
7.c Global resource sharing

Where we continue to lift unrealistic
workload-model restrictions, allowing tasks
to share protected resources across cores
under partitioned or global scheduling

Contention and blocking

 Parallelism breaks the single-runner premise on which
single-core access control solutions rested
 Suspending on wait does not favour earlier release of

shared resources because parallelism gets in the way
 Suspending does not stop other tasks, including lower-

priority local ones, from making access requests that may
cause future priority-inversion (PI) damage

 Spinning helps prevent PI, at the cost of wasting
CPU cycles

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 449 of 552

Multiprocessor PCP /1

 P-FPS with strict resource-to-CPU binding
[Sha, Rajkumar, Lehoczky, 1988]
 The processor that hosts a global shared resource is called

the synchronization processor (SP) for that resource
 All use requirements for shared resources are known statically

 The protected methods of a resource execute on its SP
 The processor to which a task is assigned is the local

processor (LP) for all of the jobs of that task
 Jobs that call protected methods that are remote, employ

“distributed transactions” to execute them on the resource’s SP

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 450 of 552

Multiprocessor PCP /2

 A task is permitted to use local and global resources
 Local resources reside on the task’s LP, governed by single-

processor PCP
 Resources are global when their SP differs from any client

task’s LP

 To protect against parallel contention, resource access
control protocols need actual locks
 The consequent overhead makes lock-free algorithms attractive

 SPs use M-PCP to control access to global resources
that they host

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 451 of 552

Multiprocessor PCP /3

 The execution that holds a global lock should not be
preempted locally
 All global protected methods that run on an SP must execute

at ceiling priorities higher than all tasks local to it
 This privilege breaks independence!

 Task that is denied access to global shared resource
 suspends on its LP, and waits in a priority-based queue

for
 Suspension causes the nesting of global resources that reside

on distinct SPs to be liable to circular-wait deadlock
 This is why other protocols prefer to spin

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 452 of 552

Multiprocessor PCP /4

 When suspends on access to , any lower-
priority task local to ’s LP, may acquire global
resources on ’s SP
 If those resources had higher ceiling priority than ,

their execution would delay the progress of further

 This situation causes to suffer an anomalous
form of PI
 The action of a lower-priority task () delays the release

of , which in turn delays longer

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 453 of 552

Blocking under M-PCP

 With M-PCP, tasks may damage task in many ways!
1. Local blocking (once per release): when 𝜏 finds a local resource held by a

local 𝑙𝑝 task that got running as a consequence of 𝜏’s suspension on
access to a locked global resource

2. Remote blocking (once per request): when 𝜏 finds a global resource held
by a 𝑙𝑝 task running on the global resource’s SP that it seeks

3. Local preemption (multiple times): when remote tasks of any priority
execute global critical sections on 𝜏’s LP

4. Local preemption (once per release): when local 𝑙𝑝 tasks execute global
critical sections on 𝜏’s LP

5. Remote preemption (once per request): when ℎ𝑝 global critical sections
execute on the SP where 𝜏’s global resource resides

6. Deferred interference: as local ℎ𝑝 tasks resume after suspending on
access to global resources because of blocking effects

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 454 of 320

Multiprocessor SRP

 P-EDF with shared resources bound to SPs
[Gai, Lipari, Di Natale, 2001]
 Normal stack-based ceiling to control access to local resources

 Tasks that lock a global resource execute its critical sections
at the highest local priority
 The wait time is shorter if the lock-holder cannot be preempted, but

this privilege breaks independence
 Tasks that request a global resource ீ already locked, are

held in a FIFO queue on ீ ’s SP and spin on their LP
 This policy upper-bounds the requesting task’s wait time to 𝒎െ 𝟏

executions of the longest critical section of 𝜌ீ
 The spinning time adds to the task’s WCET

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 455 of 552

Summing up

 Lock-based resource access control protocols under
partitioned scheduling may use either suspension or spinning

 With suspension, the task that cannot acquire the lock, is
placed in a priority-ordered queue (FIFO would be better)
 The use of inheritance boosting may reduce the wait time

 With spinning, the task busy-waits and its request is placed
in a FIFO queue attached to the resource
 Inhibiting preemption of the spinning task reduces wait time, at the

cost of breaking independence
 Also the lock holder may enjoy non-preemption

 Widening the breakage of independence

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 456 of 552

locking protocols : G-EDF /1

 Global scheduling: shared resources are obviously global
 Before requesting a resource, a task must acquire one of 𝑚 general

priority-queue, PQ, locks (hence, up to 𝑚 simultaneous requestors)
 If the resource is busy, the requestor suspends on a per-resource

FIFO queue, FQ (of 𝑚 positions)
 On preemption, the lock-holder inherits the highest priority of the

tasks waiting in the chain of queues (FQ and PQ)
 Worst-case per-request blocking is executions of the

longest critical section for the resource
 When FQ is full with 𝑚 𝑙𝑝-jobs, and 𝑚 ℎ𝑝-tasks run (including the

job of interest) that all want to access the same resource
 The other tasks suffer inheritance blocking

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 457 of 552

locking protocols : G-EDF /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 458 of 552

PQ

FQ

Inheritance boosting

𝜷𝒌 ൌ ሺ𝟐𝒎െ 𝟏ሻ𝝎𝒌

(Job-Level Fixed Priority)

locking protocols : P-EDF /1

 Partitioned scheduling: shared resources are local or global
 One priority queue (PQ) per processor: the task at head of PQ

acquires a token that allows contending for global resources
 Hence, up to 𝑚 simultaneous requestors

 Pending requests for G-resources are held in a per-resource FQ
 The waiting tasks suspend

 On preemption, lock-holders’ priority is inheritance-boosted from FQ
 Worst-case blocking has three components

 Local, when lock-holder is a local 𝑙𝑝-task (per release)
 Remote direct, when requestor is last in FQ (per request)
 Remote transitive, when a local 𝑙𝑝-task has acquired PQ token and is

last in FQ (per release)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 459 of 552

locking protocols : P-EDF /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 460 of 552

Blocking 1 (per release): lock holder is local lower-priority
Blocking 2 (per request): requestor is last in FQ
Blocking 3 (per release): token holder is local lower-priority and last in FQ

FQ

PQ

independence preservation /1

 Suspension-based, clusters of size
 Global scheduling per cluster, partitioned cluster assignment
 Per cluster: one C-FQ + C-PQ, for Ο 𝑐 local blocking
 Per resource: one global R-FQ

 Head of C-FQ is copied in R-FQ and removed only after service
 R-FQ contains 1 request per cluster, for Ο

 global blocking
 Independence is preserved by inter-cluster migration

 Preempted lock-holder (head of R-FQ) can migrate with inheritance
boosting to another cluster and CPU along the R-FQ

 Worst-case per-request blocking occurs when requestor is
last in R-FQ and last out from C-FQ

𝒊,𝒌 𝒌 𝒌

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 461 of 552

independence preservation /2

2020/2021 UniPD – T. Vardanega

𝑣 ൌ

𝑐

Real-Time Kernels and Systems 462 of 552

𝜷𝒊,𝒌 ൌ
𝒎
𝒄 െ 𝟏

𝒎
𝒄 ൈ 𝒄 െ 𝟏 𝝎𝒌 ൌ 𝒎െ 𝟏 𝝎𝒌

R-FQ

C-FQ
C-PQ

Last in R-FQ Last out from C-FQ

independence preservation /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 463 of 552

migration

spinning

● 𝑡 ൌ 3: 𝜏ଶ suspends and 𝜏ଵ resumes execution
● 𝑡 ൌ 4: 𝜏ଷ migrates to cluster1 where it impersonates 𝜏ଶ and preempts 𝜏ଵ

[Brandenburg, 2013]

 Theorem
 Under non-global scheduling (with cluster size),

no resource access control protocol can simultaneously
 Prevent unbounded PI blocking
 Preserve independence (if you don’t contend you are left alone)
 Avoid migration

 Seeking independence preservation and bounded
PI-blocking requires inter-cluster job migration (!)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 464 of 552

MrsP [Burns, Wellings, 2013] /1

 Goal 1: allow global resources with P-FPS, with an
RTA identical to the single-processor case
 The cost of accessing global resources should be inflated

to reflect serialization of parallel contention

 Goal 2: preserve the single-processor PCP benefit
that, when a job starts running, all the resources
that it may use, should be available
 This requires spinning because suspending on wait would

wreak havoc

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 465 of 552

MrsP [Burns, Wellings, 2013] /2

 Spinning at the highest local priority may delay local
urgent tasks and thus decrease overall feasibility

 Spinning at the local resource ceiling priority is better
 With all cores using PCP, at most one task per core may contend

globally, which assures global blocking
 Requests are served in global R-FQ

 To bound blocking, spinning tasks “donate” their
cycles to preempted lock-holder
 Lock-holder migrates to the processor of a spinning task and

runs in its stead until lock release or another migration

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 466 of 552

MrsP [Burns, Wellings, 2013] /3

 Partitioned scheduling (), with spinning at local
ceiling when waiting for global resource
 Combined with PCP, this assures local blocking at most once

before execution, which allows using canonical RTA
 Worst-case wait 𝜷𝒊,𝒌 ൌ ሺ𝒎 െ 𝟏ሻ ൈ𝒎𝒂𝒙𝒌 𝝎𝒌

 Computed across resources used by tasks with ceiling not
inferior to ’s priority

 Cost of spinning adds to task’s WCET
 Earlier release of resource obtained by migrating pre-

empted lock holder to the CPU where the first
contender in the global R-FQ is currently spinning

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 467 of 552

MrsP [Burns, Wellings, 2013] /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 468 of 552

R-FQ

𝜷𝒊,𝒌 ൌ ሺ𝒎 െ 𝟏ሻ ൈ𝒎𝒂𝒙𝒌 𝝎𝒌

(SRP: Stack Resource Protocol)

MrsP [Burns, Wellings, 2013] /5

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 469 of 552

spinning

migration

s

(spinning)

● 𝑡 ൌ 3: 𝜏ଶ starts spinning at local ceiling priority
● 𝑡 ൌ 4: 𝜏ଷ migrates to 𝑃ଵ and executes in place of 𝜏ଶ

MrsP [Burns, Wellings, 2013] /6

 𝒊 𝒊
ᇱ

𝒊 𝒊

 𝒊 𝒍
 𝜔 is the longest critical section of resource 𝜌 used by a 𝑙𝑝 task

with ceiling no less than 𝜏 ’s priority
 𝑏 is the longest duration of kernel’s run with inhibited preemption

 𝒊
𝑹𝒊
𝑻𝒋 𝒋

ᇱ
𝒋𝝐𝒉𝒑𝒍ሺ𝒊ሻ , local interference only

 𝒊
ᇱ

𝒊 𝒊 𝒋𝒋 , must include spinning
 𝐶 is 𝜏 ’s WCET (except for spinning)
 𝑛 is the number of times 𝜏 uses shared resource 𝜌
 𝑒 𝑚 െ 1 𝜔 , with 𝜔 the longest critical section of 𝜌

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 470 of 552

MrsP [Burns, Wellings, 2013] /7

 Resource nesting can be supported with either group
locking or static ordering of resources
 With static ordering, resource access is allowed only with

order number greater than any currently held resources
 The implementation should provide an «out of order»

exception to prevent run-time errors

 The ordering solution is better than banning nesting
and has less penalty than group locking

 Recent work has extended MrsP to proper nesting

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 471 of 552

Summary

 Various solutions exist to enable the sharing of global
resources with either partitioned or global scheduling
 The associated overhead is often very high

 Parallel contention calls for the use of actual locks
and requires either suspension or spinning
 Neither is very satisfactory

 We have seen that spinning and migration can provide
the best (least-bad?) solution

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 472 of 552

Selected readings

 B. Brandenburg (2013)
A Fully Preemptive Multiprocessor Semaphore Protocol for
Latency-Sensitive Real-Time Applications
DOI: 10.1109/ECRTS.2013.38

 A. Burns, A. Wellings (2013)
A Schedulability Compatible Multiprocessor Resource Sharing
Protocol – MrsP
DOI: 10.1109/ECRTS.2013.37

 S. Zhao et al. (2017)
New schedulability analysis for MrsP
DOI: 10.1109/RTCSA.2017.8046311

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 473 of 552

