8. Mixed-criticality systems

Where we see how the want of more-for-
/ess has entered the high-integrity domain,
requiring tasks with different levels of
criticality to coexist in a real-time system

Background /1

Critical systems are known as hzgh-assurance (high-integrity)
0 System operation must a/ways perform as intended, provably
0 They used to consist of specialized SW running on dedicated HW

Not all components are equally critical, hence not all deserve the high cost
of high-assurance development

a Isolation segregates the more trusted from the less trusted

Isolation is conservative, prepared to waste resources to warrant integrity
Digital transformation wants greater unitary functional value in
critical systems, seeking to reduce waste

Q Integration is pragmatic, it wants more value for less resource usage

Less trusted components may yield high competitive advantage

Tension builds between integration and isolation

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 475 of 552

‘ An example of digital transtormation

Explosion of Electronic Systems

Vehicle
Active Moise Stability
Cancellation
Traction
—a
Electrochromic Control
Automated . Rain Sensing Automatic Glass
Highway Windshield Wipers g Active
Suspension
Auto Distance Airbag Deployment
— Antilock
Cruise Control System Braking
Collision
-— —8 Low Tire
Avoidance Pressure
Monitors
Lighting #—
Multi-Zone

Automatic
g Climate Control

Engine & Emissions

Management — Communication

Continuously Navigation &
Variable Trip Co

Transmission P lamparine

Security
Engine ——a Systems —# Entertainment

Management #— .

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 476 of 552

‘ Background /2

m Isolation employs static allocations, with conservative
margins to mitigate the uncertainty ot extreme events

0 Conservative margins are wastetul

it the worst-case profile has an e l] | .ul.wﬁm:z
extreme tail | ”’*‘E“E R gf_ﬂ
= Very far to the right of “normality” ::;m’%fmhli %
= Baseline approach known as UMTLTF: mmﬁﬂ
Time and Space Partitioning [e parbonig Wechinems

0 It warrants 1solation via a resource scheduling hypervisor

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 477 of 552

The consequence of conservatism

distribution of times
-

mm
0
m
o
m
O
m
=
o
7
i
1
\
L §
1
=
. i

’ - I \““-“"I,
-!'!:JI T
mn'ﬁﬂ ---- i § A T L L ‘ \
- — P—
ot measured exec fime Pl extimat (o time
" possible exec fime
timing predictability M
equent eve Very rare extreme event

Budgeting for the (rare) extreme would cost many times 7ore than
provisioning for the average (frequent) case

You may not want to budget for the WC statically, but you must be
able to sustain it when it happens

F Y

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 478 of 552

Background /3

Well-behaved integration may reduce waste

0 Tasks with different levels of criticality might be allowed to co-exist
under strict safegnarding guarantees

0 Main goal is maximum (safe) use of CPU
Tasks with higher integrity requirements (HI-crit) must be

guaranteed up to their WC, but with a defau/t allocation that
covers only the high watermark

0 The central tenet of Mixed-Criticality Systems (MCS)

When a HI-crit job executes above detfault budget, a 7zode-
change event trips, which changes system configuration

0 HI-crit tasks retain their WC guarantees

0 LO-crit tasks are held up until normality returns is restored

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 479 of 552

Vestal’s initial vision ot MCS (2007)

Single-core system, with tasks divided in ¢riticality-based groups

0 A mode attribute L; € {LO, ..., HI} attached to each task T; determines its
budget allocation

0 HI-crit tasks are given a high conservative margin over their measured WCET
a0 LO-crit tasks have 7o margin
0 Any task can use the unclaimed margin, but only HI-crit tasks can claim it

The RTA for this type of system becomes

R;
R; = C;(L;) + z [T_l C;(L;)
jerp('/
0 Fach task 7; 1s assumed to contribute its per-criticality (L;) allocation
a0 A feasible system does #of need a mode change event
Priority and criticality do #o# coincide
a0 We need a priority assignment scheme (Audsley’s) that serves the MCS intent

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 480 of 552

Vestal’s experimental evidence

allocated — measured

margin =
| Workload 1 | measured
task T; L; | measured | allocated | margin
P1 40hz 25 B 1.06 1.4 32.1%
P1 20hz 50 B 3.09 3.9 26.2% Workload 1
P2 20hz 50 B 2.7 2.8 3.7% | method AFE | increase
P3 20hz 50 B 1.09 1.4 28.4% deadline monotonic priority 108 B
P4 40hZ 25 A 0.94 1.1 17% traditional analysis o
P4 20hZ 50 A 157 18 146% deadllne mOHOtOIliC
P4 10hz 100 | A 1.68 2.0 19% .. . 1.20 11%
P4 5h 500 A 3 o multi-criticality analysis
4 Shz 4.5 5. 17.8% multi-criticality Audsley’s
P520hz | 50 | B 2.94 3.7 25.9% multi-criticality analysis 1.20 11%
P5 10hz 100 B 1.41 1.8 27.7% transformed & deadline monotonic
P5 5hz 200 | B 6.75 8.5 25.9% milti-critiealify pmelyis 1.20 11%
P6 20hz | 50 | D 5.4 5.4 0% ~ — -
P6 5hy 200 D 924 24 0% trarllts.forfrtl.ed l{ii mult;—a.“ltlcahty Audsley’s 1.90 1%
P720hz | 50 | D 0.94 1.3 38.3% putireritically analysis
P7 5hz 200 | D 1.06 1.5 41.5%
P8 40hz | 25 | D 2.28 2.3 0.9% Table 2: Comparative Evaluation Results
P8 10hz 100 | D 4.75 4.8 1.1%
P& 5hz 200 | D 12.87 13 1% * |
po 10hz | 100 | D e 0.6 07 7% A" larg(?st simultaneous increase in budget allocation
PA 20hz | 50 | C 1.24 1.9 53.2% of HlI-crit tasks (over measured bound) that preserves
PB20hz | 50 | D 1.62 24 48.1% overall feasibility without mode-change events
utilization 80.4% 93% 21.4% 0 . .
Nomweaiaheed average 12% extra margin earned without wastage

Table 1: Example Multi-Criticalty Workload

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 481 of 552

Immediate ramifications

EDF does not dominate FPS for systems with criticality levels
0 Feasible systems can be constructed that EDF 1s unable to schedule

The MCS model of (constrained-deadline) sporadic tasks may be
formalized as (T, D, C™, L) where L is a set of criticality levels

such that Lj > L; = C(L;) = C(Ly), T(L;) < T(L;)
Q The higher the task’s criticality, the larger the guarantee above its defanlt allocation
a0 Most commonly, L = {LO,Hl}and T~ =T

The solution rests on an effective fixed-priority ordering
a0 Apply deadline-monotonic ordering to all HI-crit and LO-crit tasks

0 Test LO-crit tasks from lowest-priority up (Audsley’s style)
If feasible, it takes that priority
Else, try next task; if none is feasible, failure

0 This logic assures best guarantees for HI-crit tasks

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 482 of 552

Adaptive Mixed Criticality (2012)

= Single-core system, FPS assumed (Baruah, Burns, and Davis)

= To attain higher average utilization, WCET allocation is 7of static
0 When a Hl-crit job exceeds its LO-crit budget, a mode change alarm trips
a0 To safeguard all HI-crit tasks, all LO-crit tasks are temporarily suspended

m Three distinct feasibility conditions
LO-crit mode: Ry(L0) = €;(L0) + Ejenyio | “4-2| €1 (Lo)
R;(HiQ)
jenpct |52 €D

* . i . R;(L
LO-2-HI mode: R = C;(H) + 3 cpmmco H CiCHD) + Senmiii [%} Co(L0)

0 Pessimistically assuming L.O-crit tasks to contribute their maximum interference

before being suspended

HI-crit mode: R;(Hi) = C;(Hi) +]

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 483 of 552

‘ Asserted benefits

120%

100%

80%

60%

40%

Schedulable Tasksets

20%

0%

. | '\\ N
\ — - UB-H&L ‘\\
=== AMC -max \
\ =—gr— AMC -rtb \ \\\
= SMC
=== SMC-NO \
\ ——CrMPO \\\
\
. .x. —— R
005 015 025 035 045 055 065 0.75 085 0.95

Utilisation

Approaches
UB-H&L: theoretical upper bound

AMC-max: adaptive mixed-criticality (minor tweak
over base AMC)

AMC-rtb: adaptive mixed-criticality (base method)
SMC: as Vestal, but with mode-change monitoring
SMC-NO: Vestal’s original approach

CtMPO: priorities assigned in order of criticality

20 tasks per taskset, an average of 50% tasks assumed Hi-crit, C(Hi) = 2 X C(Lo)

2020/2021 UniPD - T. Vardanega

Real-Time Kernels and Systems 484 of 552

What with multicores?

Higher functional value accrued with LO-crit tasks allowed
to migrate instead of being suspended

a
a
a
g

Q

This requires partitioned scheduling and per-core criticality mode
HI-crit tasks statically assigned to a core
LO-crit tasks feasible in (per-core) HI-crit mode are statically assigned

1.O-crit tasks that would be abandoned on one core and could fit
feasibly on another core, are allowed to migrate to it

Residual LO-crit tasks marked “expendable”

Only a small fraction of cores 1s assumed to enter HI-crit
mode simultaneously

Q

The system should be kept feasible up 7o that limit

Solution in three mutually-dependent parts

Q

Partition tasks, determine allowable migrations, assign priorities

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 485 of 552

Xu & Burns (2019) /1

3 models of migration for a quad—core processor

) Model 1) Model 2) Model 3

0 Model 1: each core has one migration route
0 Model 2: each core has two migration routes

0 Model 3: each core allows migration to all other cores

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 486 of 552

Xu & Burns (2019) /2

Order tasks by decreasing criticality

Use (First-Fit, Best-Fit, Worst-Fit) bin-packing for task-to-core
assignment

0 WF empirically proven better

Use Audsley’s algorithm to assign per-core priorities
0 If HI-crit task not feasible on one core, try it on another core
a If HI-crit task cannot be feasibly assigned, then failure

0 If LO-crit task not feasible on core, pick highest-priority LO-crit task
feasible on that core and try a migration route for it (method SEMI-2)

0 If that fails, try next LO-crit task down: if any LO-crit task remains
unassigned, mark it expendable

The system needs to be studied before and affer mode change
a0 Dependent on how many cores can enter HI-crit mode simultaneously
a0 We look at the 7-mode-change case only: the others can be built analogously

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 487 of 552

Xu & Burns (2019) /3

Before mode change (steady mode), core Kg hosts some HI-crit tasks,
some LO-crit tasks, and some LO-crit “can migrate” tasks

R;(Lo
R;(Lo) = C;(Lo) + 2 [‘(T)l C;(Lo)
jehp(D) J
After mode change (L; > Lo) in core K, with migration route to
core K;

0 Core K sheds its “can migrate” 1.O-crit tasks (M), which contribute their
maximum interference before going

R;(L;)
Ri(L;) = Ci(L) + Xjchp(i) k. [T } Ci(Lj) +
Ri(Lo) /
ZwEhp(i),MKS[T, }Cw(LO)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 488 of 552

Xu & Burns (2019) /4

After mode change, in core Ky with migration from core K

a0 Core K; will have to schedule the incoming LLO-crit tasks

R;(Lo) = Cy(Lo) + z [R"(L;)_H"l C;(Lo)
jehp (D)K. J

0 Any “can mgrate” task T; will carry residual work (C i~ a) with
relative deadline (Dj — t) to core K

Release Migration Deadline
®---— - -
to0 to+t t0 + Di
\ A)
1 Al
a Di -t

0 In the worst case, any such task 7; will suffer maximum release jitter

J; < R;i(Lo) — C;(Lo)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 489 of 552

Performance evaluation /1

Reproducibility of (Xu & Burns, 2019) RTA-based simulations

0 How far migration (SEMI-2 WF) dominates no migration (AMC) for
percentage of feasible tasksets

Realism of proposed solution for a 2-core processor
0 Real execution experiments for RT'A-feasible tasksets wzzh migration
0 How many of them remain feasible

0 How many runs disrupted by (budget exceeded, deadline missed) events
Their occurrence tells system should be made even more sensitive

Over varying control parameters

0 Log-uniform period distribution in the [10,1000] ms range, within bounded
hyperperiod
Q Taskset cardinality in the [20, 35] range per core

Q Task utilization in the [0.05, 0.6] range generated with the Dirichlet-
Rescale algorithm (Griffin, Bate, Davis, 2020)

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 490 of 552

‘ Performance evaluation /2

semilFF
semilBF
semilWF
semi2FF
semi2BF
semi2WF

20 A

15 A

10 A

Proportion schedulable tasksets with at least one mig task / tasksets

1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
Utilization level

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.

Small periods: [10,200] ms. Large periods: [400,1000] ms.

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 491 of 552

‘ Performance evaluation /3

100 - —— No Migration
~—— SEMI-2 WF
80 A
2
o 60
L
(%)
@
v
o
©
=
e
[
=
@
40 -
20 A
1.700 1725 1.750 1775 1.800 1825 1.850 1.875
Utilization

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.

Small periods: [10,200] ms. Large periods: [400,1000] ms.

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 492 of 552

‘ Performance evaluation /4

55 4 i memm Actually Schedulable
Deadline Missed

mesm Budget Exceeded

45 + | - - msmm Safe Boundary Exceeded

Percentage
]

T T T T T T T T
1.704 1728 1752 1776 1.800 1.824 1.848 1.872

Ratio of LO-crit to HI-crit: 2. Taskset size: 12. Max harmonic: 2.

Small periods: [10,200] ms. Large periods: [400,1000] ms.

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 493 of 552

‘ Migration costs are not negligible

PC1, 4-core i7, 64KB L1 cache, 256KB L2 cache, 8MB L3 shared cache
PC2, con 2-core, 16KB L1 cache, 2MB 1.2 cache 1.2

Migration overhead with different RAM speed comparison 5000 Migration overhead (ms)
160 1 pc1 (i7 4770k, 2133MHz RAM Speed) —— PC1 (i7 4770k, 2133MHz RAM Speed)
—— PC1 (i7 4770k, 1333MHz RAM Speed) 1750 4 — PC2 (Pentium D 930)
140 1 PC1 (i7 4770k, 800MHz RAM Speed)
120) 1500 -
— —~ 1250
v 100 A »
E E
o e 4
2 80- 2 1000
£ £
[[
5 60 - O> 750 ~
40 4 500
20 N 250 7
I E—
0 A : 0 -
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Array size (KB) Array size (KB)

Minimal Linux, 10k R/W random access ops on variable-size array

(0.4 kB — 4 MB in 0.4 kB increments), job migration every even iteration

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 494 of 552

Summary

Digital transformation wants real-time systems to
embed an ever increasing number of value-added
software functions

a Some such functions are of high criticality and must be assured

0 Other functions are less critical, but we want to deploy them
in the same processor as the other ones to accrue more
functional value per unit of computation

This need has originated mixed-criticality systems

0 We have examined approaches that give sufficient assurance
of time isolation while achieving high schedulable utilization

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 495 of 552

Selected readings

S. Vestal (2007)
Preemptive Scheduling of Multi-Criticality Systems with 1 arying

Degrees of Excecution 1ime Assurance

DOI: 10.1109/RTSS.2007.47
H. Xu, A. Burns (2019)

A semi-partitioned model for mixed criticality systems

DOI: 10.1016/i.s5.2019.01.015

M. Bottaro (2021)
Excploring the viability of a MCS multicore runtime

demonstrator

2020/2021 UniPD - T. Vardanega Real-Time Kernels and Systems 496 of 552

