
PolyORB User’s Guide

Jérôme Hugues

Copyright c© 2003, 2004, Free Software Foundation
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU Free Documenta-
tion License”, with the Front-Cover Texts being “PolyORB User’s Guide”, and with no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

About This Guide. 1
What This Guide Contains . 1
Conventions . 1

1 Introduction to PolyORB 3
1.1 Distributed applications and middleware 3
1.2 PolyORB a generic middleware with an instance per

distribution model . 3

2 Installation . 5
2.1 Supported Platforms . 5
2.2 Build requirements . 5
2.3 Build instructions . 5
2.4 Building the documentation and PolyORB’s examples 5

2.4.1 Build Options . 5
2.4.2 Compiler, Tools and Run-Time libraries Options . . 6

2.5 Platform notes . 6

3 Overview of PolyORB personalities 9
3.1 Application personalities . 9

3.1.1 CORBA . 9
3.1.2 Distributed System Annex of Ada (DSA) 9
3.1.3 Message Oriented Middleware for Ada (MOMA) . . 9
3.1.4 Ada Web Server (AWS) . 9

3.2 Protocol personalities . 9
3.2.1 GIOP . 9
3.2.2 SOAP . 10

4 Building an application with PolyORB 11
4.1 Compile-time configuration . 11

4.1.1 Tasking run-times . 11
4.1.2 Middleware tasking policies . 11
4.1.3 Object Adapter . 11
4.1.4 Linking protocol personalities to executable 11
4.1.5 Sample files . 11

4.2 Run-time configuration . 12
4.2.1 Using a configuration file . 12

4.3 Setting up protocol personalities . 13
4.3.1 Activating/Deactivating protocol personalities . . . 13
4.3.2 Configuring protocol personality preferences 13

4.4 Activating debug information . 13
4.5 Tracing exceptions . 14
4.6 polyorb-config . 14

ii PolyORB User’s Guide

5 CORBA. 17
5.1 What you should know before Reading this section 17
5.2 Installing CORBA application personality 17
5.3 Usage of idlac. 17
5.4 Resolving names in a CORBA application 18

5.4.1 po_cos_naming . 18
5.4.2 Using the COS Naming . 18

5.5 Building a CORBA application with PolyORB 18
5.5.1 echo example . 18

5.5.1.1 IDL definition of an echo object. 18
5.5.1.2 Implementation code for the echo object

. 19
5.5.1.3 Test code for client and server nodes 20
5.5.1.4 Compilation and execution. 22

5.5.2 Other examples . 22
5.6 Configuring a CORBA application . 23

5.6.1 Configuring PolyORB . 23
5.6.2 Configuring GIOP protocol stack for PolyORB . . . 23

5.7 PolyORB’s specific APIs . 23
5.7.1 PolyORB.CORBA_P.Naming_Tools 24
5.7.2 PolyORB.CORBA_P.Server_Tools 26

6 GIOP . 29
6.1 Installing GIOP protocol personality . 29
6.2 GIOP Instances . 29

6.2.1 IIOP . 29
6.2.2 DIOP . 29
6.2.3 MIOP . 29

6.3 Configuring the GIOP personality . 29
6.3.1 IIOP Configuration Parameters 29
6.3.2 DIOP Configuration Parameters 30
6.3.3 MIOP Configuration Parameters 31

7 SOAP . 33
7.1 Installing SOAP protocol personality . 33
7.2 Configuring the SOAP personality . 33

8 Tools . 35
8.1 po_catref . 35
8.2 po_names . 35

Appendix A References . 37

Appendix B GNU Free Documentation License
. 39

Index . 45

About This Guide 1

About This Guide

This guide describes the use of PolyORB, a middleware that enables the constriction of
Ada 95 distributed applications.

It describes the features of the middleware and related APIs and tools, and details how
to use them to build Ada 95 applications.

What This Guide Contains

This guide contains the following chapters:
• Chapter 1 [Introduction to PolyORB], page 3 provides a brief description of middleware

and PolyORB’s architecture.
• Chapter 2 [Installation], page 5 details how to configure and install PolyORB on your

system.
• Chapter 3 [Overview of PolyORB personalities], page 9 enumerates the different per-

sonalities, or distribution mechanisms, provided by PolyORB.
• Chapter 5 [CORBA], page 17 describes PolyORB’s implementation of OMG’s CORBA.
• Chapter 6 [GIOP], page 29 describes PolyORB’s implementation of GIOP, the protocol

defined as part of CORBA.
• Chapter 7 [SOAP], page 33 describes PolyORB’s implementation of SOAP.
• Chapter 8 [Tools], page 35 describes PolyORB’s tools.
• Appendix B [GNU Free Documentation License], page 39, contains the text of the

license under which this document is being distributed.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
• Functions, utility program names, standard names, and classes.
• ‘Option flags’
• ‘File Names’, ‘button names’, and ‘field names’.
• Variables.
• Emphasis.
• [optional information or parameters]
• Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ”
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

2 PolyORB User’s Guide

Chapter 1: Introduction to PolyORB 3

1 Introduction to PolyORB

1.1 Distributed applications and middleware

PolyORB aims at providing a uniform solution to build distributed applications; relying
either on industrial-strength middleware standards such as CORBA, the Distributed System
Annex of Ada 95, distribution programming paradigms such as Web Services, Message
Oriented Middleware (MOM), or to implement application-specific middleware.

Middleware provides a framework that hides the complex issues of distribution, and offers
the programmer high-level abstractions that allow easy and transparent construction of
distributed applications. A number of different standards exist for creating object-oriented
distributed applications. These standards define two subsystems that enable interaction
between application partitions:
• the API seen by the developer’s applicative objects;
• the protocol used by the middleware environment to interact with other nodes in the

distributed application.

Middleware implementations also offer programming guidelines as well as development tools
to ease the construction of large heterogeneous distributed systems. Many issues typical
to distributed programming may still arise: application architectural choice, configuration
or deployment. Since there is no "one size fits all" architecture, choosing the adequate
distribution middleware in its most appropriate configuration is a key design point that
dramatically impacts the design and performance of an application.

Consequently, applications need to rapidly tailor middleware to the specific distribution
model they require. A distribution model is defined by the combination of distribution
mechanisms made available to the application. Common examples of such mechanisms are
Remote Procedure Call (RPC), Distributed Objects or Message Passing. A distribution
infrastructure or middleware refers to software that supports one (or several) distribution
model, e.g.: OMG CORBA, Java Remote Method Invocation (RMI), the Distributed Sys-
tem Annex of Ada 95, Java Message Service (MOM).

1.2 PolyORB a generic middleware with an instance per
distribution model

Typical middleware implementations for one platform support only one set of such inter-
faces, pre-defined configuration capabilities and cannot interoperate with other platforms.
In addition to traditional middleware implementations, PolyORB proposes an original ar-
chitecture to enable support for multiple interoperating distribution models in a uniform
canvas.

PolyORB is a polymorphic, reusable infrastructure for building or prototyping new mid-
dleware adapted to specific application needs. It provides a set of components on top of
which various instances can be elaborated. These instances (or personalities) are views on
PolyORB facilities that are compliant to existing standards, either at the API level (appli-
cation personality) or at the protocol level (protocol personality). These personalities are
mutually exclusive views of the same architecture.

4 PolyORB User’s Guide

The decoupling of application and protocol personalities, and the support for multiple
simultaneous personalities within the same running middleware, are key features required
for the construction of interoperable distributed applications. This allows PolyORB to
communicate with middleware that implement different distribution standards: PolyORB
provides middleware-to-middleware interoperability (M2M).

PolyORB’s modularity allows for easy extension and replacement of its core and per-
sonality components, in order to meet specific requirements. In this way, standard or
application-specific personalities can be created in a streamlined process, from early stage
prototyping to full-featured implementation. The PolyORB architecture also allows the
automatic, just-in-time creation of proxies between incompatible environments.

You may find more information on PolyORB, including technical and scientific papers
on PolyORB, on the project website: http://libre.act-europe.fr/polyorb

Note: PolyORB is the project formerly known as DROOPI, a Distributed Reusable
Object-Oriented Polymorphic Infrastructure

Chapter 2: Installation 5

2 Installation

2.1 Supported Platforms

PolyORB has been compiled and successfully tested on the following platforms:
• FreeBSD
• HP-UX
• Linux
• Solaris
• Windows

Note: PolyORB should compile and run on every target for which GNAT and the
GNAT.Sockets package are available.

2.2 Build requirements

Ada 95 compiler: GNAT 3.16a1 (or later), GNAT 5.02a (or later), GCC 3.4.0 (or later).
Optional:
• XmlAda (http://libre.act-europe.fr/xmlada/) if you want to build the SOAP

protocol personality.

Note: per construction, the macro configure used to find your GNAT compiler looks first
to the executables gnatgcc, then adagcc and finally to gcc to find out which Ada compiler
to use. You should be very careful with your path and executables if you have multiple
GNAT versions installed. See below explanations on the ADA environment variable if you
need to override the default guess.

2.3 Build instructions

To compile and install PolyORB, execute:
% ./configure [some options]

% make (or gmake if your make is not GNU make)

% make install (ditto)

This will install files in standard locations. If you want to choose another prefix than
‘/usr/local’, give configure a ‘--prefix=whereveryouwant’ argument.

Note: at this time, you MUST use GNU make to compile this software.

2.4 Building the documentation and PolyORB’s examples

PolyORB’s documentation and examples are built separately.
After building PolyORB, simply run make in the ‘examples’ (resp. ‘doc’) directory to

build the examples (resp. the documentation). The build process will only build examples
that correspond to the personalities you configured.

Note: you may also install PolyORB’s documentation in standard location typing make
install.

6 PolyORB User’s Guide

2.4.1 Build Options

Available options for the ’configure’ script include:

• ‘--with-appli-perso="..."’: application personalities to build

Available personalities: AWS, CORBA, DSA, MOMA

e.g. ‘--with-appli-perso="corba moma"’ to build both the CORBA and MOMA
personalities

• ‘--with-proto-perso="..."’: personalities to build

Available personalities: GIOP, SOAP, SRP

e.g. ‘--with-proto-perso="giop soap"’ to build both the GIOP and SOAP person-
alities

• ‘--with-services="..."’: CORBA COS services to build

Available services: event, ir, naming, time

e.g. ‘--with-services="event naming"’ to build only COS Event and COS Naming.

By default, only the CORBA and GIOP personalities are built, no CORBA Services
are built.

• ‘--enable-shared’: build shared libraries.

• ‘--enable-debug’: enable debugging information generation and supplementary run-
time checks.

2.4.2 Compiler, Tools and Run-Time libraries Options

The following environment variables can be used to override configure’s guess at what
compilers to use:

CC: the C compiler

ADA: the Ada 95 compiler

CXXCPP, CXXCPPFLAGS: the preprocessor used by idlac (only when setting up the
CORBA application personality).

For example, if you have two versions of GNAT installed and available in your PATH, and
configure picks the wrong one, you can indicate what compiler should be used with the
following syntax:

% ADA=/path/to/good/compiler/gcc ./configure [options]

PolyORB will be compiled with GNAT build host’s configuration, including run-time
library. You may override this setting using ADA_INCLUDE_PATH and ADA_OBJECTS_PATH
environment variables. See GNAT User’s Guide for more details.

NOTE: Developers building PolyORB from the version control repository who need to
rebuild the configure and Makefile.in files should use the script support/reconfig for this
purpose. In addition to the requirements above, they will need autoconf 2.57 or newer, and
automake 1.6.3 or newer.

Chapter 2: Installation 7

2.5 Platform notes

Solaris 2.8:
• /usr/bin/sed and /usr/ucb/sed will silently chop long lines, and /usr/xpg4/bin/sed

will enter an endless loop while processing PolyORB files. GNU sed is required to
configure and build PolyORB.

• /usr/ucb/tr does not handle control character escape sequences: it cannot be used to
recompute dependencies (’make depend’); /usr/bin/tr or /usr/xpg4/bin/tr must be
used.

8 PolyORB User’s Guide

Chapter 3: Overview of PolyORB personalities 9

3 Overview of PolyORB personalities

A personality is an instantiation of specific PolyORB components. It provides the mecha-
nisms specified by a distribution model, e.g. an API, a code generator or a protocol stack.

This section provides a brief overview of existing personalities.

Note: some of these personalities are available only through PolyORB’s repository.

3.1 Application personalities

Application personalities constitute the adaptation layer between application components
and middleware. They provide APIs and/or code generator to register application entities
with PolyORB’s core, and interoperate with the core to allow the exchange of requests with
remote entities.

3.1.1 CORBA

CORBA is OMG specification of a Distributed Object Computing (DOC) distribution
model ([OMG02]). It is now a well-known and well-established specification, used in a
wide range of industrial applications.

PolyORB provides a CORBA-compliant implementation based on mapping of the IDL
language version 1.2 described in [OMG01] and CORBA core specifications.

3.1.2 Distributed System Annex of Ada (DSA)

The Distributed System Annex of Ada (DSA) [ISO95] is a normative specification part of
the language. It describes remote invocation schemes applied to most language constructs.

3.1.3 Message Oriented Middleware for Ada (MOMA)

MOMA (Message Oriented Middleware for Ada) provides message passing mechanisms. It
is an Ada adaptation of Sun’s Java Message Service (JMS) [SUN99], a standardized API
for common message passing models.

3.1.4 Ada Web Server (AWS)

The Web Server personality provides the same API as the Ada Web Server project (AWS)
[Obr03]. It allows for the implementation of web services, web server applications, or
classical web pages. AWS-based servers allow the programmer to directly interact with
incoming or outgoing HTTP and SOAP requests.

10 PolyORB User’s Guide

3.2 Protocol personalities

Protocol personalities handle the mapping of requests (representing interactions between
application entities) onto messages exchanged through a communication network, according
to a specific protocol.

3.2.1 GIOP

GIOP is the transport layer of the CORBA specifications. GIOP is a generic protocol. This
personality implements GIOP versions from 1.0 to 1.2 along with the CDR representation
scheme to map data types between the neutral core layer and CDR streams. It also provides
the following dedicated instances:
• IIOP supports synchronous request semantics over TCP/IP,
• MIOP instantiation of GIOP enables group communication over IP multicast,
• DIOP relies on UDP/IP communications to transmit one-way requests only.

3.2.2 SOAP

The SOAP protocol [W3C03] enables the exchange of structured and typed information
between peers. It is a self-describing XML document [W3C03] that defines both its data
and semantics. Basically, SOAP with HTTP bindings is used as a communication protocol
for Web Services.

Chapter 4: Building an application with PolyORB 11

4 Building an application with PolyORB

4.1 Compile-time configuration

The user may configure some elements of a PolyORB application at compile-time.

4.1.1 Tasking run-times

PolyORB provides different tasking run-times. The user may select the most appropri-
ate one, depending on its application requirements. The tasking run-times determine the
constructs PolyORB may use for its internal synchronizations.
• No_Tasking: There is no dependency on the Ada tasking run-time, middleware is

mono-task.
• Full_Tasking: Middleware uses Ada tasking constructs, middleware can be configured

for multi-tasking.
• Ravenscar : Middleware uses Ada tasking constructs, with the limitations of the

Ravenscar profile [DB98]. Middleware can be configured for multi-tasking.

4.1.2 Middleware tasking policies

PolyORB provides several tasking policies. A tasking policy defines how threads are used
by the middleware to process incoming requests.
• No_Tasking: There is only one task in middleware, processing all requests.
• Thread_Per_Sessions: One task monitors communication entities. One task is

spawned for each active connection. This task handles all incoming requests on this
connection.

• Thread_Per_Sessions: One task monitors communication entities. One task is
spawned for each incoming requests.

• Thread_Pool: A set of tasks cooperate to handle all incoming requests.

4.1.3 Object Adapter

TO BE WRITTEN

4.1.4 Linking protocol personalities to executable

TO BE WRITTEN

4.1.5 Sample files

PolyORB proposes a set of pre-defined setup packages. You must with one of them in your
application node to activate the corresponding setup.

12 PolyORB User’s Guide

• PolyORB.Setup.Client: a client node, without tasking enabled, configured to use all
protocol personalities build with PolyORB.

• PolyORB.Setup.Ravenscar_TP_Server: a server node, with tasking enabled, config-
ured to use all protocol personalities build with PolyORB. Middleware tasking runtime
follow Ravenscar’s profile restrictions. Middleware tasking policies is Thread_Pool.

• PolyORB.Setup.Thread_Per_Request_Server: a server node, with tasking enabled,
configured to use all protocol personalities build with PolyORB. Middleware tasking
policies is Thread_Per_Request.

• PolyORB.Setup.Thread_Per_Session_Server: a server node, with tasking enabled,
configured to use all protocol personalities build with PolyORB. Middleware tasking
policies is Thread_Per_Session.

• PolyORB.Setup.Thread_Pool_Server: a server node, with tasking enabled, configured
to use all protocol personalities build with PolyORB. Middleware tasking policies is
Thread_Pool.

To enforce one of these configurations, add a dependency on one of these packages. The
elaboration of the application (based on Ada rules) and the initialization of the partition
(based on the application personalities mechanisms) will set up properly your application.

4.2 Run-time configuration

The user may configure some elements of a PolyORB application at run-time.

4.2.1 Using a configuration file

A configuration file may be used to configure a PolyORB node. A sample configuration file
may be found in ‘src/polyorb.conf’.

The syntax of the configuration file is:
• empty lines and lines that have a ’#’ in column 1 are ignored;
• sections can be started by lines of the form [SECTION-NAME ’]’;
• variable assignments can be performed by lines of the form VARIABLE-NAME ’=’ VALUE.

Any variable assignment is local to a section.
Assignments that occur before the first section declaration are relative to section [en-
vironment]. Section and variable names are case sensitive.
A variable Var.Iable in section [Sec] can be overridden by setting environment vari-
able "POLYORB_SEC_VAR_IABLE". Furthermore, each time a resolved in that section
value starts with "file:", the contents of the file is used instead.

Default search path for ‘polyorb.conf’ is current directory. Environment variable
POLYORB_CONF may be used to set up information on configuration file.

PolyORB’s configuration file allows the user to
1. enable/disable the output of debug information
2. set up default reference on naming service
3. select the default protocol personality

Chapter 4: Building an application with PolyORB 13

4. set up each protocol personality

The configuration file is read once when running a node, during elaboration. Then, proper
configuration parameters are selected.

4.3 Setting up protocol personalities

PolyORB allows the user to activate some of the available protocol personalities and to set
up preferred protocol. Protocol-specific parameters are defined in their respective sections.

4.3.1 Activating/Deactivating protocol personalities

Protocol activation is controlled by PolyORB’s configuration file.

The section [access_points] control the initialization of access points. An access point
is a node entry point that may serve incoming requests.

[access_points]

soap=enable

iiop=enable

diop=disable

uipmc=disable

This example activates SOAP and IIOP, deactivates DIOP and MIOP.

The section [modules] controls the activation/deactivation of some modules within
PolyORB. It is used to enable bindings to remote entities.

[modules]

binding_data.soap=disable

binding_data.iiop=disable

binding_data.diop=disable

binding_data.uipmc=disable

This example enables the creation of bindings to remote objects using SOAP or IIOP.
Objects cannot be reached using DIOP or UIMPC.

Note: by default, all configured personalities are activated.

4.3.2 Configuring protocol personality preferences

The user may affect a preference to each protocol personality. The protocol with the higher
preference will be selected among possible protocols to send a request to a remote node.

See polyorb.binding_data.<protocol>.preference in section [protocol] to set up
protocol’s preference.

Possible protocols are defined as the protocols available on the remote node, as advertised
in its object reference. IOR or corbaloc references may support multiple protocols, URI only
support one protocol.

Each protocol supports a variety of configuration parameters, please refer to the proto-
cols’ sections for more details.

14 PolyORB User’s Guide

4.4 Activating debug information

To activate the output of debug information, you must first configure and compile PolyORB
with debug activate, see help on --enable-debug flag in Chapter 2 [Installation], page 5.

To output debug information on a selected package, create a configuration file with a
[log] section and the name of the packages on which you want debug information:

Sample configuration file, output debug for PolyORB.A_Package

[log]

polyorb.a_package=debug

Note that some packages may not provide such information. See sample configuration file
the complete list of packages that provide debug.

4.5 Tracing exceptions

To trace exception propagations in PolyORB’s source code, it is necessary to:
1. compile PolyORB with debug activated,
2. activate debug information on package PolyORB.Exceptions.

4.6 polyorb-config

polyorb-config returns path and library information on PolyORB’s installation.

NAME

polyorb-config - script to get information about the installed version

of PolyORB.

SYNOPSIS

polyorb-config [--prefix] [--version|-v] [--config] [--libs] [--cflags]

[--help]

DESCRIPTION

polyorb-config is a tool that is used to determine the compiler and

linker flags that should be used to compile and link programs that use

PolyORB.

OPTIONS

polyorb-config accepts the following options:

--prefix

Print PolyORB’s installation prefix.

--version

Print the currently installed version of PolyORB on the stan-

dard output.

--config

Print the configuration of the currently installed version of

PolyORB on the standard output.

--libs Print the linker flags that are necessary to link a PolyORB

Chapter 4: Building an application with PolyORB 15

program.

--cflags

Print the compiler flags that are necessary to compile a Poly-

ORB program.

--help Print help message.

16 PolyORB User’s Guide

Chapter 5: CORBA 17

5 CORBA

5.1 What you should know before Reading this section

This section assumes that the reader is familiar with the CORBA specifications described
in [OMG02a] and the IDL-to-Ada mapping defined in [OMG01].

5.2 Installing CORBA application personality

Ensure PolyORB has been configured and then compiled with CORBA application person-
ality. See Chapter 4 [Building an application with PolyORB], page 11 for more details on
how to check installed personalities.

To build the CORBA application personality, see Chapter 2 [Installation], page 5.

5.3 Usage of idlac

idlac is PolyORB’s IDL-to-Ada 95 compiler.

NAME

idlac - PolyORB’s IDL-to-Ada compiler

SYNOPSIS

idlac [-E] [-d] [-i] [-k] [-p] [-q] [-noir] idl_file [-cppargs ...]

DESCRIPTION

idlac is an IDL-to-Ada compiler, compliant with version 1.2 of the "Ada

Language Mapping Specification" produced by the OMG.

OPTIONS

idlac accepts the following options:

-E Preprocess only.

-d Generate delegation package.

-i Generate implementation template.

-k Keep temporary files.

-p Produce source on standard output.

-q Be quiet.

-noir Don’t generate code for interface repository.

-cppargs ARGS

Pass ARGS to the C++ preprocessor.

-I dir Shortcut for -cppargs -I dir.

18 PolyORB User’s Guide

idlac creates several files :

• myinterface.ads, myinterface.adb : these files contain the mapping for user defined
types (client and server side).

• myinterface-impl.ads, myinterface-impl.adb : these files are to be filled by the
user. They contain the implementation of the server. They are generated only if the -i
flag is specified.

• myinterface.ads, myinterface.adb : these files contain the client stubs for the in-
terface.

• myinterface-skel.ads, myinterface-skel.adb : these files contain the server-side
skeletons for the interface.

• myinterface-helper.ads, myinterface-helper.adb : these files contain subpro-
grams to marshal data into CORBA Any containers.

5.4 Resolving names in a CORBA application

PolyORB implements the CORBA COS Naming service.

5.4.1 po_cos_naming

po_cos_naming is a stand alone server that supports CORBA COS Naming specification.
When launched, it returns its IOR that can then be used by other CORBA applications.

5.4.2 Using the COS Naming

PolyORB provides a helper package to manipulate the COS Naming in your applications.
See Section 5.7 [PolyORB specific APIs], page 23 for more details.

5.5 Building a CORBA application with PolyORB

5.5.1 echo example

We consider building a simple “Echo” CORBA server and client. This application echoes
a string. The source code for this example is located in ‘examples/corba/echo’ directory
in PolyORB distribution. This applications uses only basic elements of CORBA.

To build this application, you need the following pieces of code:

1. IDL definition of an echo object

2. Implementation code for the echo object

3. Code for client and server nodes

Chapter 5: CORBA 19

5.5.1.1 IDL definition of an echo object

This interface defines an echo object with a unique method echoString. Per construction,
this method returns its argument.

interface Echo {

string echoString (in string Mesg);

};

5.5.1.2 Implementation code for the echo object

Package Echo.Impl is an implementation of this interface. This implementation follows the
IDL-to-Ada mapping.

with CORBA;

with PortableServer;

package Echo.Impl is

type Object is new PortableServer.Servant_Base with null record;

type Object_Acc is access Object;

function EchoString

(Self : access Object;

Mesg : in CORBA.String)

return CORBA.String;

end Echo.Impl;

with Ada.Text_IO;

with Echo.Skel;

pragma Elaborate (Echo.Skel);

pragma Warnings (Off, Echo.Skel);

-- No entity from Echo.Skel is referenced.

package body Echo.Impl is

-- EchoString --

function EchoString

(Self : access Object;

Mesg : in CORBA.String)

return CORBA.String

is
pragma Warnings (Off);

pragma Unreferenced (Self);

pragma Warnings (On);

begin

20 PolyORB User’s Guide

Ada.Text_IO.Put_Line

("Echoing string: " & CORBA.To_Standard_String (Mesg)

& " ");

return Mesg;

end EchoString;

end Echo.Impl;

Note: Echo.Impl body requires a dependency on Echo.Skel to ensure the elaboration of
skeleton code and the correct setup of PolyORB’s internals.

5.5.1.3 Test code for client and server nodes

Client and server code demonstrate how to make a remote invocation on a CORBA object,
and how to setup an object on a server node.

Note: the dependency on PolyORB.Setup.Client or PolyORB.Setup.No_Tasking_
Server enforces compile-time configuration, see Section 4.1.5 [Sample files], page 11.
• Client code tests a simple remote invocation on object. It is a no tasking client.

Reference to object is built from stringified reference (or IOR), which is passed through
command line.

with Ada.Command_Line;

with Ada.Text_IO;

with CORBA.ORB;

with Echo;

with PolyORB.Setup.Client;

pragma Warnings (Off, PolyORB.Setup.Client);

procedure Client is
use Ada.Command_Line;

use Ada.Text_IO;

Sent_Msg, Rcvd_Msg : CORBA.String;

myecho : Echo.Ref;

begin
CORBA.ORB.Initialize ("ORB");

if Argument_Count /= 1 then

Put_Line ("usage : client <IOR_string_from_server>");

return;
end if;

-- Getting the CORBA.Object

CORBA.ORB.String_To_Object

(CORBA.To_CORBA_String (Ada.Command_Line.Argument (1)), myecho);

-- Checking if it worked

if Echo.Is_Nil (myecho) then

Put_Line ("main : cannot invoke on a nil reference");

Chapter 5: CORBA 21

return;
end if;

-- Sending message

Sent_Msg := CORBA.To_CORBA_String (Standard.String’("Hello Ada !"));

Rcvd_Msg := Echo.echoString (myecho, Sent_Msg);

-- Printing result

Put_Line ("I said : " & CORBA.To_Standard_String (Sent_Msg));

Put_Line ("The object answered : " & CORBA.To_Standard_String (Rcvd_Msg));

exception
when E : CORBA.Transient =>

declare

Memb : CORBA.System_Exception_Members;

begin
CORBA.Get_Members (E, Memb);

Put ("received exception transient, minor");

Put (CORBA.Unsigned_Long’Image (Memb.Minor));

Put (", completion status: ");

Put_Line (CORBA.Completion_Status’Image (Memb.Completed));

end;
end Client;

• Server code setups a no tasking node. Object is registered to the RootPOA. Then an
IOR reference is built to enable interaction with other nodes.

with Ada.Text_IO;

with CORBA.Impl;

with CORBA.Object;

with CORBA.ORB;

with PortableServer.POA;

with PortableServer.POAManager;

with Echo.Impl;

-- Setup server node: use no tasking default configuration

with PolyORB.Setup.No_Tasking_Server;

pragma Elaborate_All (PolyORB.Setup.No_Tasking_Server);

pragma Warnings (Off, PolyORB.Setup.No_Tasking_Server);

procedure Server is
begin

CORBA.ORB.Initialize ("ORB");

declare

Root_POA : PortableServer.POA.Ref;

Ref : CORBA.Object.Ref;

Obj : constant CORBA.Impl.Object_Ptr := new Echo.Impl.Object;

22 PolyORB User’s Guide

begin
-- Retrieve Root POA

Root_POA := PortableServer.POA.To_Ref

(CORBA.ORB.Resolve_Initial_References

(CORBA.ORB.To_CORBA_String ("RootPOA")));

PortableServer.POAManager.Activate

(PortableServer.POA.Get_The_POAManager (Root_POA));

-- Set up new object

Ref := PortableServer.POA.Servant_To_Reference

(Root_POA, PortableServer.Servant (Obj));

-- Output IOR

Ada.Text_IO.Put_Line

("’"

& CORBA.To_Standard_String (CORBA.Object.Object_To_String (Ref))

& "’");

-- Launch the server

CORBA.ORB.Run;

end;
end Server;

5.5.1.4 Compilation and execution

To compile this demo,
1. Process the IDL file with idlac

$ idlac echo.idl

2. Compile the client node
$ gnatmake client.adb ‘polyorb-config‘

3. Compile the server node
$ gnatmake server.adb ‘polyorb-config‘

Note the use of backticks (‘). This means that polyorb-config is first executed, and then
the command line is replaced with the output of the script, setting up library and include
paths and library names.

To run this demo:
• run ‘server’, the server outputs its IOR, an hexadecimal string with the <IOR:> prefix.

$./server

Loading configuration from polyorb.conf

No polyorb.conf configuration file.

’IOR:01534f410d00000049444c3[..]’

• run ‘client’, passing the complete IOR on the command line
$./client ’IOR:01534f410d00000049444c3[..]’

Echoing string: Hello Ada !

I said : Hello Ada !

The object answered : Hello Ada !

Chapter 5: CORBA 23

5.5.2 Other examples

PolyORB proposes other examples to test other CORBA features. These examples are
located in ‘example/corba’ directory in PolyORB distribution.
• ‘all_functions’ tests CORBA parameters passing mode (in, out, ..);
• ‘all_types’ tests CORBA types;
• ‘echo’ is a simple CORBA demo;
• ‘random’ is a random number generator;
• ‘send’ tests MIOP specific API.

5.6 Configuring a CORBA application

To configure a CORBA application, you need to separately configure PolyORB and the
GIOP protocol (or any other protocol personality you wish to use).

5.6.1 Configuring PolyORB

Please, refer to Chapter 4 [Building an application with PolyORB], page 11 for more infor-
mation on PolyORB’s configuration.

5.6.2 Configuring GIOP protocol stack for PolyORB

The GIOP protocol is separated from the CORBA application personality. See Section 6.3
[Configuring the GIOP personality], page 29 for more information on GIOP’s configuration.

5.7 PolyORB’s specific APIs

PolyORB defines packages to help in the development of CORBA programs.
• Section 5.7.1 [PolyORB.CORBA P.Naming Tools], page 24:

This package defines helper functions to ease interaction with CORBA COS Naming.
• Section 5.7.2 [PolyORB.CORBA P.Server Tools], page 26:

This package defines helper functions to ease set up of a simple CORBA Server.

24 PolyORB User’s Guide

5.7.1 PolyORB.CORBA_P.Naming_Tools

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . N A M I N G _ T O O L S --

-- --

-- S p e c --

-- --

-- Copyright (C) 2001-2003 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

-- --

--

-- This package allows an object to be chosen either by its IOR or by

-- its name in the naming service.

-- $Id: //droopi/main/cos/naming/polyorb-corba_p-naming_tools.ads#5 $

with Ada.Finalization;

with CORBA.Object;

with CosNaming.NamingContext;

package PolyORB.CORBA_P.Naming_Tools is

function Locate

(Name : CosNaming.Name)

return CORBA.Object.Ref;

function Locate

(Context : CosNaming.NamingContext.Ref;

Name : CosNaming.Name)

return CORBA.Object.Ref;

-- Locate an object given its name, given as an array of name components.

function Locate

Chapter 5: CORBA 25

(IOR_Or_Name : String;

Sep : Character := ’/’)

return CORBA.Object.Ref;

function Locate

(Context : CosNaming.NamingContext.Ref;

IOR_Or_Name : String;

Sep : Character := ’/’)

return CORBA.Object.Ref;

-- Locate an object by IOR or name. If the string does not start with

-- "IOR:", the name will be parsed before it is looked up, using

-- Parse_Name below.

procedure Register

(Name : in String;

Ref : in CORBA.Object.Ref;

Rebind : in Boolean := False;

Sep : in Character := ’/’);

-- Register an object by its name by binding or rebinding.

-- The name will be parsed by Parse_Name below; any necessary contexts

-- will be created on the name server.

-- If Rebind is True, then a rebind will be performed if the name

-- is already bound.

procedure Unregister (Name : in String);

-- Unregister an object by its name by unbinding it.

type Server_Guard is limited private;
procedure Register

(Guard : in out Server_Guard;

Name : in String;

Ref : in CORBA.Object.Ref;

Rebind : in Boolean := False;

Sep : in Character := ’/’);

-- A Server_Guard object is an object which is able to register a

-- server reference in a naming service (see Register above), and

-- destroy this name using Unregister when the object disappears

-- (the program terminates or the Server_Guard object lifetime has

-- expired).

function Parse_Name

(Name : String;

Sep : Character := ’/’)

return CosNaming.Name;

-- Split a sequence of name component specifications separated

-- with Sep characters into a name component array. Any leading

-- Sep is ignored.

private
-- implementation removed

end PolyORB.CORBA_P.Naming_Tools;

26 PolyORB User’s Guide

5.7.2 PolyORB.CORBA_P.Server_Tools

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . S E R V E R _ T O O L S --

-- --

-- S p e c --

-- --

-- Copyright (C) 2001-2003 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

-- --

--

-- Helper functions for CORBA servers.

-- $Id: //droopi/main/src/corba/polyorb-corba_p-server_tools.ads#9 $

with CORBA.Object;

with PortableServer.POA;

package PolyORB.CORBA_P.Server_Tools is

pragma Elaborate_Body;

type Hook_Type is access procedure;
Initiate_Server_Hook : Hook_Type;

-- Access to a procedure to be called upon start up.

-- See Initiate_Server for more details.

procedure Initiate_Server (Start_New_Task : Boolean := False);

-- Start a new ORB, and initialize the Root POA.

-- If Start_New_Task is True, a new task will be created and

-- control will be returned to the caller. Otherwise, the ORB

-- will be executing in the current context.

-- If the Initiate_Server_Hook variable is not null, the

Chapter 5: CORBA 27

-- designated procedure will be called after initializing the ORB,

-- prior to entering the server loop.

function Get_Root_POA return PortableServer.POA.Ref;

-- Return the Root_POA attached to the current ORB instance.

procedure Initiate_Servant

(S : in PortableServer.Servant;

R : out CORBA.Object.Ref’Class);

-- Initiate a servant: register a servant to the Root POA.

-- If the Root POA has not been initialized, initialize it.

procedure Reference_To_Servant

(R : in CORBA.Object.Ref’Class;

S : out PortableServer.Servant);

-- Convert a CORBA.Object.Ref into a PortableServer.Servant.

procedure Servant_To_Reference

(S : in PortableServer.Servant;

R : out CORBA.Object.Ref’Class);

-- Convert a PortableServer.Servant into CORBA.Object.Ref.

end PolyORB.CORBA_P.Server_Tools;

28 PolyORB User’s Guide

Chapter 6: GIOP 29

6 GIOP

6.1 Installing GIOP protocol personality

Ensure PolyORB has been configured and then compiled with GIOP protocol personality.
See Chapter 4 [Building an application with PolyORB], page 11 for more details on how to
check installed personalities.

To enable the configuration of the GIOP protocol personality, see Chapter 2 [Installa-
tion], page 5.

6.2 GIOP Instances

GIOP is a generic protocol that can be instantiated for multiple transport stacks. PolyORB
proposes three different instances.

6.2.1 IIOP

Internet Inter-ORB Protocol (IIOP) is the default protocol defined by the CORBA specifi-
cations. It is a TCP/IP, IPv4, based protocol that supports the full semantics of CORBA
requests.

6.2.2 DIOP

Datagram Inter-ORB Protocol (DIOP) is a specialization of GIOP for the UDP/IP protocol
stack. It supports only asynchronous (oneway) requests.

6.2.3 MIOP

Unreliable Multicast Inter-ORB Protocol (MIOP) [OMG02b] is a specialization of GIOP
for IP/multicast protocol stack. It supports only asynchronous (oneway) requests.

6.3 Configuring the GIOP personality

GIOP personality is configured using a configuration file. See Section 4.2.1 [Using a config-
uration file], page 12 for more details.

Here is a summary of available parameters for each instance of GIOP.

6.3.1 IIOP Configuration Parameters

###

IIOP parameters

#

30 PolyORB User’s Guide

[iiop]

###

IIOP Global Settings

Preference level for IIOP

#polyorb.binding_data.iiop.preference=0

IIOP’s default port

#polyorb.protocols.iiop.default_port=2809

Default GIOP/IIOP Version

#polyorb.protocols.iiop.giop.default_version.major=1

#polyorb.protocols.iiop.giop.default_version.minor=2

###

IIOP 1.2 specific parameters

Set to True to enable IIOP 1.2

#polyorb.protocols.iiop.giop.1.2.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.2.locate_then_request=true

Maximum message size before fragmenting request

#polyorb.protocols.iiop.giop.1.2.max_message_size=1000

###

IIOP 1.1 specific parameters

Set to True to enable IIOP 1.1

#polyorb.protocols.iiop.giop.1.1.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.1.locate_then_request=true

Maximum message size before fragmenting request

#polyorb.protocols.iiop.giop.1.1.max_message_size=1000

###

IIOP 1.0 specific parameters

Set to True to enable IIOP 1.0

#polyorb.protocols.iiop.giop.1.0.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.0.locate_then_request=true

6.3.2 DIOP Configuration Parameters

###

DIOP Global Settings

Preference level for DIOP

#polyorb.binding_data.diop.preference=0

DIOP’s default port

#polyorb.protocols.diop.default_port=12345

Chapter 6: GIOP 31

Default GIOP/DIOP Version

#polyorb.protocols.diop.giop.default_version.major=1

#polyorb.protocols.diop.giop.default_version.minor=2

###

DIOP 1.2 specific parameters

Set to True to enable DIOP 1.2

#polyorb.protocols.diop.giop.1.2.enable=true

Maximum message size

#polyorb.protocols.diop.giop.1.2.max_message_size=1000

###

DIOP 1.1 specific parameters

Set to True to enable DIOP 1.1

#polyorb.protocols.diop.giop.1.1.enable=true

Maximum message size

#polyorb.protocols.diop.giop.1.1.max_message_size=1000

###

DIOP 1.0 specific parameters

Set to True to enable DIOP 1.0

#polyorb.protocols.diop.giop.1.0.enable=true

6.3.3 MIOP Configuration Parameters

###

MIOP parameters

#

[miop]

###

MIOP Global Settings

Preference level for MIOP

#polyorb.binding_data.uipmc.preference=0

Maximum message size

#polyorb.miop.max_message_size=6000

Time To Leave parameter

#polyorb.miop.ttl=15

Multicast address to use

#polyorb.miop.multicast_addr=239.239.239.18

Multicast port to use

#polyorb.miop.multicast_port=5678

Set to True to enable MIOP

#polyorb.protocols.miop.giop.1.2.enable=false

32 PolyORB User’s Guide

Maximum message size

#polyorb.protocols.miop.giop.1.2.max_message_size=1000

Chapter 7: SOAP 33

7 SOAP

7.1 Installing SOAP protocol personality

Ensure PolyORB has been configured and then compiled with SOAP protocol personality.
See Chapter 4 [Building an application with PolyORB], page 11 for more details on how to
check installed personalities.

To enable the configuration of the SOAP application personality, see Chapter 2 [Instal-
lation], page 5.

7.2 Configuring the SOAP personality

SOAP personality is configured using a configuration file. See Section 4.2.1 [Using a con-
figuration file], page 12 for more details.

Here is a summary of available parameters for each instance of SOAP.
###

SOAP parameters

#

[soap]

###

SOAP Global Settings

Preference level for SOAP

#polyorb.binding_data.soap.preference=0

SOAP’s default port

#polyorb.protocols.soap.default_port=8080

34 PolyORB User’s Guide

Chapter 8: Tools 35

8 Tools

8.1 po_catref

po_catref is a utility for viewing components of a stringified reference (CORBA IOR,
corbaloc or URI).

Usage:

po_catref <stringified reference>

8.2 po_names

po_names is a stand-alone name server. It has an interface similar to CORBA COS Naming,
without dragging any dependences on CORBA mechanisms. This name server is to be used
when the CORBA application personality is not required, e.g. with the DSA or MOMA
application personalities.

36 PolyORB User’s Guide

Appendix A: References 37

Appendix A References

1. [DB98] B. Dobbing and A. Burns. The Ravenscar tasking profile for high integrity
real-time programs. In Proceedings of SigAda’98, Washington, DC, USA, November
1998.

2. [ISO95] ISO. Information Technology – Programming Languages – Ada. ISO, February
1995. ISO/IEC/ANSI 8652:1995.

3. [Obr03] P. Obry. Ada Web Server (AWS) 1.3, 2003.
4. [OMG01] OMG. Ada Language Mapping Specification, v1.2. OMG, October 2001.

OMG Technical Document formal/2001-10-42.
5. [OMG02a] OMG. The Common Object Request Broker: Architecture and Specifica-

tion, revision 3.0.2. OMG, December 2002. OMG Technical Document formal/2002-
12-02.

6. [OMG02b] OMG. unreliable Multicast InterORB Protocol specification. OMG, 2002.
OMG Technical Document ptc/03-01-11.

7. [SUN99] SUN. Java Message Service, 1999.
8. [W3C00] W3C. Extensible Markup Language (XML) 1.0, October 2000. W3C recom-

mandation.
9. [W3C03] W3C. Simple Object Access Protocol (SOAP) 1.2: primer, june 2003. W3C

recommandation.

38 PolyORB User’s Guide

Appendix B: GNU Free Documentation License 39

Appendix B GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

40 PolyORB User’s Guide

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modification.
Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you

Appendix B: GNU Free Documentation License 41

as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

42 PolyORB User’s Guide

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties – for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

Appendix B: GNU Free Documentation License 43

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sections
entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all
sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released

under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of

44 PolyORB User’s Guide

some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 45

Index

A
Ada Web Server (AWS) . 9
Application personalities . 9
AWS . 9

C
Configuration, CORBA . 23
Configuration, GIOP . 29
Configuration, PolyORB . 11
Conventions . 1
CORBA . 9, 17
CORBA COS Naming . 18

D
Debug information . 14
DIOP . 10, 29
Distributed System Annex (DSA) 9
DSA . 9

E
Exceptions . 14

F
Free Documentation License, GNU 39

G
GIOP . 10, 29
GNU Free Documentation License 39

I
idlac . 17
IIOP . 10, 29

L
License, GNU Free Documentation 39

M
Message Oriented Middleware for Ada (MOMA)

. 9
MIOP . 10, 29
MOMA . 9

P
Personalities . 9
po_catref . 35
po_cos_naming . 18
po_names . 35
PolyORB . 3
polyorb-config . 14
‘polyorb.conf’ . 12
PolyORB.CORBA_P.Naming_Tools 24
PolyORB.CORBA_P.Server_Tools 26
POLYORB_CONF . 12
Protocol personality . 10
Protocol personality, activation 13

R
Ravenscar profile . 11

S
SOAP . 10, 33

T
Typographical conventions . 1

46 PolyORB User’s Guide

	About This Guide
	What This Guide Contains
	Conventions

	Introduction to PolyORB
	Distributed applications and middleware
	PolyORB a generic middleware with an instance per distribution model

	Installation
	Supported Platforms
	Build requirements
	Build instructions
	Building the documentation and PolyORB's examples
	Build Options
	Compiler, Tools and Run-Time libraries Options

	Platform notes

	Overview of PolyORB personalities
	Application personalities
	CORBA
	Distributed System Annex of Ada (DSA)
	Message Oriented Middleware for Ada (MOMA)
	Ada Web Server (AWS)

	Protocol personalities
	GIOP
	SOAP

	Building an application with PolyORB
	Compile-time configuration
	Tasking run-times
	Middleware tasking policies
	Object Adapter
	Linking protocol personalities to executable
	Sample files

	Run-time configuration
	Using a configuration file

	Setting up protocol personalities
	Activating/Deactivating protocol personalities
	Configuring protocol personality preferences

	Activating debug information
	Tracing exceptions
	polyorb-config

	CORBA
	What you should know before Reading this section
	Installing CORBA application personality
	Usage of idlac
	Resolving names in a CORBA application
	po_cos_naming
	Using the COS Naming

	Building a CORBA application with PolyORB
	echo example
	IDL definition of an echo object
	Implementation code for the echo object
	Test code for client and server nodes
	Compilation and execution

	Other examples

	Configuring a CORBA application
	Configuring PolyORB
	Configuring GIOP protocol stack for PolyORB

	PolyORB's specific APIs
	PolyORB.CORBA_P.Naming_Tools
	PolyORB.CORBA_P.Server_Tools

	GIOP
	Installing GIOP protocol personality
	GIOP Instances
	IIOP
	DIOP
	MIOP

	Configuring the GIOP personality
	IIOP Configuration Parameters
	DIOP Configuration Parameters
	MIOP Configuration Parameters

	SOAP
	Installing SOAP protocol personality
	Configuring the SOAP personality

	Tools
	po_catref
	po_names

	References
	GNU Free Documentation License
	Index

