Contents   Index   Search   Related Documents   Previous   Next


3.10.1 Incomplete Type Declarations

1
   There are no particular limitations on the designated type of an access type. In particular, the type of a component of the designated type can be another access type, or even the same access type. This permits mutually dependent and recursive access types. An incomplete_type_declaration can be used to introduce a type to be used as a designated type, while deferring its full definition to a subsequent full_type_declaration.

Syntax

2/2
incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];

Static Semantics

2.1/2
       An incomplete_type_declaration declares an incomplete view of a type and its first subtype; the first subtype is unconstrained if a discriminant_part appears. If the incomplete_type_declaration includes the reserved word tagged, it declares a tagged incomplete view. An incomplete view of a type is a limited view of the type (see 7.5).
2.2/2
       Given an access type A whose designated type T is an incomplete view, a dereference of a value of type A also has this incomplete view except when:
2.3/2
2.4/2
2.5/2
       In these cases, the dereference has the full view of T.
2.6/2
       Similarly, if a subtype_mark denotes a subtype_declaration defining a subtype of an incomplete view T, the subtype_mark denotes an incomplete view except under the same two circumstances given above, in which case it denotes the full view of T.

Legality Rules

3
   An incomplete_type_declaration requires a completion, which shall be a full_type_declaration. If the incomplete_type_declaration occurs immediately within either the visible part of a package_specification or a declarative_part, then the full_type_declaration shall occur later and immediately within this visible part or declarative_part. If the incomplete_type_declaration occurs immediately within the private part of a given package_specification, then the full_type_declaration shall occur later and immediately within either the private part itself, or the declarative_part of the corresponding package_body.
4/2
     If an incomplete_type_declaration includes the reserved word tagged, then a full_type_declaration that completes it shall declare a tagged type. If an incomplete_type_declaration has a known_discriminant_part, then a full_type_declaration that completes it shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1). If an incomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part), then a corresponding full_type_declaration is nevertheless allowed to have discriminants, either explicitly, or inherited via derivation.
5/2
     A name that denotes an incomplete view of a type may be used as follows:
6
7/2
8/2
8.1/2
       If such a name denotes a tagged incomplete view, it may also be used:
8.2/2
9/2
9.1/2
       If such a name occurs within the list of declarative_items containing the completion of the incomplete view, it may also be used:
9.2/2
9.3/2
       If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete view, and the declaration occurs immediately within the private part of a package, then the completion of the incomplete view shall also occur immediately within the private part; it shall not be deferred to the package body.
9.4/2
       No other uses of a name that denotes an incomplete view of a type are allowed.
10/2
      A prefix shall not be of an incomplete view.

Static Semantics

11/2
      This paragraph was deleted.

Dynamic Semantics

12
    The elaboration of an incomplete_type_declaration has no effect.
NOTES
13
84  Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body freezes all types declared prior to it in the same declarative_part (see 13.14).

Examples

14
    Example of a recursive type:
15
type Cell;  --  incomplete type declaration
type Link is access Cell;
16
type Cell is
   record
      Value  : Integer;
      Succ   : Link;
      Pred   : Link;
   end record;
17
Head   : Link  := new Cell'(0, nullnull);
Next   : Link  := Head.Succ;
18
    Examples of mutually dependent access types:
19/2
type Person(<>);    -- incomplete type declaration
type Car is tagged; -- incomplete type declaration
20/2
type Person_Name is access Person;
type Car_Name    is access all Car'Class;
21/2
type Car is tagged
   record
      Number  : Integer;
      Owner   : Person_Name;
   end record;
22
type Person(Sex : Gender) is
   record
      Name     : String(1 .. 20);
      Birth    : Date;
      Age      : Integer range 0 .. 130;
      Vehicle  : Car_Name;
      case Sex is
         when M => Wife           : Person_Name(Sex => F);
         when F => Husband        : Person_Name(Sex => M);
      end case;
   end record;
23
My_Car, Your_Car, Next_Car : Car_Name := new Car;  -- see 4.8
George : Person_Name := new Person(M);
   ...
George.Vehicle := Your_Car;

Contents   Index   Search   Related Documents   Previous   Next   Legal