Application-Level
Fault Tolerance
for MPI Programs

Keshav Pingali

The Problem

e Old picture of high-performance
computing:
— Turn-key big-iron platforms
— Short-running codes

e Modern high-performance computlng

— Roll-your-own platforms
e Large clusters from commodity parts

e Grid Computing
— Long-running codes |
e Program runtimes are exceeding MTBF
— ASCI, Blue Gene, lllinois Rocket Center

2-10-2003 2

Software view of hardware failures

e Two classes of faults

— Fall-stop: a failed processor ceases all
operation and does not further corrupt
system state

— Byzantine: arbitrary failures

e Our focus:
— Fall-Stop Faults
— (Semi-)automatic solution

2-10-2003

Solution Space

Application-Level

Coordinated

— Blocking

N

Checkpointing

Non-Blocking

Quasi-Synchronous

System-Level \)
Uncoordinated

Optimistic

Message Logging

2-10-2003

Pessimistic

Causd

Solution Space Detall

e Checkpointing [our Choice]
— Save application state periodically

— When a process falls, all processes go back
to last consistent saved state.

 Message Logging
— Processes save outgoing messages

— If a process goes down it restarts and
neighbors resend it old messages

— Checkpointing used to trim message log

2-10-2003

Checkpointing: Two problems

e Saving the state of each process
e Coordination of checkpointing

2-10-2003

Saving process state

e System-level
— save all bits of machine

e Application-level [Our Choice]

— Programmer chooses certain points Iin
program to save minimal state

— Writes save/restore code

e Experience: system-level checkpointing
IS too Inefficient for large-scale high-
performance computing

— Sandia, BlueGene

2-10-2003

Coordinating checkpoints

e Uncoordinated

— Dependency-tracking, time-coordinated, ...

— Suffer from exponential rollback

e Coordinated [Our Choice]

— Blocking
e Global snapshot at a Barrier

— Non-blocking
e Chandy-Lamport

2-10-2003

Blocking Co-ordinated Checkpointing

A\ ~ |.
AL/ .

Barrier Barrier Barrier

e Many programs are bulk-synchronous programs (BSP
model: Valiant).

e At barrier, all processes take their checkpoints.
— assumption: no messages are in-flight across the barrier

e Parallel program reduces to sequential state saving
problem....

e but many parallel programs do not have global barriers..
2-10-2003

Non-blocking coordinated checkpointing

e Processes must be coordinated, but ...

Do we really need to block ...?

e \What goes wrong if saving state by
processes Is not co-ordinated?

K. Mani Chandy Leslie Lamport

Difficulties in recovery: (1)

ml
Q \ >

e Late message: ml
— Q sent it before taking checkpoint
— P receives it after taking checkpoint

e Called in-flight message In literature
e On recovery, how does P re-obtain message?

2-10-2003

11

Difficulties in recovery: (1)

£ 4y
ey

Q \ >
e Early message: m2
— P sent it after taking checkpoint
— Q receives it before taking checkpoint
e Two problems:
— How do we prevent m2 from being re-sent?

— How do we ensure non-deterministic events in P relevant to
m2 are re-played identically on recovery?

e Early messages are called inconsistent messages in
literature.

2-10-2003

12

Approach in systems community

)
N

e Ensure we never have to worry about inconsistent
messages during recovery.

e Consistent cut:
— Set of saved states, one per process
— No inconsistent message

e Saved states in co-ordinated checkpointing must
form a consistent cut.

2-10-2003

13

Chandy-Lamport protocol

e Processes
— one process initiates taking of global snapshot

e Channels: c1
— directed @< ’
— FIFO c2
— reliable o4 c3
e Process graph:
— Fixed topology G

— Strongly connected component

2-10-2003

14

Algorithm explanation

1. Saving process states
— How do we avoid inconsistent messages?

2. Saving In-flight messages
3. Termination

2-10-2003 15
Next: Model of Distributed System

Step 1: saving process states

e |nitiator:
— Save Its local state
— Send marker tokens on all outgoing edges

e All other processes:
— On receiving the first marker on any
Incoming edges,
e Save state, and propagate markers on all
outgoing edges
e Resume execution.

— Further markers will be eaten up.

2-10-2003 16
Next: Example

#Example

. cl
Initiator @4 >
c2

c4 c3

/ x—» Mmarker
r_ | B checkpoint

2-10-2003 17
Next: Proof

Theorem: Saved states form consistent cut

2-10-2003 18
Next: Proof (cont’)

e Proof(cont’)

\;@ .

(1) x1is the 1st marker
for process g

(2) x1 is not the 1st marker
for process g

2-10-2003

23
PR —

19

Step 2:recording in-flight messages

In-flight messages

g

>

2-10-2003 20
Next: Example

#Example

(1) p is receiving messages (2) p has just saved its state

2-10-2003 21
Next: Example (cont’)

#Example(cont’)

p’s chkpnt triggered by a marker from g

2-10-2003 22

Next: Algorithm (revised)

Algorithm (revised)

e [nitiator: when it is time to checkpoint
e Save its local state
« Send marker tokens on all outgoing edges

 Resume execution, but also record incoming messages on
each in-channel c until marker arrives on channel c

e Once markers are received on all in-channels, save in-flight
messages on disk

« Every other process: when it sees first marker on any in-channel
e Save state
« Send marker tokens on all outgoing edges

 Resume execution, but also record incoming messages on
each in-channel c until marker arrives on channel c

e Once markers are received on all in-channels, save in-flight
messages on disk
2-10-2003 23

Step 3: Termination of algorithm

e Did every process save its state and
Its in-flight messages?
— outside scope of C-L paper

Initiator

oG

2-10-2003 24
Next: References

Comments on C-L protocol

e Relied critically on some assumptions:
— Fixed communication topology
— FIFO communication

— Point-to-point communication: no group
communication primitives like bcast

— Process can take checkpoint at any time during
execution
e get marker - save state
 None of these assumptions are valid for
application-level checkpointing of MPI
programs

2-10-2003

25

Our approach:System Architecture

i Application
Original Pr epr ocessor PP N
Application State-saving
Failure

A

detector

Reliable communication layer

2-10-2003

Automated Sequential Application-
Level Checkpointing

e At special points in application the
programmer (or automated tool) places
calls to a take checkpoint() function.

e Checkpoints may be taken at such
Spots.

e A preprocessor transforms program into
a version that saves its own state during
calls to take checkpoint().

2-10-2003 27

Saving Application State

e Must save:

— Heap - we provide special malloc that tracks the
memory it allocates

— Globals — preprocessor knows the globals; inserts
statements to explicitly save them

— Call Stack, Locals and Program Counter -

maintain a separate stack which records all
functions that got called and the local vars inside
them.

e Similar to work done with PORCH (MIT)

2-10-2003 28

Reducing saved state: Dan Marques

e Statically determine spots in the code
with the least amount of state

e Determine live data at the time of a
checkpoint

e Incremental state-saving

e Recomputation vs saving state
— eX: Protein folding, A.-B =C
e Prior work: CATCH (lllinois).

2-10-2003

29

System Architecture
Distributed Checkpointing

i Application
Original Pr epr ocessor pp'+ !
Application State-saving
Failure

A

detector

Reliable communication layer

2-10-2003

Distributed Checkpointing

Non-FIFO MIMD 4
MIMD(eg. Task parallelism) _
Increasing
Iterative Synchronous :
complexity
Bulk Synchronous of protocol

Parametric computing

e Programs of differing communication
complexity require protocols of different
complexity.

2-10-2003 31

Coordination protocol

e Many protocols in distributed systems
literature

— Chandy-Lamport, Time-coordinated,...

e EXxisting solutions

— not applicable to application-level
checkpointing

2-10-2003

32

App-level difficulties

e System-level checkpoints can be taken
anywhere

e Application-level checkpoints can only
be taken at certain places.

2-10-2003

33

App-level difficulties

e | et P take a checkpoint at one of the
avallable spots.

2-10-2003

34

App-level difficulties

e | et P take a checkpoint at one of the
avallable spots.

e After checkpointing, P sends a message

to Q.

2-10-2003

35

App-level difficulties

 The next possible checkpoint on Q Is
too late.

e The only possible recovery lines make
this an inconsistent message.

2-10-2003

36

Possible Types of Messages

Early Message
PrOCESSP __Zx—yg—'—ﬁ
Past

M essage Future

M essage

Process Q

L ate M essage

e On Recovery:
— Past message will be left alone.
— Early message will be re-received but not resent.
— Late message will be resent but not re-received.
— Future message will be reexecuted.

2-10-2003

37

Late Messages

Process P _iju——y

Process
Q L ate M essage

e TO recover we must either:

— Record message at sender and resend it on
recovery.

— Record message at receiver and re-read it
from the log on recovery. [Our choice]

2-10-2003

38

Early Messages

Early Message

PT OCESS P s e e e

Process Q ——"@\—b

e To recover we must either:
— Reissue the receive, allow application to resend.
— Suppress resend on recovery. [Our choice]

e Must ensure the application generates the
same message on recovery.

2-10-2003 39

The Protocol

High-level view of our protocol: (I)

I nitiator

Chkpt_Ok
ProcessP =}t A

Recovery Line

Process Q

e The Initiator takes a checkpoint and
sends everyone a Chkpt Ok message.

e After a process receives this message, it
takes a checkpoint at the next available
spot

2-10-2003 41

High-level view of our protocol: (1)

I nitiator

Chkpt_Ok
Process P =% 1t Logging... s——

Recovery Line
Process Q ' Qs

e After taking a checkpoint each process
keeps a log.

e This log records message data and non-
deterministic events.

2-10-2003 42

High-level view of our protocol: (I11)

I nitiator

Chkpt_Ok
Process P =Y's ; t Logging... em———

Recovery Line

Process Q @ »:Z’

e When a process Is ready to stop logging, it
sends the Initiator a Ready-to_stop logging
message.

« When the Initiator receives these messages
from all processors, it knows all processes
have crossed the recovery line.

2-10-2003 43

High-level view of our protocol: (1V)

I nitiator

Chkpt_Ok
ProcessP =%

;= Logging... e ——
Recovery Line
Process Q ' Qs

 When initiator gets Ready-to_stop logging
message fro mall processes, it sends
Stop logging messages to all processes.

 \When process receives message, it stops
logging and saves log on disk.

2-10-2003 44

The Global View

e O s @ e @ e O e e
Epoch O Epoch 1 Epoch 2 Epoch n
ProCESS P e {. s .] s, | el

Proce$Q _K}_K:):D HX—Z}ﬁ

e A program’s execution is divided into a
series of disjoint epochs

e Epochs are separated by recovery lines

e A failure in Epoch n means all processes
roll back to the prior recovery line

2-10-2003 45

Mechanism: Control Information

M essage #51
Process P —:Q’_—>

Epoch n+1

Pr 0CESS Q= e

e Attach to each outgoing message
— A unigue message ID
— The number of the current Epoch
— Bit that says whether we’re currently logging

e In practice: 2 bits are sufficient

e Use this to determine whether message is
late/early etc.

2-10-2003

46

Mechanism: The Log

ProcessP ‘"G

L ogging...
Process Q —’@X—V

 Keep a log after taking a checkpoint
e During Logging phase
— Record late messages at receiver

— Log all non-deterministic events
ex: rand(), MPI_Test(), MPI_Recv(ANY_SOURCE)

2-10-2003 47

Handling Late Messages

ProcessP = -

L ogging...

e We record its data in the log

e Replay this data for the receiver on
recovery

2-10-2003

48

Handling Early Messages

M,
ProcessP iGN

L ogging...
Process Q _—’@X—V

e Early messages sent before logging stops
— On recovery they’re recreated identically

 The receiver records that this message
must be suppressed and informs the
sender on recovery.

2-10-2003 49

Log-End Line

PrOCGSSP % —

L ogging...

Process Q =————— . e

e Terminate log to preserve these semantics:
— No message may cross Log-End line backwards

— No late message may cross Log-End line

e Solution:
— Send Ready_to stop logging message after receiving
all late messages

— Process stops logging when it receives Stop log
message from initiator or when it receives a message

=12 from a process that has itself stopped logging >0

Additional Issues

e How do we

— Deal with non-FIFO channels? (MPI allows
non-FIFO communication)

— Write the global checkpoint out to stable
storage?

— Implement non-blocking communication?
— Save internal state of MPI library?
— Implement collective communication?

2-10-2003

51

Collective Communication

e Single communication involving multiple
Processes
— Single-Sender: one sender, multiple receivers
ex: Bcast, Scatter

— Single-Receiver: multiple senders, one receiver
ex:. Gather, Reduce

— AlltoAll: every process in group sends data to
every other process
ex: AlltoAll, AllGather, AllReduce, Scan

— Barrier: everybody walits for everybody else to
reach barrier before going on.

(Only collective call with explicit synchronization guarantee)

2-10-2003

52

Possible Solutions

 \We have a protocol for point-to-point
messages. Why not reimplement all
collectives as point-to-point messages?

— Lots of work and less efficient than native
Implementation.

e Checkpoint collectives directly without
breaking them up.

— May be complex but requires no
reimplementation of MPI internals.

2-10-2003

53

Single-Receiver Collectives
MPI_Gather(), MPIl_Reduce()

e |In a Single-Receiver Collective the
receiver may be in one of three regions

— Before checkpoint
— Inside Log
— After Log

2-10-2003

54

Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ?:3/ —>

(Receiver)

Process Q Gl e ———

e A B S il ————

e |f the Receive Is before the Recovery
Line sends could only have occurred:

— Behind the Recovery Line
— Inside the Log

2-10-2003

Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ié/ —>

(Receiver)

Process Q —— ——

PFOCGSSR __;:\,2— —

 The send from behind the recovery line
will not be reexecuted.

e \We should leave it alone if possible.

2-10-2003

Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ié/ —>

(Receiver)

Process Q Gl e ———

ProcessR =—m— e bt

 The send from inside the log will be
reexecuted.

e We already got its data and it will be
regenerated with the same data.

 Thus, we should suppress it.

2-10-2003

Single-Receiver Collectives
Receive is before the checkpoint

Pr ocess P ié/ —>

(Receiver)

Process Q —,— ——

e A B S il ————

 Therefore, since neither Q or R will
resend, we don't need to re-receive!

2-10-2003

Single-Receiver Collectives
Receive is inside the log

Process Q = f—

= o] —

e |f the Recelve Is inside the log sends
could only have occurred:

— Behind the Recovery Line
— Inside the Log

e We will log/suppress these collectives.

2-10-2003

59

Single-Receiver Collectives
Recelve is after the log

e |f the Recelve Is after the log sends could
only have occurred:

— Inside the Log
— After the Log

e \We will reexecute such collectives.

2-10-2003 60

Summary of collectives

e Single-Receiver Collectives introduced.

 There are solutions for every type of
collectives.

e Each solution works off of the same
protocol platform but with different key
choices.

e Result: a single protocol for all of MPI.

2-10-2003 61

Implementation

 Implemented the protocol on the Velocity
cluster in conjunction with a single-processor
checkpointer.

 \We executed 3 scientific codes with and
without checkpointing.
— Dense Conjugate Gradient
— Laplace Solver
— Neuron Simulator

e 16 processors on the CMI cluster

e Measured the overheads imposed by the
different parts of our checkpointer.

2-10-2003

62

Performance of Implementation

3000

2500

2000

1500

1000

500

2500

2000

1500

1000

500

Dense Conjugate Gradient

4096x4096 8192x8192

Problem Size

Neurosys

32x32

64x64

Problem Size

3500

3000

2500

2000

1500

1000

500

0
16834x16834

128x128

Laplace Solver

512x512 1024x1024 2048x2048

Problem Size

@ Original Application
B Managing Ctrl Data. No Checkpoints
O Saving Message logs, etc. No Checkpoints

B Full Checkpoints

Contributions to Date

e Developed and implemented a novel
protocol for distributed application-level
checkpointing.

e Protocol can transparently handle all
features of MPI.

— Non-FIFO, non-blocking, collective,
communicators, etc.

e Can be used as sand-box for distributed
application-level checkpointing
research.

2-10-2003 64

Future Work

e Extension of application-level
checkpointing to Shared Memory

e Compiler-enabled runtime optimization
of checkpoint placement

(Extending the work of CATCH)

e Byzantine Fault Tolerance

2-10-2003

65

Shared Memory

e Symmetric Multiprocessors — nodes of
several (2-64) processors connected by
a fast network.

e Different nodes are connected by a
slower network.

e Typical communication style:
— Hardware shared memory inside the node
— MPI-type message passing between nodes

2-10-2003 66

OpenMP

e An Industry standard shared memory
API.

e Goal: create a thin layer on top of
OpenMP to do distributed checkpointing.

e Must work with any OpenMP
Implementation.

2-10-2003

67

Issues with checkpointing OpenMP

o Parallel for

— different threads execute different
Iterations in parallel

— Iteration assignment is non-deterministic

e Flush

— shared data that has been locally updated
by different threads is redistributed globally

e |ocks
— carry only synchronization, no data

2-10-2003 68

OpenMP — parallel for

e Different OpenMP threads execute
different iterations in parallel.

e |teration allocation Is non-deterministic.

2-10-2003

69

OpenMP — parallel for

=) =1 iI=5
T |
1

A
e ————
KoL

e,

Recovery Line

I = ' =2 =6
T, =

e While executing a parallel for we keep
track of which iterations we've
completed.

Above: [0,1,2,5] are completed
[7] is In progress
2-10-2003

OpenMP — parallel for

T i=0 i=1 = oy
1 Skip v’ SKi v SKki v ’f‘w—>
p 1P 1P
T 4%% -+
Skip v’

Recovery Line
T -

e |f any thread in a recovery line
checkpoints inside a parallel for, we
must reexecute the parallel for.

e |terations lying behind the recovery line
are skipped by the threads that get
them.

2-10-2003

71

OpenMP — parallel for

T 1I=0 =1 I=5 oA
1, — — f———>
Skip v’ Skip Skip
= i=7 . '
TZSk' v
Ip

Recovery Line

I iI=3 ' =4 I=6
T, e o L —

e Question: How we ensure that Thread 2
gets lteration 7 on recovery?

2-10-2003

72

OpenMP — Flush

Tl _Read(x) Write(x)— —_— D ——————

Read(x)
S, —
Flush(x) Recovery Line

e Flush(x) updates all threads to the
current value of X. (last written by T,)

e \We can tread Flushes as data flows and
use our MPI protocol.

e The above Is a lot like a Late message.

2-10-2003

73

OpenMP — Locks

L ocked region :
) —————)

L ocked region

-)

— — >
Recovery Line

e | ocks are data flows that carry no data.
e This lock flow Is trivial to enforce.

e Backwards lock flows are more complex.

e \We cannot guarantee true
synchronization wrt outside world.

2-10-2003

74

