
8. Mixed-criticality systems

Where we see how the want of more-for-
less has entered the high-integrity domain,
requiring tasks with different levels of
criticality to coexist in a real-time system

Background /1

 Critical systems are known as high-assurance (high-integrity)
 System operation must always perform as intended, provably
 They used to consist of specialized SW running on dedicated HW

 Not all components are equally critical, hence not all deserve the high cost
of high-assurance development

 Isolation segregates the more trusted from the less trusted
 Isolation is conservative, prepared to waste resources to warrant integrity

 Digital transformation wants greater unitary functional value in
critical systems, seeking to reduce waste
 Integration is pragmatic, it wants more value for less resource usage

 Less trusted components may yield high competitive advantage

 Tension builds between integration and isolation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 475 of 552

An example of digital transformation

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 476 of 552

Background /2

 Isolation employs static allocations, with conservative
margins to mitigate the uncertainty of extreme events
 Conservative margins are wasteful

if the worst-case profile has an
extreme tail
 Very far to the right of “normality”

 Baseline approach known as
Time and Space Partitioning
 It warrants isolation via a resource scheduling hypervisor

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 477 of 552

The consequence of conservatism

 Budgeting for the (rare) extreme would cost many times more than
provisioning for the average (frequent) case

 You may not want to budget for the WC statically, but you must be
able to sustain it when it happens

Very rare extreme eventVery frequent event

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 478 of 552

Background /3

 Well-behaved integration may reduce waste
 Tasks with different levels of criticality might be allowed to co-exist

under strict safeguarding guarantees
 Main goal is maximum (safe) use of CPU

 Tasks with higher integrity requirements (HI-crit) must be
guaranteed up to their WC, but with a default allocation that
covers only the high watermark
 The central tenet of Mixed-Criticality Systems (MCS)

 When a HI-crit job executes above default budget, a mode-
change event trips, which changes system configuration
 HI-crit tasks retain their WC guarantees
 LO-crit tasks are held up until normality returns is restored

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 479 of 552

Vestal’s initial vision of MCS (2007)

 Single-core system, with tasks divided in criticality-based groups
 A mode attribute 𝐿௜ ∈ 𝐿𝑂, … ,𝐻𝐼 attached to each task 𝜏௜ determines its

budget allocation
 HI-crit tasks are given a high conservative margin over their measured WCET
 LO-crit tasks have no margin
 Any task can use the unclaimed margin, but only HI-crit tasks can claim it

 The RTA for this type of system becomes

𝑹𝒊 ൌ 𝑪𝒊 𝑳𝒊 ൅ ෍
𝑹𝒊
𝑻𝒋

𝑪𝒋 𝑳𝒋
𝒋∈𝒉𝒑 𝒊

 Each task 𝜏௜ is assumed to contribute its per-criticality (𝐿௜) allocation
 A feasible system does not need a mode change event

 Priority and criticality do not coincide
 We need a priority assignment scheme (Audsley’s) that serves the MCS intent

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 480 of 552

Vestal’s experimental evidence

• 𝜟∗ : largest simultaneous increase in budget allocation
of HI-crit tasks (over measured bound) that preserves
overall feasibility without mode-change events

• 12% extra margin earned without wastage

𝒎𝒂𝒓𝒈𝒊𝒏 ൌ
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 െ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

Non-weighted average

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 481 of 552

Immediate ramifications

 EDF does not dominate FPS for systems with criticality levels
 Feasible systems can be constructed that EDF is unable to schedule

 The MCS model of (constrained-deadline) sporadic tasks may be
formalized as 𝑇→,𝐷,𝐶→, 𝐿 where 𝐿 is a set of criticality levels
such that 𝐿௝ ൐ 𝐿௜ ⟹ 𝐶 𝐿௝ ൒ 𝐶 𝐿௜ ,𝑇 𝐿௝ ൑ 𝑇 𝐿௜
 The higher the task’s criticality, the larger the guarantee above its default allocation
 Most commonly, 𝐿 ൌ 𝐿𝑂,𝐻𝐼 and 𝑇→ ൌ 𝑇

 The solution rests on an effective fixed-priority ordering
 Apply deadline-monotonic ordering to all HI-crit and LO-crit tasks
 Test LO-crit tasks from lowest-priority up (Audsley’s style)

 If feasible, it takes that priority
 Else, try next task; if none is feasible, failure

 This logic assures best guarantees for HI-crit tasks

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 482 of 552

Adaptive Mixed Criticality (2012)

 Single-core system, FPS assumed (Baruah, Burns, and Davis)
 To attain higher average utilization, WCET allocation is not static

 When a HI-crit job exceeds its LO-crit budget, a mode change alarm trips
 To safeguard all HI-crit tasks, all LO-crit tasks are temporarily suspended

 Three distinct feasibility conditions
LO-crit mode: 𝑅௜ 𝐿𝑜 ൌ 𝐶௜ 𝐿𝑜 ൅ ∑ ோ೔ ௅௢

்ೕ
𝐶௝ 𝐿𝑜௝∈௛௣ ௜

HI-crit mode: 𝑅௜ 𝐻𝑖 ൌ 𝐶௜ 𝐻𝑖 ൅ ∑ ோ೔ ு௜
்ೕ

𝐶௝ 𝐻𝑖௝∈௛௣ ௜

LO-2-HI mode: 𝑅௜∗ ൌ 𝐶௜ 𝐻𝑖 ൅ ∑ ோ೔
∗

்ೕ
𝐶௝ 𝐻𝑖௝∈௛௣ு ௜ ൅ ∑ ோ೔ ௅௢

்ೖ
𝐶௞ 𝐿𝑜௞∈௛௣௅ ௜

 Pessimistically assuming LO-crit tasks to contribute their maximum interference
before being suspended

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 483 of 552

Asserted benefits

Approaches

UB-H&L: theoretical upper bound
AMC-max: adaptive mixed-criticality (minor tweak
over base AMC)
AMC-rtb: adaptive mixed-criticality (base method)
SMC: as Vestal, but with mode-change monitoring
SMC-NO: Vestal’s original approach
CrMPO: priorities assigned in order of criticality

20 tasks per taskset, an average of 50% tasks assumed Hi-crit, 𝑪 𝑯𝒊 ൌ 𝟐 ൈ 𝑪 𝑳𝒐

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 484 of 552

What with multicores?

 Higher functional value accrued with LO-crit tasks allowed
to migrate instead of being suspended
 This requires partitioned scheduling and per-core criticality mode
 HI-crit tasks statically assigned to a core
 LO-crit tasks feasible in (per-core) HI-crit mode are statically assigned
 LO-crit tasks that would be abandoned on one core and could fit

feasibly on another core, are allowed to migrate to it
 Residual LO-crit tasks marked “expendable”

 Only a small fraction of cores is assumed to enter HI-crit
mode simultaneously
 The system should be kept feasible up to that limit

 Solution in three mutually-dependent parts
 Partition tasks, determine allowable migrations, assign priorities

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 485 of 552

Xu & Burns (2019) /1

 3 models of migration for a quad-core processor

 Model 1: each core has one migration route
 Model 2: each core has two migration routes
 Model 3: each core allows migration to all other cores

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 486 of 552

Xu & Burns (2019) /2

1. Order tasks by decreasing criticality
2. Use (First-Fit, Best-Fit, Worst-Fit) bin-packing for task-to-core

assignment
 WF empirically proven better

3. Use Audsley’s algorithm to assign per-core priorities
 If HI-crit task not feasible on one core, try it on another core
 If HI-crit task cannot be feasibly assigned, then failure
 If LO-crit task not feasible on core, pick highest-priority LO-crit task

feasible on that core and try a migration route for it (method SEMI-2)
 If that fails, try next LO-crit task down: if any LO-crit task remains

unassigned, mark it expendable
 The system needs to be studied before and after mode change

 Dependent on how many cores can enter HI-crit mode simultaneously
 We look at the 1-mode-change case only: the others can be built analogously

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 487 of 552

Xu & Burns (2019) /3

 Before mode change (steady mode), core 𝐾௦ hosts some HI-crit tasks,
some LO-crit tasks, and some LO-crit “can migrate” tasks

𝑹𝒊 𝑳𝒐 ൌ 𝑪𝒊 𝑳𝒐 ൅ ෍
𝑹𝒊 𝑳𝒐
𝑻𝒋

𝑪𝒋 𝑳𝒐
𝒋∈𝒉𝒑 𝒊

 After mode change (𝐿௜ ൐ 𝐿𝑜) in core 𝐾௦, with migration route to
core 𝐾௧
 Core 𝐾௦ sheds its “can migrate” LO-crit tasks (𝑴𝑲𝒔), which contribute their

maximum interference before going

𝒊 𝒊 𝒊 𝒊
𝑹𝒊 𝑳𝒊
𝑻𝒋 𝒋 𝒋𝒋∈𝒉𝒑 𝒊 ,𝑲𝒔

𝑹𝒊 𝑳𝒐
𝑻𝝎 𝝎𝝎∈𝒉𝒑 𝒊 ,𝑴𝑲𝒔

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 488 of 552

Xu & Burns (2019) /4

 After mode change, in core ௧ with migration from core ௦
 Core 𝐾௧ will have to schedule the incoming LO-crit tasks

𝒊 𝒊
𝒊 𝒋

𝒋
𝒋

𝒋∈𝒉𝒑 𝒊 ,𝑲𝒕

 Any “can migrate” task 𝜏௝ will carry residual work 𝐶௝ െ 𝑎 with
relative deadline 𝐷௝ െ 𝑡 to core 𝐾௧

 In the worst case, any such task 𝜏௝ will suffer maximum release jitter
௝ ௝ ௝

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 489 of 552

Performance evaluation /1

 Reproducibility of (Xu & Burns, 2019) RTA-based simulations
 How far migration (SEMI-2 WF) dominates no migration (AMC) for

percentage of feasible tasksets
 Realism of proposed solution for a 2-core processor

 Real execution experiments for RTA-feasible tasksets with migration
 How many of them remain feasible
 How many runs disrupted by (budget exceeded, deadline missed) events

 Their occurrence tells system should be made even more sensitive
 Over varying control parameters

 Log-uniform period distribution in the ሾ10, 1000ሿ ms range, within bounded
hyperperiod

 Taskset cardinality in the ሾ20, 35ሿ range per core
 Task utilization in the ሾ0.05, 0.6ሿ range generated with the Dirichlet-

Rescale algorithm (Griffin, Bate, Davis, 2020)

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 490 of 552

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: 𝟏𝟎,𝟐𝟎𝟎 ms. Large periods: 𝟒𝟎𝟎,𝟏𝟎𝟎𝟎 ms.

Performance evaluation /2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 491 of 552

Performance evaluation /3

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 492 of 552

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: 𝟏𝟎,𝟐𝟎𝟎 ms. Large periods: 𝟒𝟎𝟎,𝟏𝟎𝟎𝟎 ms.

Performance evaluation /4

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 493 of 552

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.
Small periods: 𝟏𝟎,𝟐𝟎𝟎 ms. Large periods: 𝟒𝟎𝟎,𝟏𝟎𝟎𝟎 ms.

Migration costs are not negligible

Minimal Linux, 10k R/W random access ops on variable-size array
(0.4 kB – 4 MB in 0.4 kB increments), job migration every even iteration

PC1, 4-core i7, 64KB L1 cache, 256KB L2 cache, 8MB L3 shared cache
PC2, con 2-core, 16KB L1 cache, 2MB L2 cache L2

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 494 of 552

Summary

 Digital transformation wants real-time systems to
embed an ever increasing number of value-added
software functions
 Some such functions are of high criticality and must be assured
 Other functions are less critical, but we want to deploy them

in the same processor as the other ones to accrue more
functional value per unit of computation

 This need has originated mixed-criticality systems
 We have examined approaches that give sufficient assurance

of time isolation while achieving high schedulable utilization

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 495 of 552

Selected readings

 S. Vestal (2007)
Preemptive Scheduling of Multi-Criticality Systems with Varying
Degrees of Execution Time Assurance
DOI: 10.1109/RTSS.2007.47

 H. Xu, A. Burns (2019)
A semi-partitioned model for mixed criticality systems
DOI: 10.1016/j.jss.2019.01.015

 M. Bottaro (2021)
Exploring the viability of a MCS multicore runtime
demonstrator
Work in progress

2020/2021 UniPD – T. Vardanega Real-Time Kernels and Systems 496 of 552

