ 4: 𝜏ଷ migrates to 𝑃ଵ and executes in place of 𝜏ଶ

MrsP [Burns, Wellings, 2013] /6

 𝒊 𝒊
ᇱ

𝒊 𝒊

 𝒊 𝒍
 𝜔௟ is the longest critical section of resource 𝜌௟ used by a 𝑙𝑝 task

with ceiling no less than 𝜏௜ ’s priority
 𝑏 is the longest duration of kernel’s run with inhibited preemption

 𝒊
𝑹𝒊
𝑻𝒋 𝒋

ᇱ
𝒋𝝐𝒉𝒑𝒍ሺ𝒊ሻ , local interference only

 𝒊
ᇱ

𝒊 𝒊 𝒋𝒋 , must include spinning
 𝐶௜ is 𝜏௜ ’s WCET (except for spinning)
 𝑛௜ is the number of times 𝜏௜ uses shared resource 𝜌௝
 𝑒௝ ൑ 𝑚 െ 1 𝜔௝ , with 𝜔௝ the longest critical section of 𝜌௝

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 470 of 552

MrsP [Burns, Wellings, 2013] /7

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

 Recent work has extended MrsP to proper nesting

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 471 of 552

Summary

 Various solutions exist to enable the sharing of global
resources with either partitioned or global scheduling
 The associated overhead is often very high

 Parallel contention calls for the use of actual locks
and requires either suspension or spinning
 Neither is very satisfactory

 We have seen that spinning and migration can provide
the best (least-bad?) solution

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 472 of 552

Selected readings

 B. Brandenburg (2013)
A Fully Preemptive Multiprocessor Semaphore Protocol for
Latency-Sensitive Real-Time Applications
DOI: 10.1109/ECRTS.2013.38

 A. Burns, A. Wellings (2013)
A Schedulability Compatible Multiprocessor Resource Sharing
Protocol – MrsP
DOI: 10.1109/ECRTS.2013.37

 S. Zhao et al. (2017)
New schedulability analysis for MrsP
DOI: 10.1109/RTCSA.2017.8046311

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 473 of 552

