
Task Dispatching Excerpts from Ada RM

D.2.1 The Task Dispatching Model
The task dispatching model specifies task scheduling, based on conceptual priority-
ordered ready queues.

Dynamic Semantics

A task can become a running task only if it is ready (see 9) and the execution
resources required by that task are available. Processors are allocated to tasks
based on each task's active priority.

It is implementation defined whether, on a multiprocessor, a task that is waiting for
access to a protected object keeps its processor busy.

Task dispatching is the process by which one ready task is selected for execution on
a processor. This selection is done at certain points during the execution of a task
called task dispatching points. A task reaches a task dispatching point whenever it
becomes blocked, and when it terminates.

Other task dispatching points are defined throughout this Annex for specific
policies.

Task dispatching policies are specified in terms of conceptual ready queues and
task states. A ready queue is an ordered list of ready tasks. The first position in a
queue is called the head of the queue, and the last position is called the tail of the
queue. A task is ready if it is in a ready queue, or if it is running. Each processor has
one ready queue for each priority value. At any instant, each ready queue of a
processor contains exactly the set of tasks of that priority that are ready for
execution on that processor, but are not running on any processor; that is, those
tasks that are ready, are not running on any processor, and can be executed using
that processor and other available resources. A task can be on the ready queues
of more than one processor.

Each processor also has one running task, which is the task currently being
executed by that processor. Whenever a task running on a processor reaches a
task dispatching point it goes back to one or more ready queues; a task (possibly
the same task) is then selected to run on that processor. The task selected is the
one at the head of the highest priority nonempty ready queue; this task is then
removed from all ready queues to which it belongs.

Implementation Permissions

An implementation is allowed to define additional resources as execution
resources, and to define the corresponding allocation policies for them. Such
resources may have an implementation-defined effect on task dispatching.

An implementation may place implementation-defined restrictions on tasks whose
active priority is in the Interrupt_Priority range.

For optimization purposes, an implementation may alter the points at which task

Page 1 of 5



Task Dispatching Excerpts from Ada RM

dispatching occurs, in an implementation-defined manner. However, a
delay_statement always corresponds to at least one task dispatching point.

NOTES

7 Section 9 specifies under which circumstances a task becomes ready. The
ready state is affected by the rules for task activation and termination, delay
statements, and entry calls. When a task is not ready, it is said to be blocked.

8 An example of a possible implementation-defined execution resource is a
page of physical memory, which needs to be loaded with a particular page
of virtual memory before a task can continue execution.

9 The ready queues are purely conceptual; there is no requirement that such lists
physically exist in an implementation.

10 While a task is running, it is not on any ready queue. Any time the task that is
running on a processor is added to a ready queue, a new running task is
selected for that processor.

11 In a multiprocessor system, a task can be on the ready queues of more than
one processor. At the extreme, if several processors share the same set of
ready tasks, the contents of their ready queues is identical, and so they can
be viewed as sharing one ready queue, and can be implemented that way.
Thus, the dispatching model covers multiprocessors where dispatching is
implemented using a single ready queue, as well as those with separate
dispatching domains.

12 The priority of a task is determined by rules specified in this subclause, and
under D.1, “Task Priorities”, D.3, “Priority Ceiling Locking”, and D.5, “Dynamic
Priorities”.

13 The setting of a task's base priority as a result of a call to Set_Priority does not
always take effect immediately when Set_Priority is called. The effect of setting
the task's base priority is deferred while the affected task performs a protected
action.

D.2.2 Pragma Task_Dispatching_Policy

Syntax

The form of a pragma Task_Dispatching_Policy is as follows:

pragma Task_Dispatching_Policy(policy_identifier);

Legality Rules

The policy_identifier shall either be one defined in this Annex or an implementation-
defined identifier.

Page 2 of 5



Task Dispatching Excerpts from Ada RM

Post-Compilation Rules

A Task_Dispatching_Policy pragma is a configuration pragma.

Dynamic Semantics

A task dispatching policy specifies the details of task dispatching that are not
covered by the basic task dispatching model. These rules govern when tasks are
inserted into and deleted from the ready queues, and whether a task is inserted at
the head or the tail of the queue for its active priority. The task dispatching policy is
specified by a Task_Dispatching_Policy configuration pragma. If no such pragma
appears in any of the program units comprising a partition, the task dispatching
policy for that partition is unspecified.

Implementation Permissions

Implementations are allowed to define other task dispatching policies, but need
not support more than one task dispatching policy per partition.

D.2.3 The Standard Task Dispatching Policy
This clause defines the policy_identifier, FIFO_Within_Priorities.

Post-Compilation Rules

If the FIFO_Within_Priorities policy is specified for a partition, then the
Ceiling_Locking policy (see D.3) shall also be specified for the partition.

Dynamic Semantics

When FIFO_Within_Priorities is in effect, modifications to the ready queues occur
only as follows:

� When a blocked task becomes ready, it is added at the tail of the ready
queue for its active priority.

� When the active priority of a ready task that is not running changes, or the
setting of its base priority takes effect, the task is removed from the ready
queue for its old active priority and is added at the tail of the ready queue for
its new active priority, except in the case where the active priority is lowered
due to the loss of inherited priority, in which case the task is added at the head
of the ready queue for its new active priority.

� When the setting of the base priority of a running task takes effect, the task is
added to the tail of the ready queue for its active priority.

� When a task executes a delay_statement that does not result in blocking, it is
added to the tail of the ready queue for its active priority.

Each of the events specified above is a task dispatching point (see D.2.1).

A task dispatching point occurs for the currently running task of a processor
whenever there is a nonempty ready queue for that processor with a higher priority

Page 3 of 5



Task Dispatching Excerpts from Ada RM

than the priority of the running task. The currently running task is said to be
preempted and it is added at the head of the ready queue for its active priority.

Documentation Requirements

Priority inversion is the duration for which a task remains at the head of the highest
priority nonempty ready queue while the processor executes a lower priority task.
The implementation shall document:

� The maximum priority inversion a user task can experience due to activity of
the implementation (on behalf of lower priority tasks), and

� whether execution of a task can be preempted by the implementation
processing of delay expirations for lower priority tasks, and if so, for how long.

NOTES

14 If the active priority of a running task is lowered due to loss of inherited priority
(as it is on completion of a protected operation) and there is a ready task of
the same active priority that is not running, the running task continues to run
(provided that there is no higher priority task).

15 Setting the base priority of a ready task causes the task to move to the tail of
the queue for its active priority, regardless of whether the active priority of the
task actually changes.

D.2.4 Non-Preemptive Dispatching
A non-preemptive dispatching policy is defined via policy_identifier
Non_Preemptive_FIFO_Within_Priorities.

Legality Rules

Non_Preemptive_FIFO_Within_Priorities can be specified as the policy_identifier of
pragma Task_Dispatching_Policy (see D.2.2).

Post-Compilation Rules

If the Non_Preemptive_FIFO_Within_Priorities is specified for a partition then
Ceiling_Locking (see D.3) shall also be specified for that partition.

Dynamic Semantics

When Non_Preemptive_FIFO_Within_Priorities is in effect, modifications to the ready
queues occur only as follows:

� When a blocked task becomes ready, it is added at the tail of the ready
queue for its active priority.

� When the active priority of a ready task that is not running changes, or the
setting of its base priority takes effect, the task is moved from the ready queue
for its old active priority and is added at the tail of the ready queue for its new

Page 4 of 5



Task Dispatching Excerpts from Ada RM

active priority.
� When a task executes a delay_statement that does not result in blocking, it is

added to the tail of the ready queue for its active priority. 

Each of the events specified above is a task dispatching point (see D.2.1).

Implementation Permission

Since implementations are allowed to round all ceiling priorities in subrange
System_Priority to System_Priority'last (see D.3), an implementation may allow a task
to execute within a protected object without raising its active priority provided the
protected object does not contain pragma Interrupt_Priority, Interrupt_Handler or
Attach_Handler.

Page 5 of 5


