
The inheritance anomaly: ten years after

Giuseppe Milicia
Chi Spaces Technologies ltd.

Cambridge, UK

milicia@chispaces.com

Vladimiro Sassone
University of Sussex, UK

vs@susx.ac.uk

ABSTRACT
The term inheritance anomaly was coined in 1993 by Matsuoka
and Yonezawa [15] to refer to the problems arising by the coexis-
tence of inheritance and concurrency in concurrent object oriented
languages (COOLs). The quirks arising by such combination have
been observed since the early eighties, when the first experimen-
tal COOLs were designed [3]. In the nineties COOLs turned from
research topic to widely used tools in the everyday programming
practice, see e.g. the Java [9] experience. This expository paper ex-
tends the survey presented in [15] to account for new and widely
used COOLs, most notably Java and C] [19]. Specifically, we il-
lustrate some innovative approaches to COOL design relying on
the aspect oriented programming paradigm [13] that aim at better,
more powerful abstraction for concurrent OOP, and provide means
to fight the inheritance anomaly.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Concurrent programming structures, Inheritance; D.1.3
[Programming techniques]: Concurrent Programming

Keywords
Inheritance Anomaly, Concurrent Programming

1. INTRODUCTION
In the early eighties the first attempts to mix object oriented pro-

gramming and concurrency showed that the two concepts do not
mix gracefully [3, 6]. In a concurrent program, the set of messages
objects can handle is not uniform over time. Instead, it depends
on the actual state of the object. To enforce such ‘synchronization
constraints’ we are forced to write specific synchronization code.

To exemplify the situation let us consider the following pseudo-
code implementing a concurrent bounded buffer:
class Buffer {
...
void put(Object el) { if ("buffer not full¨) ... }
Object get() { if ("buffer not empty") ... }

}
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Clearly we must make sure that no object is removed from an
empty buffer and that no object is inserted into a full buffer. In a
sequential setting, the burden of ensuring such constraints resides
with the buffer’s user. Indeed the buffer is created and used by
one thread only, which is responsible for the state of the object.
To facilitate usage, the buffer’s methods might return certain er-
ror codes in case of misuse. This approach is not feasible in a
concurrent setting. The buffer will be used concurrently by mul-
tiple clients, leaving each of them no idea on the buffer’s current
state. Although it is possible to envisage ad-hoc protocols among
clients to keep track of the buffer’s state, such a solution is com-
plex and hardly feasible in practice. The burden of enforcing the
synchronization constraints must ultimately lie with the buffer it-
self. Unfortunately, mixing behavioural and synchronization code
in class definitions represents an obstacle to code inheritance. The
quirks arising from the coexistence of inheritance and concurrency
were considered so severe as to suggest the removal of inheritance
from concurrent object oriented languages (COOLs) [3]. In 1993
Matsuoka and Yonezawa coined the now widely known term inher-
itance anomaly to refer to the problem.

Since then, we have seen a significant change in the way COOLs
have been used. In the early nineties, COOLs were a matter of re-
search rather than programming practice. Concurrency was a very
specific requirement for a small niche of the programming com-
munity. This is not longer the case. The trend changed with the
introduction of Java [9] which is to be considered the first COOL
to be widely accepted by the mainstream programming commu-
nity. Nowadays concurrency is essential to application develop-
ment, consequently it is treated as a fundamental part of language
design. Newly introduced languages, meant for everyday program-
ming, do provide concurrency, as for instance C] [19].

It is often unclear how the inheritance anomaly affects concur-
rent programming in modern COOLs. In this paper we extend the
survey presented in [15] to include popular languages such as Java,
C] and Eiffel. We move on describing some of the most inter-
esting approaches to the problem which have emerged in the last
ten years. We concentrate on programming languages based on
the aspect oriented philosophy, a new and promising programming
paradigm [16].

2. THE INHERITANCE ANOMALY
As briefly mentioned in the Introduction, interweaving the be-

havioural and synchronization code of class definitions is an ob-
stacle to inheritance. We refer to this problem as the inheritance
anomaly.

In this section we shall use the classic bounded buffer example to
show where and how the anomaly occurs. Consider the following
pseudo-code:



class Buffer {
...
void put(Object el) { ... }

Object get() { ... }
}

The bounded buffer provides the methods get and put respec-
tively to remove and insert an element. In a concurrent setting we
need to refine the code above with suitable synchronization code,
so as to make sure that no get is executed on an empty buffer and,
dually, that no put is executed on a full buffer.

It is generally agreed that the inheritance anomaly shows itself in
different guises depending on the synchronization mechanism pro-
vided by the language. In [15] the authors give a taxonomy of the
problem and classify the difference occurrences of the inheritance
anomaly in three broad classes as follows.

History-sensitiveness of acceptable states. Synchronization con-
straints can be enforced by providing a guard for each method. A
guard is a boolean expression which must be true for the method to
be executable:

class Buffer {
...
void put(Object el) when "not full" { ... }

Object get() when "not empty" { ... }
}

The semantics is self-explanatory. Before executing a method its
guard is evaluated, if the latter evaluates to false the calling thread
must ‘wait’ for the condition to become true. Such form of syn-
chronization has been very popular, and it survives to this day (un-
der several superficially different forms) in widely used languages
such as Java [9] and C] [19]. The wait primitive is not immune
to the inheritance anomaly. When method enabling rather than de-
pending only on the object’s state, depends on its past history, the
inheritance anomaly occurs. Suppose for instance that we want to
refine our buffer with a method gget that works like get but that
cannot be executed immediately after a get:

class HistoryBuffer extends Buffer {
...
Object gget() when "not empty" and "not after-get" {
...

}
}

Clearly, this can only be achieved adding code to get to keep track
of its invocations. That is, we have to rewrite the entire class. We
will revisit this problem later on.

Partitioning of states. Inspired by the example above, one may
disentangle code and synchronization conditions by describing the
enabling of methods according to a partition of the object’s states.
To describe the behavior of class Buffer, for instance, the state can
be partitioned in three sets: empty, partial, and full, the former
containing the states in which the buffer is empty – so that get is
inhibited – the latter those in which it is full – so that is put to be
disallowed. One can then specify

put: requires not full
get: requires not empty

and refine the code of get and put to specify the state transitions.
For instance, get would declare the conditions under which the
buffer becomes empty or partial:

Object get() {
...
if ("buffer is now empty¨) become empty;
else become partial;

}

The inheritance anomaly surfaces again here, as derived classes
may force a refinement of the state partition. As an example, con-
sider adding a method get2 that retrieves two elements at once.
Alongside empty and full, it is necessary to distinguish those
states where the buffer contains exactly one element. Clearly, the
state transitions specified in get and put must be re-described ac-
cordingly.
Modification of acceptable states. A third kind of anomaly hap-
pens with mix-in classes, that is classes whose purpose is to be
mixed-into other classes to add to their behavior. The typical situ-
ation arises when one wishes to enrich a class with a method that
influences the acceptance states of the original class’ methods. For
instance, from an ‘object-oriented’ perspective, it is perfectly legit-
imate to expect to be able to design a

class Lock {
...
void lock() { ... }
void unlock() { ... }

}

to be used to add lock capabilities to clients classes purely by means
of the standard inheritance mechanism. But, clearly enough, (mul-
tiple) inheritance of Lock and Buffer does nothing towards creat-
ing a lockable buffer, unless we completely recode get and put to
keep into account the state of the Lock component of the object.

3. THE INHERITANCE ANOMALY IN MO-
DERN COOLS

In this section we shall analyze the problem of the inheritance
anomaly in two widely used COOLs: Java and C]. The two lan-
guages are naturally concurrent and used as such in the everyday
programming practice.

3.1 Java
Java [9] can be considered the first object oriented language with

native support for concurrency that was widely accepted by the pro-
gramming community. Concurrency, at first considered a special-
ized need for a restricted audience, has become with Java a central
feature of new programming languages.

Java is an imperative object oriented language. Its syntax is simi-
lar to that of C++ [24]. Java programs can be multi-threaded, where
the concurrent access to shared objects by threads is regulated by
a variation of the monitor primitive [10]. Every object possesses a
lock. The lock is indirectly accessed when accessing synchronized
methods or using the wait and notify/notifyAll primitives.

The classic bounded buffer example can be programmed in Java
as in Figure 1. The code is self-explanatory; it is however useful to
comment on the use of the wait primitive. A while loop ensures
that the method will wait till the guard becomes false. At the end
of the methods, having modified the state of the object, we signal
all the waiting threads using the primitive notifyAll.

Java monitors are clearly a variation of the method guard syn-
chronization primitive, and as such they suffer from the history-
dependent variety of the anomaly. Figure 2 illustrates this. We are
forced to do some bookkeeping to verify whether or not the last
method to be executed was a get or not. We implement it using a
boolean flag, afterGet, which forces us to redefine the methods



public class Buffer {

protected Object[] buf;
protected int MAX;
protected int current = 0;

Buffer(int max) {
MAX = max;
buf = new Object[MAX];

}
public synchronized Object get()
throws Exception {
while (current<=0) { wait(); }
current--;
Object ret = buf[current];
notifyAll();
return ret;

}
public synchronized void put(Object v)
throws Exception {
while (current>=MAX) { wait(); }
buf[current] = v;
current++;
notifyAll();

}
}

Figure 1: Buffer in Java

get and put which we would rather inherit. A clear-cut example
of inheritance anomaly.

3.2 C]
C] [19] is a recently introduced COOL. It borrows consider-

ably from the Java experience, which however it improves in a
number of ways. From a concurrent programming point of view,
C] relies on the notion of monitor just like Java. Its monitor in-
terface is, however, slightly more flexible. In contrast to Java,
monitors are programmed in C]. The Monitor class provides the
methods Enter() and Exit() to delimit code which must be exe-
cuted in mutual exclusion. The C] instruction lock() can be used
for the same purpose and is just syntactic sugar over the monitor
mechanism. If a whole method is to be executed in mutual ex-
clusion the attribute MethodImplOptions.Synchronized can be
used instead of the explicit monitor. Attributes allows program-
mers to specify meta-data on the program which can be interpreted
and treated appropriately by the compiler. The C] synchronization
mechanism is based on the monitor primitives Wait(), Pulse()
and PulseAll(), which are essentially equivalent to Java wait(),
notify() and notifyAll().

The additional flexibility given by explicit monitors does not
help against the history-sensitive variety of the inheritance ano-
maly. C] is indeed subject to the same anomalies as in Java. In
Figure 3 we show a possible implementation of the Buffer in C].
Note that we used the MethodImplOptions.Synchronized at-
tribute for the method get and the explicit monitor for put. The
two techniques are equivalent and we show both for completeness
only. Figure 4 shows that implementing the HistoryBuffer class
in C] gives rise to an instance of the inheritance anomaly just like
it was the case for Java. The method redefinition abstraction pro-
vided by the two languages does not provide the means to finely
adjust the method behavior.

3.2.1 Polyphonic C]

Polyphonic C] is a dialect of C] developed at Microsoft Re-
search, Cambridge [4]. In Polyphonic C] , the monitor synchro-

public class HistoryBuffer extends Buffer {
boolean afterGet = false;

public HistoryBuffer(int max) { super(max); }

public synchronized Object gget()
throws Exception {
while ((current<=0)||(afterGet)) {

wait();
}
afterGet = false;
return super.get();

}
public synchronized Object get()
throws Exception {
Object o = super.get();
afterGet = true;
return o;

}
public synchronized void put(Object v)
throws Exception {
super.put(v);
afterGet = false;

}
}

Figure 2: HistoryBuffer in Java

nization mechanism of C] is replaced by a pattern-based mecha-
nism inspired by the Join calculus [8]. Precisely, Polyphonic C]

is based on two main notions: asynchronous methods and chords.
Asynchronous methods, as opposed to synchronous ones, do not
return a result, and their caller thread does not wait blocked for
method completion, but can proceed immediately. In standard C]

method calls are always synchronous: they return a value and the
caller blocks until method completion. Chords are code blocks as-
sociated with a set of synchronous and asynchronous method iden-
tifiers. Every chord can contain at most a synchronous method.
The body of a chord is executed only if and when all of its method
identifiers have been called. If more than one chord can be exe-
cuted at any time, one is chosen randomly. To exemplify the notion
of chord, consider the following (simplistic) implementation of a
buffer:

public class Buffer {
public String get() & public async put(String s) {
return s;

}
}

The method put is asynchronous, consequently it does not block
the callers. The method get is synchronous, callers will be blocked
until the chord can be executed, i.e. until there is an element in the
buffer.

From the existing literature on Polyphonic C] and the Join Cal-
culus, it appears that the language is subject to the state partitioning
variety of the anomaly. Indeed its synchronization mechanism is
closely related to behavior abstractions [12]. An analysis of Poly-
phonic C] in this direction has been carried out in [20].

3.3 Eiffel
Eiffel [17] is a popular OO language designed by Meyer and

Nerson. Currently, concurrency is not part of the Eiffel language.
Multithreading finds its way inside the language through additional
threading libraries, just as it happens for C and C++. The ‘official’
language specification, however, describes a concurrency model:
SCOOP (Simple Concurrent Object-Oriented Programming) [18].



public class Buffer {
protected Object[] buf;
protected int max;
protected int current = 0;

public Buffer(int max) {
this.max = max;
buf = new Object[max];

}

public virtual void put(Object v) {
Monitor.Enter(this);
while (current>=max) { Monitor.Wait(this); }
buf[current] = v;
current++;
Monitor.PulseAll(this);
Monitor.Exit(this);

}

[MethodImpl(MethodImplOptions.Synchronized)]
public virtual Object get() {
while (current<0) { Monitor.Wait(this); }
current--;
Object ret = buf[current];
Monitor.PulseAll(this);
return ret;

}
}

Figure 3: Buffer in C]

SCOOP is currently available only through a proof-of-concept im-
plementation [7], yet it is likely to be the future of concurrency in
Eiffel.

Syntactically SCOOP’s impact is minimal, only one keyword
needs to be introduced: separate. Semantically the changes are
more profound and interesting. The separate keyword can be
applied to classes, e.g. separate class NAME, and to object in-
stances, e.g. o:separate TYPE. Intuitively the keyword means that
operations on the entity it refers to might be executed concurrently
in their own process. A method call is said to be separate if it
refers to a separate object. For instance, the call x.f() is sepa-
rate if x is a separate object. In contrast with Java and C], separate
calls in SCOOP can be either asynchronous or synchronous. In the
first case the syntax is simply x.f(), in the second case we write
y:=x.f(), called ‘wait by necessity’ in SCOOP terminology. Ev-
ery method of a separate object is executed in mutual exclusion, to
avoid the difficulties arising from race conditions.

Eiffel is based on the design by contract paradigm. Methods are
usually associated with a precondition, introduced by the keyword
require, and a post-condition, denoted by ensure. Additionally,
classes can be associated with an invariant, which they must respect
at any time. Consider the Eiffel class implementing a (sequential)
bounded buffer in Figure 5. The method get has a precondition
ensuring a non-empty buffer. Similarly its post-condition guaran-
tees that after its execution the buffer will not be full. Although
deceivingly similar to method guards, assertions have a different
semantics. Recall that we are still in a sequential world. Asser-
tion violation does not result in a client waiting for the assertion to
become true; rather, a run-time exception is thrown.

The assertion mechanism breaks down in a concurrent setting, as
well known both in practical and theoretical communities. Meyer
calls the resulting situation the concurrent precondition paradox.
Indeed, the design-by-contract methodology is based on the no-
tion that if a precondition is satisfied, the client calling a routine is
guaranteed a result in line with the routine’s post-condition. If we

public class HistoryBuffer : Buffer {
bool afterGet = false;

public HistoryBuffer(int max) : base(max) {}

[MethodImpl(MethodImplOptions.Synchronized)]
public Object gget() {
while ((current<=0)||(afterGet)) {
Monitor.Wait(this);

}
afterGet = false;
return base.get();

}

[MethodImpl(MethodImplOptions.Synchronized)]
public override Object get() {
Object o = base.get();
afterGet = true;
return o;

}

[MethodImpl(MethodImplOptions.Synchronized)]
public override void put(Object v) {
base.put(v);
afterGet = false;

}
}

Figure 4: HistoryBuffer in C]

class BBUF[G] creation make
feature ...
put(x : G) is

require not full
do ... ensure not empty end

get : G is
require not empty
do ... ensure not full end

end

Figure 5: (Sequential) Bbuf in Eiffel

consider a concurrent execution of the bounded buffer above (add
the separate keyword to the class definition), we see that this is
clearly not the case. No matter how hard a client tries to satisfy
the method’s preconditions, another client can modify them con-
currently. This problem leads to modified the precondition seman-
tics for separate objects. Preconditions for separate objects, called
wait conditions, are essentially equivalent to method guards. The
semantic of a wait condition is:

‘Before being executed a separate call must wait till
it gains exclusive ownership of the separate object it
refers to and till its wait-conditions are all satisfied.’

Wait-conditions are prey to the history-dependent variety of the
anomaly. Let us note that the bounded buffer in Figure 5 can be
made concurrent simply by changing the first line of the class defi-
nition from: class BBUF[G] to: separate class BBUF[G]
From this modified definition we can derive a class implementing
an HistoryBuffer as shown in Figure 6. Again, we are forced to
add a boolean flag, after_get, to check whether the last method
to be executed was a get or not. This brings forth the need to re-
define the inherited methods get and put. Despite a significantly
different concurrency model, we face the same scenario seen for
both Java and C]. The core of the matter is that the inheritance ano-
maly depends only on the language’s synchronization mechanisms,
and wait conditions are intimately related to method guards.



separate class HISTORY_BUFFER[G]
inherit BOUNDED_BUFFER[G] redefine put, get
feature ...
put(x : G) is

require not full
do ... after_get := false
ensure not empty
end

get : G is
require not empty
do ... after_get := true
ensure not full
end

gget : G is
require not empty
do ... after_get := false
ensure not full
end

feature NONE
after_get : BOOLEAN

end -- HISTORYBUFFER

Figure 6: HistoryBuffer in Eiffel

4. MODERN APPROACHES TO THE IN-
HERITANCE ANOMALY

Since the survey presented in [15], new approaches to the prob-
lem of the inheritance anomaly have been pursued. Research led
towards language features which are not only resilient to known
forms of the anomaly but offer powerful abstractions to deal with
concurrent programs. The four approaches we shall present have as
a common basis the decoupling of synchronization code from the
‘business code’ of class definition. Such separation of concerns
has been brought forth by a promising novel approach to program
development: aspect oriented programming (AOP) [16].

4.1 Synchronization Patterns
The application of aspect oriented techniques to decouple syn-

chronization from actual business code in class definitions was first
explored by Lopes and Lieberherr in [14].

The authors do not propose a new language implementing their
methodology; they rather describe a rich meta-language which can
be mapped down to chosen target languages. The mapping may
cause the loss of some of the benefits of the meta-language, de-
pending on the nature target language. Languages based on active
objects are ill-suited as target languages: the best support for the
mapping are target languages which provide different abstractions
for objects and processes.

The methodology of synchronization patterns helps to decouple
business and synchronization code. Synchronization constraints
are expressed in terms of synchronization patterns, by the following
syntax:

sync pattern name
add structure ... // additional data structures
add func ... // additional operations
mutex ... // Locks
sync ... // Synchronization scheme

Synchronization patterns contain four blocks which specify data
structures (add_structure) and operations (add_func) addition-
ally needed by the synchronisation scheme, the locks (mutex) and
the synchronization strategy to be used (sync). The synchroniza-
tion scheme is specified in terms of mutual exclusion, pre and post

sync pattern BufferSync
add structure //empty
add func //empty
mutex per object x1
sync
operation Object get()
at Buffer exclusive x1
requires (@ ! empty @) false (wait)

operation void put(Object o)
at Buffer exclusive x1
requires (@ ! full @) false (wait)

Figure 7: Buffer using Synchronization Patterns

sync pattern HistoryBufferSync : inherit BufferSync
add structure after-get : boolean
sync
operation Object get()
at HistoryBuffer exclusive x1
requires (@ ! empty @) false (wait)
on exit (@ after-get=true @)

operation void put(Object o)
at HistoryBuffer exclusive x1
requires (@ ! full @) false (wait)
on exit (@ after-get=false @)

operation Object gget()
at HistoryBuffer exclusive x1
requires (@ (!empty) && (!after-get) @)

false (wait)
on exit (@ after-get=false @)

Figure 8: HistoryBuffer using Sync. Patterns

conditions. From the definition of the synchronization patterns and
the ‘normal’ class definition, code for the target language is gener-
ated.

The synchronization scheme for the classic bounded buffer ex-
ample can be specified using synchronization patterns as shown
in the self-explanatory Figure 7. A guard is provided using the
requires keyword, if the guard evaluates to false the calling thread
will wait. The code between (@ and @) is written in the target lan-
guage (Java-like, in this case). Observe that the synchronization
constraints are specified separately from the class behaviour, and
in an ad-hoc language.

In Figure 8 we see the HistoryBuffer. The introduction of
a history-sensitive method (gget) results in the need to redefine
the synchronization constraints of the inherited methods. However,
there is no need to redefine the behaviour of the methods. Code
rewriting is limited to the synchronisation code, where it should
belong, if anywhere. As we shall see, this modularization of code
rewriting is typical of the aspect-oriented approach to the anomaly.

4.2 Composition Filters
Composition Filters [5] extend standard object-oriented mod-

eling techniques by explicitly programmed filters which apply to
method calls to and from an object. Depending on the method in-
voked, the filters can take actions which extend/modify the original
semantics of the object. The path followed by a message is shown
in Figure 9.

Messages sent to the object go through a set of input filters, each
filter looks at the message and if necessary modifies it according
to its definition. The message is then passed to the next filter till it
reaches the object. Output filters behave similarly, but they work
on messages sent from the object. A filter consists of three parts: a
condition, the filter is applied only if it holds; a pattern, the filter is
applied to matching methods; a substitution describing the message
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Input Filters Output Filters
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Figure 9: Message path through filters

class BoundedBuffer(limit:Integer) interface
conditions
Empty; Partial; Full;
methods
put(Any) returns Nil;
get returns Any;
inputfilters
bufferSync : Wait = Empty, Partial=>put,

Partial, Full=>get ;
disp : Dispatch = inner.* ;

end

Figure 10: Buffer interface with Comp. Filters

processing performed by the filter.
Another feature of the composition filter model is the Abstract

Communication Types (ACTs), first introduced in [1] and expressed
as composition filters in [2]. An ACT is a class which can coor-
dinate the behaviour of different objects by accomplishing some
computation depending on the messages they receive.

Synchronization constraints are specified using a wait filter. A
wait filter can either accept a message and forward it to the next
filter or reject it and store it in a queue where it will stay till it can be
accepted. Wait filters are essentially equivalent to method guards.
Filters are specified in interfaces, implementations are oblivious to
them. Synchronization constraints are thus specified at interface
level, cf. e.g. the interface for a bounded buffer of Figure 10.

The interface provides the signatures for the class methods in
the methods section. The parts of interest are the condition sec-
tion – where the relevant states of the object are named – and
the definition of the input filters, particularly the definition of the
bufferSync wait filter. The bufferSync filter specifies the syn-
chronization constraints of the object with respect to its conditions.
So the method put can be executed only if the object is in the state
Empty or Partial, and similarly for the getmethod. The anomaly
shows itself in the case of history-sensitive methods. To program
the HistoryBuffer class in the composition filter model, an ACT
is used to administer the history information. A possible imple-
mentation, adapted from [5] can be seen in Figure 11.

Unsurprisingly, a new condition admin.NoRecentGet is intro-
duced to guarantee that the last method to be executed is not a get.
This condition is however implemented not in the HistoryBuffer
class but rather in the HistoryACT. The register filter takes care
of passing every message to the admin ACT which will record it
and update the NoRecentGet accordingly. ACTs can treat mes-
sages as first class objects, it is thus easy for the ACT to see what
message was received and act accordingly. Note that only the inter-
face of the HistoryBuffer class is concerned with synchroniza-

class HistoryBuffer interface
internals
buf : Buffer;
admin : HistoryACT;
methods
gget returns Any;
conditions
admin.NoRecentGet;
inputfilters
sync : Wait={ NoRecentGet=>gget, True˜>gget };
buf.bufSync;
register : Meta= { [*]admin.register };
disp : Dispatch= { inner*, buf.* };

end;

class HistoryACT interface
conditions
NoRecentGet;
methods
register(Message) returns Nil;
inputfilters
disp : Dispatch= inner.* ;

end;

class HistoryACT implementation
instvars
justGet : Boolean;
conditions
NoRecentGet
begin return justGet.not; end;

methods
register(meta:Message) returns Nil;
begin
justGet := (meta.selector=’get’); meta.fire;
end;

end;

Figure 11: HistoryBuffer with Composition Filters

tion issues. The anomaly has been modularized and confined to
interfaces and the ACTs, rather than solved. However, it is clearly
a significant improvement over traditional method guards.

4.3 Synchronization Rings and Syral
Synchronization rings [11] isolate the following main aspects of

the synchronization problem.
Exclusion: The mutual exclusion aspect, whereby multiple meth-

ods can or cannot be executed concurrently.
State: This aspect specifies which methods are executable when

the object is in a certain state.
Coordination: Is the caller allowed to execute the method at this

time?
These aspects are further refined in two sub-aspects:
Response: It specifies what happens if a message cannot be ac-

cepted. The options are blocking, balking (return with an
error code) and timed wait (wait only a fixed time).

Scheduling: It specifies the order in which waiting messages must
be served.

Synchronization rings are based on the abstraction illustrated in
Figure 12. The core object implements the behaviour, while the
rings around it take care of the synchronization aspects. Incom-
ing messages enter the rings through entry ports, reach the core
object and leave through exit port, on successful execution, or roll-
back ports otherwise. Each ring can have multiple entry ports. Al-
though similar to composition filters, synchronization rings pro-
vide low-level hooks to additional aspects for instance scheduling
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Figure 12: Synchronization Rings Model

synchronisation SyncBuffer {
constructor(maxCapacity);
core Buffer buf(maxCapacity);
ring MutualExclusion mutex;
ring FixedDoubleBoundedSlidingScale

count(0, maxCapacity);
put(item) {
exclusion: uses mutex.mutex;
hasSpace: uses count.increment;

}
get() {
exclusion: uses mutex.mutex;
hasItem: uses count.decrement;

}
}

Figure 13: Buffer in Syral

and response behaviour. The synchronization rings model has been
implemented in the programming language Syral (Synchronization
Rings Aspect Language).

In Figure 13 we can see a Syral synchronization definition for
a bounded buffer. We need to specify the core object, Buffer in
this case, and the rings surrounding it. In our example, we have a
mutual exclusion ring and a FixedDoubleBoundedSlidingScale pro-
vided by the standard Syral ring library. The first guarantees that
get and putwill be executed in mutual exclusion, the second keeps
track of the number of elements in the buffer. The last part of the
specification maps messages to ports, in this case both messages
must pass through the mutual exclusion ring and the sliding scale
ring (through the increase port in the case of put, through the de-
crease one for get).

Let us consider the case of history sensitive methods. In Fig-
ure 14 we can see an implementation of the HistoryBuffer class.

To deal with the new history-sensitive method we are forced to
introduce a new event ring which will keep track of the history of
the object. Note that we must redefine the synchronization con-
straints for the inherited methods to force the inherited messages to
pass the event ring. Clearly, this is an instance of the inheritance
anomaly. However, as for other AOP approaches, code rewriting
affects only the synchronization specification. Further details on
Syral and synchronization rings can be found in [11].

4.4 Jeeg
Jeeg [21] is a dialect of Java related to the AOP paradigm. Syn-

chronization constraints, expressed declaratively as guards, are to-
tally decoupled from the body of the method, so as to enhance sepa-

synchronization SyncHistoryBuffer like SyncBuffer {

constructor(maxCapacity);
ring Event lastOpWasGet;

put(item) { lastOp: uses lastOpWasGet.clearEvent; }

get() { lastOp: uses lastOpWasGet.setEvent; }

gget() like get {
lastOp: uses lastOpWasGet.waitForSetAndClear;

}
}

Figure 14: HistoryBuffer in Syral

ration of concerns. A typical Jeeg program has the following form:

public class MyClass {
sync { m : φ; ... }

// Standard Java class definition
public ... m(...) { ... }
...

}

Intuitively, m : φ means that at a given point in time a method invo-
cation o.m() can be executed if and only if the guard φ evaluated
on object o yields true. Otherwise, the execution of m is blocked
until φ becomes true. The Buffer class can be implemented in
Jeeg as shown in Figure 15. The novelty of the approach is that
guards are expressed in (a version of) Linear Temporal Logic [23]
(LTL), so as to allow expressing properties based on the history of
the computation. Exploiting the expressiveness of LTL, Jeeg is able
to single out situations such as the HistoryBuffer class, thus rid-
ding the language from the corresponding anomalies. The syntax
of the LTL variation used by Jeeg is the following:

φ ::= AP | !φ | φ&& φ | φ || φ | Previous φ | φ Since φ

Using a meta-variable event bound to the name of last method
executed, we can code the HistoryBuffer example as follows.

public class HistoryBuffer extends Buffer {
sync { gget: (Previous(event != get)) && (!empty); }

public HistoryBuffer(int max) { super(max); }

public Object gget() throws Exception { ... }
}

In general, the guards can refer to a rich variety of information
about methods and fields values.

Due to the nature of the anomaly it is generally not possible to
claim formally that a language avoids the problem or solves it. The
matter depends on the synchronization primitives of the language
of choice, and new experience in OOP may at any time unveil novel
shortcomings and new kinds of anomalies. Nevertheless, since the
expressive power of LTL is formally understood, a pleasant fea-
tures of Jeeg is to come equipped with a precise characterization of
the situations it can address. More precisely, all anomalies depend-
ing on sensitivity to object histories expressible as star-free regular
languages can, in principle, be avoided in Jeeg [21].

The current implementation of Jeeg relies on the large body of
theoretical work on LTL, that provides powerful model checking
algorithms and techniques. Currently, each method invocation in-
curs an overhead that is linear in the size of the guards appearing
in the method’s class. Also, the evaluation of the guards at runtime



public class Buffer {
sync {

put : (! full);
get : (! empty);

}
Buffer(int max) { ... }
public Object get() throws Exception { ... }
public void put(Object v) throws Exception { ... }

}

Figure 15: Buffer in Jeeg

requires mutual exclusion guarantees that have a (marginal) com-
putational cost. Benchmarks in support of the feasibility of the Jeeg
approach, have been presented in [22].

4.5 Advantages of the AOP methodology
As we can see from the four proposals in this section, decoupling

behaviour from synchronization has clear advantages. The chief
advantage, common to all proposals, is a modularization of the syn-
chronization code to be rewritten. This is due to the clear separation
of concerns brought forth by the aspect oriented paradigm. Mod-
ularization is, however, not enough to truly eliminate the problem.
Synchronization code has to be rewritten in certain cases, chiefly
due to the history-dependent variety of the anomaly. This issue is
even more limited in the case of Jeeg: the use of past-tense linear
temporal logics effectively confines the occurrences of the anomaly
to a well-defined set of cases: the constraints which cannot be de-
scribed as star-free regular languages over the objects’ traces.

When compared to more traditional COOLs, the AOP approach
is thus advantageous. Decoupling synchronization from behaviour
seems to fully deliver the promises of the AOP paradigm.

5. CONCLUSION
Ten years after the seminal paper of Matsuoka and Yonezawa

the situation of COOLs has changed significantly. Concurrent pro-
gramming has become a matter of daily practice, at the same time,
new programming paradigms have emerged.

In this survey we illustrated the inheritance anomaly problem
in the context of the popular programming languages Java and C],
with the aim of clarifying and putting into perspective the impact of
the anomaly. We proceeded to analyze new approaches to the spec-
ification of synchronization, devoting particular attention to lan-
guages based on the aspect oriented programming paradigm. Our
examples showed that regarding the inheritance anomaly, such ap-
proaches provide significant advantages over more traditional ones.
Our analysis clearly highlights the consequences of well-organized
separation of concerns. We believe it marks a strong point of the
aspect oriented approach to software development, which clearly
goes well beyond the inheritance anomaly problem.
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