
8. Mixed-criticality systems

Where we see how the want of more-for-
less has entered the high-integrity domain,
requiring tasks with different levels of
criticality to coexist in a real-time system

Background /1

 Critical systems are known as high-assurance (high-integrity)
 System operation must always perform as intended, provably
 They used to consist of specialized SW running on dedicated HW

 Not all components are equally critical, hence not all deserve the high cost
of high-assurance development

 Isolation segregates the more trusted from the less trusted
 Isolation is conservative, prepared to waste resources to warrant integrity

 Digital transformation wants greater unitary functional value in
critical systems, seeking to reduce waste
 Integration is pragmatic, it wants more value for less resource usage

 Less trusted components may yield high competitive advantage

 Tension builds between integration and isolation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 475 of 552

An example of digital transformation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 476 of 552

Background /2

 Isolation employs static allocations, with conservative
margins to mitigate the uncertainty of extreme events
 Conservative margins are wasteful

if the worst-case profile has an
extreme tail
 Very far to the right of “normality”

 Baseline approach known as
Time and Space Partitioning
 It warrants isolation via a resource scheduling hypervisor

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 477 of 552

The consequence of conservatism

 Budgeting for the (rare) extreme would cost many times more than
provisioning for the average (frequent) case

 You may not want to budget for the WC statically, but you must be
able to sustain it when it happens

Very rare extreme eventVery frequent event

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 478 of 552

Background /3

 Well-behaved integration may reduce waste
 Tasks with different levels of criticality might be allowed to co-exist

under strict safeguarding guarantees
 Main goal is maximum (safe) use of CPU

 Tasks with higher integrity requirements (HI-crit) must be
guaranteed up to their WC, but with a default allocation that
covers only the high watermark
 The central tenet of Mixed-Criticality Systems (MCS)

 When a HI-crit job executes above default budget, a mode-
change event trips, which changes system configuration
 HI-crit tasks retain their WC guarantees
 LO-crit tasks are held up until normality returns is restored

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 479 of 552

Vestal’s initial vision of MCS (2007)

 Single-core system, with tasks divided in criticality-based groups
 A mode attribute 𝐿 ∈ 𝐿𝑂, … ,𝐻𝐼 attached to each task 𝜏 determines its

budget allocation
 HI-crit tasks are given a high conservative margin over their measured WCET
 LO-crit tasks have no margin
 Any task can use the unclaimed margin, but only HI-crit tasks can claim it

 The RTA for this type of system becomes

𝑹𝒊 ൌ 𝑪𝒊 𝑳𝒊
𝑹𝒊
𝑻𝒋

𝑪𝒋 𝑳𝒋
𝒋∈𝒉𝒑 𝒊

 Each task 𝜏 is assumed to contribute its per-criticality (𝐿) allocation
 A feasible system does not need a mode change event

 Priority and criticality do not coincide
 We need a priority assignment scheme (Audsley’s) that serves the MCS intent

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 480 of 552

Vestal’s experimental evidence

• 𝜟∗ : largest simultaneous increase in budget allocation
of HI-crit tasks (over measured bound) that preserves
overall feasibility without mode-change events

• 12% extra margin earned without wastage

𝒎𝒂𝒓𝒈𝒊𝒏 ൌ
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 െ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

Non-weighted average

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 481 of 552

Immediate ramifications

 EDF does not dominate FPS for systems with criticality levels
 Feasible systems can be constructed that EDF is unable to schedule

 The MCS model of (constrained-deadline) sporadic tasks may be
formalized as 𝑇→,𝐷,𝐶→, 𝐿 where 𝐿 is a set of criticality levels
such that 𝐿 𝐿 ⟹ 𝐶 𝐿 𝐶 𝐿 ,𝑇 𝐿 𝑇 𝐿
 The higher the task’s criticality, the larger the guarantee above its default allocation
 Most commonly, 𝐿 ൌ 𝐿𝑂,𝐻𝐼 and 𝑇→ ൌ 𝑇

 The solution rests on an effective fixed-priority ordering
 Apply deadline-monotonic ordering to all HI-crit and LO-crit tasks
 Test LO-crit tasks from lowest-priority up (Audsley’s style)

 If feasible, it takes that priority
 Else, try next task; if none is feasible, failure

 This logic assures best guarantees for HI-crit tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 482 of 552

Adaptive Mixed Criticality (2012)

 Single-core system, FPS assumed (Baruah, Burns, and Davis)
 To attain higher average utilization, WCET allocation is not static

 When a HI-crit job exceeds its LO-crit budget, a mode change alarm trips
 To safeguard all HI-crit tasks, all LO-crit tasks are temporarily suspended

 Three distinct feasibility conditions
LO-crit mode: 𝑅 𝐿𝑜 ൌ 𝐶 𝐿𝑜 ∑ ோ

்ೕ
𝐶 𝐿𝑜∈

HI-crit mode: 𝑅 𝐻𝑖 ൌ 𝐶 𝐻𝑖 ∑ ோ ு
்ೕ

𝐶 𝐻𝑖∈

LO-2-HI mode: 𝑅∗ ൌ 𝐶 𝐻𝑖 ∑ ோ
∗

்ೕ
𝐶 𝐻𝑖∈ு ∑ ோ

்ೖ
𝐶 𝐿𝑜∈

 Pessimistically assuming LO-crit tasks to contribute their maximum interference
before being suspended

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 483 of 552

Asserted benefits

Approaches

UB-H&L: theoretical upper bound
AMC-max: adaptive mixed-criticality (minor tweak
over base AMC)
AMC-rtb: adaptive mixed-criticality (base method)
SMC: as Vestal, but with mode-change monitoring
SMC-NO: Vestal’s original approach
CrMPO: priorities assigned in order of criticality

20 tasks per taskset, an average of 50% tasks assumed Hi-crit, 𝑪 𝑯𝒊 ൌ 𝟐 ൈ 𝑪 𝑳𝒐

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 484 of 552

What with multicores?

 Higher functional value accrued with LO-crit tasks allowed
to migrate instead of being suspended
 This requires partitioned scheduling and per-core criticality mode
 HI-crit tasks statically assigned to a core
 LO-crit tasks feasible in (per-core) HI-crit mode are statically assigned
 LO-crit tasks that would be abandoned on one core and could fit

feasibly on another core, are allowed to migrate to it
 Residual LO-crit tasks marked “expendable”

 Only a small fraction of cores is assumed to enter HI-crit
mode simultaneously
 The system should be kept feasible up to that limit

 Solution in three mutually-dependent parts
 Partition tasks, determine allowable migrations, assign priorities

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 485 of 552

Xu & Burns (2019) /1

 3 models of migration for a quad-core processor

 Model 1: each core has one migration route
 Model 2: each core has two migration routes
 Model 3: each core allows migration to all other cores

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 486 of 552

Xu & Burns (2019) /2

1. Order tasks by decreasing criticality
2. Use (First-Fit, Best-Fit, Worst-Fit) bin-packing for task-to-core

assignment
 WF empirically proven better

3. Use Audsley’s algorithm to assign per-core priorities
 If HI-crit task not feasible on one core, try it on another core
 If HI-crit task cannot be feasibly assigned, then failure
 If LO-crit task not feasible on core, pick highest-priority LO-crit task

feasible on that core and try a migration route for it (method SEMI-2)
 If that fails, try next LO-crit task down: if any LO-crit task remains

unassigned, mark it expendable
 The system needs to be studied before and after mode change

 Dependent on how many cores can enter HI-crit mode simultaneously
 We look at the 1-mode-change case only: the others can be built analogously

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 487 of 552

Xu & Burns (2019) /3

 Before mode change (steady mode), core 𝐾௦ hosts some HI-crit tasks,
some LO-crit tasks, and some LO-crit “can migrate” tasks

𝑹𝒊 𝑳𝒐 ൌ 𝑪𝒊 𝑳𝒐
𝑹𝒊 𝑳𝒐
𝑻𝒋

𝑪𝒋 𝑳𝒐
𝒋∈𝒉𝒑 𝒊

 After mode change (𝐿 𝐿𝑜) in core 𝐾௦, with migration route to
core 𝐾௧
 Core 𝐾௦ sheds its “can migrate” LO-crit tasks (𝑴𝑲𝒔), which contribute their

maximum interference before going

𝒊 𝒊 𝒊 𝒊
𝑹𝒊 𝑳𝒊
𝑻𝒋 𝒋 𝒋𝒋∈𝒉𝒑 𝒊 ,𝑲𝒔

𝑹𝒊 𝑳𝒐
𝑻𝝎 𝝎𝝎∈𝒉𝒑 𝒊 ,𝑴𝑲𝒔

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 488 of 552

Xu & Burns (2019) /4

 After mode change, in core ௧ with migration from core ௦
 Core 𝐾௧ will have to schedule the incoming LO-crit tasks

𝒊 𝒊
𝒊 𝒋

𝒋
𝒋

𝒋∈𝒉𝒑 𝒊 ,𝑲𝒕

 Any “can migrate” task 𝜏 will carry residual work 𝐶 െ 𝑎 with
relative deadline 𝐷 െ 𝑡 to core 𝐾௧

 In the worst case, any such task 𝜏 will suffer maximum release jitter

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 489 of 552

Performance evaluation /1

 Reproducibility of (Xu & Burns, 2019) RTA-based simulations
 How far migration (SEMI-2 WF) dominates no migration (AMC) for

percentage of feasible tasksets
 Realism of proposed solution for a 2-core processor

 Real execution experiments for RTA-feasible tasksets with migration
 How many of them remain feasible
 How many runs disrupted by (budget exceeded, deadline missed) events

 Their occurrence tells system should be made even more sensitive
 Over varying control parameters

 Log-uniform period distribution in the ሾ10, 1000ሿ ms range, within bounded
hyperperiod

 Taskset cardinality in the ሾ20, 35ሿ range per core
 Task utilization in the ሾ0.05, 0.6ሿ range generated with the Dirichlet-

Rescale algorithm (Griffin, Bate, Davis, 2020)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 490 of 552

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: 𝟏𝟎,𝟐𝟎𝟎 ms. Large periods: 𝟒𝟎𝟎,𝟏𝟎𝟎𝟎 ms.

Performance evaluation /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 491 of 552

Performance evaluation /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 492 of 552

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: 𝟏𝟎,𝟐𝟎𝟎 ms. Large periods: 𝟒𝟎𝟎,𝟏𝟎𝟎𝟎 ms.

Performance evaluation /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 493 of 552

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: 𝟏𝟎,𝟐𝟎𝟎 ms. Large periods: 𝟒𝟎𝟎,𝟏𝟎𝟎𝟎 ms.

Migration costs are not negligible

Minimal Linux, 10k R/W random access ops on variable-size array
(0.4 kB – 4 MB in 0.4 kB increments), job migration every even iteration

PC1, 4-core i7, 64KB L1 cache, 256KB L2 cache, 8MB L3 shared cache
PC2, con 2-core, 16KB L1 cache, 2MB L2 cache L2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 494 of 552

Summary

 Digital transformation wants real-time systems to
embed an ever increasing number of value-added
software functions
 Some such functions are of high criticality and must be assured
 Other functions are less critical, but we want to deploy them

in the same processor as the other ones to accrue more
functional value per unit of computation

 This need has originated mixed-criticality systems
 We have examined approaches that give sufficient assurance

of time isolation while achieving high schedulable utilization

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 495 of 552

Selected readings

 S. Vestal (2007)
Preemptive Scheduling of Multi-Criticality Systems with Varying
Degrees of Execution Time Assurance
DOI: 10.1109/RTSS.2007.47

 H. Xu, A. Burns (2019)
A semi-partitioned model for mixed criticality systems
DOI: 10.1016/j.jss.2019.01.015

 M. Bottaro (2021)
Exploring the viability of a MCS multicore runtime
demonstrator
Work in progress

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 496 of 552

