7.c Global resource sharing

Where we continue to lift unrealistic
workload-model restrictions, allowing tasks
to share protected resources across cores
under partitioned or global scheduling

Contention and blocking

Parallelism breaks the single-runner premise on which
single-core access control solutions rested

0 Suspending on wait does 7ot tavour earlier release of
shared resources because parallelism gets in the way

0 Suspending does 7o stop other tasks, including lowet-
priority local ones, from making access requests that may
cause future priority-inversion (PI) damage

Spinning helps prevent PI, at the cost of wasting
CPU cycles

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 449 of 552

Multiprocessor PCP /1

P-FPS with strict resource-to-CPU binding
[Sha, Rajkumar, L.ehoczky, 1988]
0 The processor that hosts a global shared resource 1s called

the synchronization processor (SP) for that resource

All use requirements for shared resources are known statically
0 The protected methods of a resource execute on its SP

0 The processor to which a task is assigned 1s the /oca/

processor (LP) tor all of the jobs of that task

Jobs that call protected methods that are remote, employ
“distributed transactions’ to execute them on the resource’s SP

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 450 of 552

Multiprocessor PCP /2

A task 1s permitted to use local and global resources

0 Local resources reside on the task’s P, governed by single-
processor PCP

0 Resources are global when their SP differs from any client
task’s LP

To protect against parallel contention, resource access
control protocols need actual locks

0 The consequent overhead makes /ock-free algorithms attractive

SPs use M-PCP to control access to global resources
that they host

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 451 of 552

Multiprocessor PCP /3

The execution that holds a global lock should 707 be
preempted locally

0 All global protected methods that run on an SP must execute
at ceiling priorities higher than all tasks local to 1t

a This privilege breaks independencel 0

Task Tp that is denied access to global shared resource
Py suspends on its P, and waits in a priority-based queue
for pg

0 Suspension causes the nesting of global resources that reside
on distinct SPs to be liable to circular-wait deadlock

0 This is why other protocols prefer Ty to spin

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 452 of 552

Multiprocessor PCP /4

When 1) suspends on access to pg, any lower-

priority task 7; local to T s LLP, may acquire global
resources on Pg’s SP

0 If those resources had higher ceiling priority than pg,
their execution would delay the progress of Ty further

This situation causes Ty, to suffer an anomalous

form of PI o

0 The action of a lower-priority task (7;) delays the release
of pg, which in turn delays 7 longer

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 453 of 552

Blocking under M-PCP

With M-PCP, [lp tasks may damage task 7; in many ways!

1. Local blocking (once per release): when T; finds a local resource held by a
local Ip task that got running as a consequence of T;’s suspension on
access to a locked global resource

2. Remote blocking (once per request): when T; finds a global resource held
by a lp task running on the global resource’s SP that it seeks

3. Local preemption (multiple times): when remote tasks of any priority
execute global critical sections on T;’s LP

4. Local preemption (once per release): when local [p tasks execute global
critical sections on T;’s LLP

5. Remote preemption (once per request): when hp global critical sections
execute on the SP where T;’s global resource resides

6. Deferred interference: as local hp tasks resume after suspending on
access to global resources because of blocking effects

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 454 of 320

Multiprocessor SRPP

P-EDF with shared resources bound to SPs

|Gazt, Lipari, Di Natale, 2001]

0 Normal stack-based ceiling to control access to local resources

Tasks that lock a global resource execute its critical sections

at the highest /ocal priority

0 The wait time is shorter if the lock-holder cannot be preempted, but
this privilege breaks independence

Tasks that request a global resource pg already locked, are
held in a FIFO queue on pg’s SP and spzz on their LP

0 This policy upper-bounds the requesting task’s wait time tom — 1
executions of the longest critical section of pg

0 The spinning time adds to the task’s WCET

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 455 of 552

Summing up

Lock-based resource access control protocols under
partitioned scheduling may use either suspension ot spinning

With suspension, the task that cannot acquire the lock, 1s
placed in a priority-ordered queue (FIFO would be better)

0 The use of inheritance boosting may reduce the wait time

With spinning, the task busy-waits and its request 1s placed
in a FIFO queue attached to the resource

0 Inhibiting preemption of the spinning task reduces wait time, at the
cost of breaking independence

Also the lock holder may enjoy non-preemption
0 Widening the breakage of independence

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 456 of 552

O (m) locking protocols : G-EDF /1

Global scheduling: shared resources are obviously global

0 Before requesting a resource, a task must acquire one of m general
priority-queue, PQ), locks (hence, up to m simultaneous requestors)

0 If the resource is busy, the requestor suspends on a per-resource

FIFO queue, FQ (of m positions)

a0 On preemption, the lock-holder inherits the highest priority of the
tasks waiting in the chain of queues (FQ and PQ)

Worst-case per-request blocking is 2m — 1 executions of the
longest critical section for the resource

0 When FQ is full with m Ip-jobs, and m hp-tasks run (including the

job of interest) that all want to access the same resource

The other tasks suffer inheritance blocking

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 457 of 552

‘ O (m) locking protocols : G-EDF /2

r —taskset- — -
| |
suspend, |
T1 I
Inheritance boosting :
€ I
= m - |
|
icxa=4y '
|
FQ = m — '
PQ |
Tn

| |
B =2m—1)w, suspend, ——————— j

JLFP scheduler
(Job-Level Fixed Priority) A

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 458 of 552

O (m) locking protocols : P-EDF /1

Partitioned scheduling: shared resources are local or global
a0 One priority queue (PQ) per processor: the task at head of PQ

acquires a foken that allows contending for global resources

Hence, up to m simultaneous requestors

0 Pending requests for G-resources are held in a per-resonrce FQ
The waiting tasks suspend

a0 On preemption, lock-holders’ priority is inberitance-boosted from FQ
Worst-case blocking has three components
0 Local, when lock-holder is a local [p-task (per release)

QO Remote direct, when requestor is last in FQ (per reques?)

0 Remote transitive, when a local [p-task has acquired PQ token and is
last in FQ (per release)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 459 of 552

‘ O (m) locking protocols : P-EDF /2

binary semaphore
and prio boosting

o
-
PRIO a

Blocking 1 (per release): lock holder is local lower-priority
Blocking 2 (per reques?): requestor is last in FQ
Blocking 3 (per release): token holder is local lower-priority and last in FQ

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 460 of 552

O (m) independence preservation /1

Suspension-based, clusters of size 1 < ¢ <m
0 Global scheduling per cluster, partitioned cluster assignment
0 Per cluster: one C-FQ + C-PQ, for O(c) local blocking

0 Per resource: one global R-FQ
Head of C-FQ is copied in R-FQ and removed only affer service

R-FQ contains < 1 request per cluster, for O(%) global blocking

Independence is preserved by znter-cluster migration

0 Preempted lock-holder (head of R-FQ)) can migrate with inheritance
boosting to another cluster and CPU along the R-FQ

Worst-case per-request blocking occurs when requestor is

last in R-FQ and last out from C-FQ

Bir = [(?—1)+%><(c—1)+ w, = (m— 1wy,

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 461 of 552

‘ O (m) independence preservation /2

copy head

b=

v —|/
resp <riro [

R-FQ

copy head |

I
Last in R-FQ Last out from C-FQ |

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 462 of 552

‘ O (m) independence preservation /3

)

executing holding res. busy wait release request res. completion
2
g
o
A ——
T4
A e " .- - - 1 . —
clusters spinning
3 — —
------- -------------I I--\- NN EE NN BN N NN BN BN NN BN BN BN BN BN BN BN B BN BN B e e e .
A O -
clustery t T
1 [1] []
o 1 2 3 4 5 6 T 8 9 10 11 12 13 14 time

e t = 3.1, suspends and 7, resumes execution
e t = 4: 73 migrates to cluster, where it impersonates 7, and preempts t,

2020/2021 UniPD — T. Vardanega

Real-Time Kernels and Systems 463 of 552

[Brandenburg, 2013]

Theorem

a0 Under non-global scheduling (with cluster size ¢ < m),
no resource access control protocol can simultaneously

Prevent unbounded PI blocking
Preserve independence (if you don’t contend you are left alone)
Avoid migration
Seeking independence preservation and bounded
PI-blocking requires inter-cluster job migration (!)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 464 of 552

MrsP [Burns, Wellings, 2013] /1

Goal 1: allow global resources with P-FPS, with an
RTA identical to the single-processor case

0 The cost of accessing global resources should be inflated
to reflect serialization of parallel contention

Goal 2: preserve the single-processor PCP benefit
that, when a job starts running, all the resources
that it may use, should be available

0 This requires spznning because suspending on wait would
wreak havoc

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 465 of 552

MrsP [Burns, Wellings, 2013] /2

Spinning at the highest local priority may delay local
urgent tasks and thus decrease overall feasibility

Spinning at the /ocal resource ceiling priority is better

0 With all cores using PCP, af most one task per core may contend

globally, which assures O(1m) global blocking
0 Requests are served in global R-FQ

To bound blocking, spinning tasks “donate” their
cycles to preempted lock-holder

0 Lock-holder migrates to the processor of a spinning task and
runs 1n its stead until lock release or another migration

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 466 of 552

MrsP [Burns, Wellings, 2013] /3

Partitioned scheduling (¢ = 1), with spinning at local
ceiling when waiting for global resource

0 Combined with PCP, this assures local blocking az most once
before execution, which allows using canonical RTA

Worst-case wait B = (m — 1) X max;(wy)

a0 Computed across resources used by [p tasks with ceiling not
inferior to T;’s priority

Cost of spinning adds to task’s WCET

Farlier release of resource obtained by migrating pre-
empted lock holder to the CPU where the first
contender in the global R-FQ 1s currently spinning

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 467 of 552

MrsP [Burns, Wellings, 2013] /4

spinning at
own ceiling

®
3

spinning at \

own ceilin |
& | Tn

Bix = (m—1) X max;(w;) |

2020/2021 UniPD — T. Vardanega Real-Time Kernels and Systems 468 of 552

MrsP [Burns, Wellings, 2013] /5

')

n [] = } 7 T
executing holding res. busy wait release request res. completion
o (spinning)
aw\
A _
T4 ——
PQ A I spinning
T3 \, S N\
_______ - N R I
P t T
71 |
O 1 2 3 4 5 6 7 8 10 11 12 13 14 time
e t = 3: 1, starts spinning at local ceiling priority
e t = 4: 73 migrates to P; and executes in place of 7,
2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 469 of 552

MrsP [Burns, Wellings, 2013] /6

Ri —_ C;+Bl+1l
B; = max{w;, b}

0wy is the longest critical section of resource p; used by a [p task
with ceiling no less than T;’s priority

0 b is the longest duration of kernel’s run with inhibited preemption
_ Ri| A1 :
I; =), jehpl(i) [T—J C;, local interference only

C;=C;+ jNi€j, must include spinning
0 Cjis Ty’s WCET (except for spinning)
0 n; is the number of times 7; uses shated resource p;

0 e < (m — 1)a)j, with w; the longest critical section of p;

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 470 of 552

MrsP [Burns, Wellings, 2013] /7

Resource nesting can be supported with either group
locking or static ordering of resources

0 With static ordering, resource access 1s allowed only with
order number greater than any currently held resources

0 The implementation should provide an «out of order
exception to prevent run-time errors

The ordering solution 1s better than banning nesting
and has less penalty than group locking

Recent work has extended MrsP to proper nesting

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 471 of 552

Summary

Various solutions exist to enable the sharing of global
resources with either partitioned or global scheduling

0 The associated overhead is often very high

Parallel contention calls for the use of actual locks
and requires either suspension or spinning

0 Neither 1s very satisfactory

We have seen that spinning and migration can provide
the best (least-bad?) solution

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 472 of 552

Selected readings

B. Brandenburg (2013)

A Fully Preemptive Multiprocessor Semaphore Protocol for
Latency-Sensitive Real-1ime Applications

DOI: 10.1109/ECRTS.2013.38

A. Burns, A. Wellings (2013)

A Schedulability Compatible Multiprocessor Resource Sharing
Protocol — MrsP

DOI: 10.1109/ECRTS.2013.37

S. Zhao et al. (2017)
New schedulability analysis for MrsP
DOI: 10.1109/RTCSA.2017.8046311

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 473 of 552

