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The Problem

e Old picture of high-performance
computing:
— Turn-key big-iron platforms
— Short-running codes

e Modern high-performance computlng

— Roll-your-own platforms
e Large clusters from commodity parts

e Grid Computing
— Long-running codes |
e Program runtimes are exceeding MTBF
— ASCI, Blue Gene, lllinois Rocket Center
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Software view of hardware failures

e Two classes of faults

— Fall-stop: a failed processor ceases all
operation and does not further corrupt
system state

— Byzantine: arbitrary failures

e Our focus:
— Fall-Stop Faults
— (Semi-)automatic solution
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Solution Space Detall

e Checkpointing [our Choice]
— Save application state periodically

— When a process falls, all processes go back
to last consistent saved state.

 Message Logging
— Processes save outgoing messages

— If a process goes down it restarts and
neighbors resend it old messages

— Checkpointing used to trim message log
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Checkpointing: Two problems

e Saving the state of each process
e Coordination of checkpointing
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Saving process state

e System-level
— save all bits of machine

e Application-level [Our Choice]

— Programmer chooses certain points Iin
program to save minimal state

— Writes save/restore code

e Experience: system-level checkpointing
IS too Inefficient for large-scale high-
performance computing

— Sandia, BlueGene
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Coordinating checkpoints

e Uncoordinated

— Dependency-tracking, time-coordinated, ...

— Suffer from exponential rollback

e Coordinated [Our Choice]

— Blocking
e Global snapshot at a Barrier

— Non-blocking
e Chandy-Lamport
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Blocking Co-ordinated Checkpointing

A\ ~ |.
AL/ .

Barrier Barrier Barrier

e Many programs are bulk-synchronous programs (BSP
model: Valiant).

e At barrier, all processes take their checkpoints.
— assumption: no messages are in-flight across the barrier

e Parallel program reduces to sequential state saving
problem....

e but many parallel programs do not have global barriers..
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Non-blocking coordinated checkpointing

e Processes must be coordinated, but ...

Do we really need to block ...?

e \What goes wrong if saving state by
processes Is not co-ordinated?

K. Mani Chandy Leslie Lamport




Difficulties in recovery: (1)

ml
Q \ >

e Late message: ml
— Q sent it before taking checkpoint
— P receives it after taking checkpoint

e Called in-flight message In literature
e On recovery, how does P re-obtain message?
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Difficulties in recovery: (1)

£ 4y
ey

Q \ >
e Early message: m2
— P sent it after taking checkpoint
— Q receives it before taking checkpoint
e Two problems:
— How do we prevent m2 from being re-sent?

— How do we ensure non-deterministic events in P relevant to
m2 are re-played identically on recovery?

e Early messages are called inconsistent messages in
literature.
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Approach in systems community

)
N

e Ensure we never have to worry about inconsistent
messages during recovery.

e Consistent cut:
— Set of saved states, one per process
— No inconsistent message

e Saved states in co-ordinated checkpointing must
form a consistent cut.
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Chandy-Lamport protocol

e Processes
— one process initiates taking of global snapshot

e Channels: c1
— directed @< ’
— FIFO c2
— reliable o4 c3
e Process graph:
— Fixed topology G

— Strongly connected component
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Algorithm explanation

1. Saving process states
— How do we avoid inconsistent messages?

2. Saving In-flight messages
3. Termination
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Step 1: saving process states

e |nitiator:
— Save Its local state
— Send marker tokens on all outgoing edges

e All other processes:
— On receiving the first marker on any
Incoming edges,
e Save state, and propagate markers on all
outgoing edges
e Resume execution.

— Further markers will be eaten up.
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#Example

. cl
Initiator @4 >
c2

c4 c3

/ x—» Mmarker
r_ | B checkpoint

2-10-2003 17
Next: Proof



Theorem: Saved states form consistent cut
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e Proof(cont’)

\;@ .

(1) x1is the 1st marker
for process g

(2) x1 is not the 1st marker
for process g
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Step 2:recording in-flight messages

In-flight messages

g

>
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#Example

(1) p is receiving messages (2) p has just saved its state
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#Example(cont’)

p’s chkpnt triggered by a marker from g
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Algorithm (revised)

e [nitiator: when it is time to checkpoint
e Save its local state
« Send marker tokens on all outgoing edges

 Resume execution, but also record incoming messages on
each in-channel c until marker arrives on channel c

e Once markers are received on all in-channels, save in-flight
messages on disk

« Every other process: when it sees first marker on any in-channel
e Save state
« Send marker tokens on all outgoing edges

 Resume execution, but also record incoming messages on
each in-channel c until marker arrives on channel c

e Once markers are received on all in-channels, save in-flight
messages on disk
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Step 3: Termination of algorithm

e Did every process save its state and
Its in-flight messages?
— outside scope of C-L paper

Initiator

oG
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Comments on C-L protocol

e Relied critically on some assumptions:
— Fixed communication topology
— FIFO communication

— Point-to-point communication: no group
communication primitives like bcast

— Process can take checkpoint at any time during
execution
e get marker - save state
 None of these assumptions are valid for
application-level checkpointing of MPI
programs
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Our approach:System Architecture

i Application
Original Pr epr ocessor PP N
Application State-saving
Failure

A

detector

Reliable communication layer
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Automated Sequential Application-
Level Checkpointing

e At special points in application the
programmer (or automated tool) places
calls to a take checkpoint() function.

e Checkpoints may be taken at such
Spots.

e A preprocessor transforms program into
a version that saves its own state during
calls to take checkpoint().
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Saving Application State

e Must save:

— Heap - we provide special malloc that tracks the
memory it allocates

— Globals — preprocessor knows the globals; inserts
statements to explicitly save them

— Call Stack, Locals and Program Counter -

maintain a separate stack which records all
functions that got called and the local vars inside
them.

e Similar to work done with PORCH (MIT)
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Reducing saved state: Dan Marques

e Statically determine spots in the code
with the least amount of state

e Determine live data at the time of a
checkpoint

e Incremental state-saving

e Recomputation vs saving state
— eX: Protein folding, A.-B =C
e Prior work: CATCH (lllinois).
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System Architecture
Distributed Checkpointing

i Application
Original Pr epr ocessor pp'+ !
Application State-saving
Failure

A

detector

Reliable communication layer
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Distributed Checkpointing

Non-FIFO MIMD 4
MIMD(eg. Task parallelism) _
Increasing
Iterative Synchronous :
complexity
Bulk Synchronous of protocol

Parametric computing

e Programs of differing communication
complexity require protocols of different
complexity.
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Coordination protocol

e Many protocols in distributed systems
literature

— Chandy-Lamport, Time-coordinated,...

e EXxisting solutions

— not applicable to application-level
checkpointing
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App-level difficulties

e System-level checkpoints can be taken
anywhere

e Application-level checkpoints can only
be taken at certain places.
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App-level difficulties

e | et P take a checkpoint at one of the
avallable spots.
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App-level difficulties

e | et P take a checkpoint at one of the
avallable spots.

e After checkpointing, P sends a message

to Q.
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App-level difficulties

 The next possible checkpoint on Q Is
too late.

e The only possible recovery lines make
this an inconsistent message.

2-10-2003
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Possible Types of Messages

Early Message
PrOCESSP __Zx—yg—'—ﬁ
Past

M essage Future

M essage

Process Q

L ate M essage

e On Recovery:
— Past message will be left alone.
— Early message will be re-received but not resent.
— Late message will be resent but not re-received.
— Future message will be reexecuted.
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Late Messages

Process P _iju——y

Process
Q L ate M essage

e TO recover we must either:

— Record message at sender and resend it on
recovery.

— Record message at receiver and re-read it
from the log on recovery. [Our choice]

2-10-2003
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Early Messages

Early Message

PT OCESS P s e e e

Process Q ——"@\—b

e To recover we must either:
— Reissue the receive, allow application to resend.
— Suppress resend on recovery. [Our choice]

e Must ensure the application generates the
same message on recovery.
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The Protocol



High-level view of our protocol: (I)

I nitiator

Chkpt_Ok
ProcessP =}t A

Recovery Line

Process Q

e The Initiator takes a checkpoint and
sends everyone a Chkpt Ok message.

e After a process receives this message, it
takes a checkpoint at the next available
spot
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High-level view of our protocol: (1)

I nitiator

Chkpt_Ok
Process P =% 1t Logging...  s——

Recovery Line
Process Q ' Qs

e After taking a checkpoint each process
keeps a log.

e This log records message data and non-
deterministic events.
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High-level view of our protocol: (I11)

I nitiator

Chkpt_Ok
Process P =Y's ; t Logging...  em———

Recovery Line

Process Q @ »:Z’

e When a process Is ready to stop logging, it
sends the Initiator a Ready-to_stop logging
message.

« When the Initiator receives these messages
from all processors, it knows all processes
have crossed the recovery line.

2-10-2003 43



High-level view of our protocol: (1V)

I nitiator

Chkpt_Ok
ProcessP =%

;= Logging... e ——
Recovery Line
Process Q ' Qs

 When initiator gets Ready-to_stop logging
message fro mall processes, it sends
Stop logging messages to all processes.

 \When process receives message, it stops
logging and saves log on disk.
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The Global View

e O s @ e @ e O e e
Epoch O Epoch 1 Epoch 2 Epoch n
ProCESS P e {. s . ] s, | el

Proce$Q _K}_K:):D HX—Z}ﬁ

e A program’s execution is divided into a
series of disjoint epochs

e Epochs are separated by recovery lines

e A failure in Epoch n means all processes
roll back to the prior recovery line
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Mechanism: Control Information

M essage #51
Process P —:Q’_—>

Epoch n+1

Pr 0CESS Q= e

e Attach to each outgoing message
— A unigue message ID
— The number of the current Epoch
— Bit that says whether we’re currently logging

e In practice: 2 bits are sufficient

e Use this to determine whether message is
late/early etc.
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Mechanism: The Log

ProcessP ‘"G

L ogging...
Process Q —’@X—V

 Keep a log after taking a checkpoint
e During Logging phase
— Record late messages at receiver

— Log all non-deterministic events
ex: rand(), MPI_Test(), MPI_Recv(ANY_SOURCE)
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Handling Late Messages

ProcessP = -

L ogging...

e We record its data in the log

e Replay this data for the receiver on
recovery

2-10-2003
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Handling Early Messages

M,
ProcessP iGN

L ogging...
Process Q _—’@X—V

e Early messages sent before logging stops
— On recovery they’re recreated identically

 The receiver records that this message
must be suppressed and informs the
sender on recovery.
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Log-End Line

PrOCGSSP % —

L ogging...

Process Q  =————— . e

e Terminate log to preserve these semantics:
— No message may cross Log-End line backwards

— No late message may cross Log-End line

e Solution:
— Send Ready_to stop logging message after receiving
all late messages

— Process stops logging when it receives Stop log
message from initiator or when it receives a message

=12 from a process that has itself stopped logging >0



Additional Issues

e How do we

— Deal with non-FIFO channels? (MPI allows
non-FIFO communication)

— Write the global checkpoint out to stable
storage?

— Implement non-blocking communication?
— Save internal state of MPI library?
— Implement collective communication?

2-10-2003
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Collective Communication

e Single communication involving multiple
Processes
— Single-Sender: one sender, multiple receivers
ex: Bcast, Scatter

— Single-Receiver: multiple senders, one receiver
ex:. Gather, Reduce

— AlltoAll: every process in group sends data to
every other process
ex: AlltoAll, AllGather, AllReduce, Scan

— Barrier: everybody walits for everybody else to
reach barrier before going on.

(Only collective call with explicit synchronization guarantee)

2-10-2003
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Possible Solutions

 \We have a protocol for point-to-point
messages. Why not reimplement all
collectives as point-to-point messages?

— Lots of work and less efficient than native
Implementation.

e Checkpoint collectives directly without
breaking them up.

— May be complex but requires no
reimplementation of MPI internals.

2-10-2003
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Single-Receiver Collectives
MPI_Gather(), MPIl_Reduce()

e |In a Single-Receiver Collective the
receiver may be in one of three regions

— Before checkpoint
— Inside Log
— After Log

2-10-2003
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Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ?:3/ —>

(Receiver)

Process Q Gl e ———

e A B S il ————

e |f the Receive Is before the Recovery
Line sends could only have occurred:

— Behind the Recovery Line
— Inside the Log
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Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ié/ —>

(Receiver)

Process Q —— ——

PFOCGSSR __;:\,2— —

 The send from behind the recovery line
will not be reexecuted.

e \We should leave it alone if possible.
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Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ié/ —>

(Receiver)

Process Q Gl e ———

ProcessR =—m— e bt

 The send from inside the log will be
reexecuted.

e We already got its data and it will be
regenerated with the same data.

 Thus, we should suppress it.
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Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ié/ —>

(Receiver)

Process Q —,— ——

e A B S il ————

 Therefore, since neither Q or R will
resend, we don't need to re-receive!

2-10-2003



Single-Receiver Collectives
Receive is inside the log

Process Q = f—

= o]  —

e |f the Recelve Is inside the log sends
could only have occurred:

— Behind the Recovery Line
— Inside the Log

e We will log/suppress these collectives.

2-10-2003
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Single-Receiver Collectives
Recelve is after the log

e |f the Recelve Is after the log sends could
only have occurred:

— Inside the Log
— After the Log

e \We will reexecute such collectives.
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Summary of collectives

e Single-Receiver Collectives introduced.

 There are solutions for every type of
collectives.

e Each solution works off of the same
protocol platform but with different key
choices.

e Result: a single protocol for all of MPI.
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Implementation

 Implemented the protocol on the Velocity
cluster in conjunction with a single-processor
checkpointer.

 \We executed 3 scientific codes with and
without checkpointing.
— Dense Conjugate Gradient
— Laplace Solver
— Neuron Simulator

e 16 processors on the CMI cluster

e Measured the overheads imposed by the
different parts of our checkpointer.
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Performance of Implementation
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Contributions to Date

e Developed and implemented a novel
protocol for distributed application-level
checkpointing.

e Protocol can transparently handle all
features of MPI.

— Non-FIFO, non-blocking, collective,
communicators, etc.

e Can be used as sand-box for distributed
application-level checkpointing
research.
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Future Work

e Extension of application-level
checkpointing to Shared Memory

e Compiler-enabled runtime optimization
of checkpoint placement

(Extending the work of CATCH)

e Byzantine Fault Tolerance

2-10-2003
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Shared Memory

e Symmetric Multiprocessors — nodes of
several (2-64) processors connected by
a fast network.

e Different nodes are connected by a
slower network.

e Typical communication style:
— Hardware shared memory inside the node
— MPI-type message passing between nodes
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OpenMP

e An Industry standard shared memory
API.

e Goal: create a thin layer on top of
OpenMP to do distributed checkpointing.

e Must work with any OpenMP
Implementation.
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Issues with checkpointing OpenMP

o Parallel for

— different threads execute different
Iterations in parallel

— Iteration assignment is non-deterministic

e Flush

— shared data that has been locally updated
by different threads is redistributed globally

e |ocks
— carry only synchronization, no data
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OpenMP — parallel for

e Different OpenMP threads execute
different iterations in parallel.

e |teration allocation Is non-deterministic.

2-10-2003

69



OpenMP — parallel for

=) =1 iI=5
T |
1

A
e ————
KoL

e,

Recovery Line

I = ' =2 =6
T, =

e While executing a parallel for we keep
track of which iterations we've
completed.

Above: [0,1,2,5] are completed
[7] is In progress
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OpenMP — parallel for

T i=0 i=1 = oy
1 Skip v’ SKi v SKki v ’f‘w—>
p 1P 1P
T 4%% -+
Skip v’

Recovery Line
T -

e |f any thread in a recovery line
checkpoints inside a parallel for, we
must reexecute the parallel for.

e |terations lying behind the recovery line
are skipped by the threads that get
them.
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OpenMP — parallel for

T 1I=0 =1 I=5 oA
1, — — f———>
Skip v’ Skip Skip
= i=7 . '
TZSk' v
Ip

Recovery Line

I iI=3 ' =4 I=6
T, e o L —

e Question: How we ensure that Thread 2
gets lteration 7 on recovery?
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OpenMP — Flush

Tl _Read(x) Write(x)— —_— D ——————

Read(x)
S,  —
Flush(x) Recovery Line

e Flush(x) updates all threads to the
current value of X. (last written by T,)

e \We can tread Flushes as data flows and
use our MPI protocol.

e The above Is a lot like a Late message.
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OpenMP — Locks

L ocked region :
) —————)

L ocked region

- )

— — >
Recovery Line

e | ocks are data flows that carry no data.
e This lock flow Is trivial to enforce.

e Backwards lock flows are more complex.

e \We cannot guarantee true
synchronization wrt outside world.
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