
Application-Level
Fault Tolerance

for MPI Programs

Keshav Pingali

2-10-2003 2

The Problem

• Old picture of high-performance
computing:
– Turn-key big-iron platforms
– Short-running codes

• Modern high-performance computing:
– Roll-your-own platforms

• Large clusters from commodity parts
• Grid Computing

– Long-running codes
• Program runtimes are exceeding MTBF

– ASCI, Blue Gene, Illinois Rocket Center

2-10-2003 3

Software view of hardware failures

• Two classes of faults
– Fail-stop: a failed processor ceases all

operation and does not further corrupt
system state

– Byzantine: arbitrary failures

• Our focus:
– Fail-Stop Faults
– (Semi-)automatic solution

2-10-2003 4

Solution Space

Checkpointing

Uncoordinated

Coordinated
Blocking

Non-Blocking

Message Logging

Optimistic

Causal

Pessimistic

Quasi-Synchronous

Application-Level

System-Level

2-10-2003 5

Solution Space Detail

• Checkpointing [Our Choice]

– Save application state periodically
– When a process fails, all processes go back

to last consistent saved state.

• Message Logging
– Processes save outgoing messages
– If a process goes down it restarts and

neighbors resend it old messages
– Checkpointing used to trim message log

2-10-2003 6

Checkpointing: Two problems

• Saving the state of each process
• Coordination of checkpointing

2-10-2003 7

Saving process state

• System-level
– save all bits of machine

• Application-level [Our Choice]
– Programmer chooses certain points in

program to save minimal state
– Writes save/restore code

• Experience: system-level checkpointing
is too inefficient for large-scale high-
performance computing
– Sandia, BlueGene

2-10-2003 8

Coordinating checkpoints

• Uncoordinated
– Dependency-tracking, time-coordinated, …
– Suffer from exponential rollback

• Coordinated [Our Choice]

– Blocking
• Global snapshot at a Barrier

– Non-blocking
• Chandy-Lamport

2-10-2003 9

Blocking Co-ordinated Checkpointing

• Many programs are bulk-synchronous programs (BSP
model: Valiant).

• At barrier, all processes take their checkpoints.
– assumption: no messages are in-flight across the barrier

• Parallel program reduces to sequential state saving
problem….

• but many parallel programs do not have global barriers..

P

Q

R

Barrier Barrier Barrier

2-10-2003 10

Non-blocking coordinated checkpointing

• Processes must be coordinated, but …
• Do we really need to block …?
• What goes wrong if saving state by

processes is not co-ordinated?

?
!

K. Mani Chandy Leslie Lamport

2-10-2003 11

Difficulties in recovery: (I)

• Late message: m1
– Q sent it before taking checkpoint
– P receives it after taking checkpoint

• Called in-flight message in literature
• On recovery, how does P re-obtain message?

P

Q

x

x
m1

2-10-2003 12

Difficulties in recovery: (II)

• Early message: m2
– P sent it after taking checkpoint
– Q receives it before taking checkpoint

• Two problems:
– How do we prevent m2 from being re-sent?
– How do we ensure non-deterministic events in P relevant to

m2 are re-played identically on recovery?

• Early messages are called inconsistent messages in
literature.

P

Q

x

x
m1

m2

2-10-2003 13

Approach in systems community

• Ensure we never have to worry about inconsistent
messages during recovery.

• Consistent cut:
– Set of saved states, one per process
– No inconsistent message

• Saved states in co-ordinated checkpointing must
form a consistent cut.

P

Q

x

x

x

x

x

x

2-10-2003 14

Chandy-Lamport protocol

• Processes
– one process initiates taking of global snapshot

• Channels:
– directed
– FIFO
– reliable

• Process graph:
– Fixed topology
– Strongly connected component

p q

r

c1

c2

c3c4

2-10-2003 15

Algorithm explanation

1. Saving process states
– How do we avoid inconsistent messages?

2. Saving in-flight messages
3. Termination

Next: Model of Distributed System

2-10-2003 16

Step 1: saving process states

• Initiator:
– Save its local state
– Send marker tokens on all outgoing edges

• All other processes:
– On receiving the first marker on any

incoming edges,
• Save state, and propagate markers on all

outgoing edges
• Resume execution.

– Further markers will be eaten up.

Next: Example

2-10-2003 17

Example

p q

r

c1

c2

c3c4

initiator

p

q

r
marker

checkpoint

x x

x
x x

Next: Proof

2-10-2003 18

Theorem: Saved states form consistent cut

p q
x

x
x

x

x

p

q

Let us assume that a message m exists,
and it makes our cut inconsistent.

m

Next: Proof (cont’)

2-10-2003 19

• Proof(cont’)
p q

x

x
x1

x2

x

p

q
m

x1

p

q
m

x1

x2

x2

(2) x1 is not the 1st marker
for process q

(1) x1 is the 1st marker
for process q

2-10-2003 20

Step 2:recording in-flight messages

p

q

• Sent along the channel before the sender’s chkpnt
• Received along the channel after the receiver’s chkpnt

In-flight messages

Next: Example

2-10-2003 21

Example

p

x

x
x

q
r s

t u

1
2

3

4

5
6

7

8

(1) p is receiving messages

p
x

x
x

q
r s

t u

4

5
6

7

8

(2) p has just saved its state

x

Next: Example (cont’)

2-10-2003 22

Example(cont’)

p

q

r

s

p

x

x
x

q
r s

t u

1
2

3

4

5
6

7

8

p’s chkpnt triggered by a marker from q

x

x x
x

x

x

x

1 2 3 4 5 6 7 8

Next: Algorithm (revised)

2-10-2003 23

Algorithm (revised)

• Initiator: when it is time to checkpoint
• Save its local state
• Send marker tokens on all outgoing edges
• Resume execution, but also record incoming messages on

each in-channel c until marker arrives on channel c
• Once markers are received on all in-channels, save in-flight

messages on disk
• Every other process: when it sees first marker on any in-channel

• Save state
• Send marker tokens on all outgoing edges
• Resume execution, but also record incoming messages on

each in-channel c until marker arrives on channel c
• Once markers are received on all in-channels, save in-flight

messages on disk

2-10-2003 24

Step 3: Termination of algorithm

• Did every process save its state and
its in-flight messages?
– outside scope of C-L paper

p

q

r

initiator

• direct channel to the initiator?
• spanning tree?

Next: References

2-10-2003 25

Comments on C-L protocol

• Relied critically on some assumptions:
– Fixed communication topology
– FIFO communication
– Point-to-point communication: no group

communication primitives like bcast
– Process can take checkpoint at any time during

execution
• get marker à save state

• None of these assumptions are valid for
application-level checkpointing of MPI
programs

2-10-2003 26

Our approach:System Architecture

Application
+

State-saving

Original
Application

Preprocessor

Thin Coordination
Layer

MPI ImplementationMPI Implementation

Reliable communication layer

Failure
detector

2-10-2003 27

Automated Sequential Application-
Level Checkpointing

• At special points in application the
programmer (or automated tool) places
calls to a take_checkpoint() function.

• Checkpoints may be taken at such
spots.

• A preprocessor transforms program into
a version that saves its own state during
calls to take_checkpoint().

2-10-2003 28

Saving Application State

• Must save:
– Heap – we provide special malloc that tracks the

memory it allocates

– Globals – preprocessor knows the globals; inserts
statements to explicitly save them

– Call Stack, Locals and Program Counter -
maintain a separate stack which records all
functions that got called and the local vars inside
them.

• Similar to work done with PORCH (MIT)

2-10-2003 29

Reducing saved state: Dan Marques

• Statically determine spots in the code
with the least amount of state

• Determine live data at the time of a
checkpoint

• Incremental state-saving
• Recomputation vs saving state

– ex: Protein folding, A·B = C

• Prior work: CATCH (Illinois).

2-10-2003 30

System Architecture
Distributed Checkpointing

Application
+

State-saving

Original
Application

Preprocessor

Thin Coordination
Layer

MPI ImplementationMPI Implementation

Reliable communication layer

Failure
detector

2-10-2003 31

Distributed Checkpointing

• Programs of differing communication
complexity require protocols of different
complexity.

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity
of protocol

2-10-2003 32

Coordination protocol

• Many protocols in distributed systems
literature
– Chandy-Lamport, Time-coordinated,…

• Existing solutions
– not applicable to application-level

checkpointing

2-10-2003 33

App-level difficulties

• System-level checkpoints can be taken
anywhere

• Application-level checkpoints can only
be taken at certain places.

Possible Checkpoint Locations

Process P

Process Q

Possible Checkpoint Locations

2-10-2003 34

Process P

Process Q

Possible Checkpoint Locations

App-level difficulties

• Let P take a checkpoint at one of the
available spots.

P’s Checkpoint

2-10-2003 35

Process P

Process Q

Possible Checkpoint Locations

App-level difficulties

• Let P take a checkpoint at one of the
available spots.

• After checkpointing, P sends a message
to Q.

P’s Checkpoint

2-10-2003 36

Process P

Process Q

Possible Checkpoint Locations

App-level difficulties

• The next possible checkpoint on Q is
too late.

• The only possible recovery lines make
this an inconsistent message.

P’s Checkpoint

2-10-2003 37

Possible Types of Messages

• On Recovery:
– Past message will be left alone.
– Early message will be re-received but not resent.
– Late message will be resent but not re-received.
– Future message will be reexecuted.

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q
Late Message

Past
Message Future

Message

Early Message

2-10-2003 38

Late Messages

• To recover we must either:
– Record message at sender and resend it on

recovery.
– Record message at receiver and re-read it

from the log on recovery. [Our choice]

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q
Late Message

2-10-2003 39

Early Messages

• To recover we must either:
– Reissue the receive, allow application to resend.
– Suppress resend on recovery. [Our choice]

• Must ensure the application generates the
same message on recovery.

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q

Early Message

The Protocol

2-10-2003 41

High-level view of our protocol: (I)

• The initiator takes a checkpoint and
sends everyone a Chkpt_Ok message.

• After a process receives this message, it
takes a checkpoint at the next available
spot

Process P

Process Q

Initiator

Chkpt_Ok

Recovery Line

2-10-2003 42

High-level view of our protocol: (II)

• After taking a checkpoint each process
keeps a log.

• This log records message data and non-
deterministic events.

Process P

Process Q

Initiator

Chkpt_Ok

Recovery Line

Logging…

2-10-2003 43

Process P

Process Q

Initiator

Chkpt_Ok

Recovery Line

Logging…

High-level view of our protocol: (III)

• When a process is ready to stop logging, it
sends the Initiator a Ready-to_stop_logging
message.

• When the Initiator receives these messages
from all processors, it knows all processes
have crossed the recovery line.

Ready_to_stop_logging

2-10-2003 44

Process P

Process Q

Initiator

Chkpt_Ok

Recovery Line

Logging…

High-level view of our protocol: (IV)

• When initiator gets Ready-to_stop_logging
message fro mall processes, it sends
Stop_logging messages to all processes.

• When process receives message, it stops
logging and saves log on disk.

Stop_logging

2-10-2003 45

Process P

Process Q

Initiator

The Global View

• A program’s execution is divided into a
series of disjoint epochs

• Epochs are separated by recovery lines
• A failure in Epoch n means all processes

roll back to the prior recovery line

Epoch 0 Epoch 1 Epoch 2 …… Epoch n

2-10-2003 46

Mechanism: Control Information

• Attach to each outgoing message
– A unique message ID
– The number of the current Epoch
– Bit that says whether we’re currently logging

• In practice: 2 bits are sufficient
• Use this to determine whether message is

late/early etc.

Recovery Line

Process P

Process Q

Epoch n Epoch n+1

Message #51

2-10-2003 47

Mechanism: The Log

• Keep a log after taking a checkpoint
• During Logging phase

– Record late messages at receiver
– Log all non-deterministic events

ex: rand(), MPI_Test(), MPI_Recv(ANY_SOURCE)

Process P

Process Q

Recovery Line Logging…

2-10-2003 48

Handling Late Messages

• We record its data in the log
• Replay this data for the receiver on

recovery

Process P

Process Q

Recovery Line Logging…

M1

2-10-2003 49

Handling Early Messages

• Early messages sent before logging stops
– On recovery they’re recreated identically

• The receiver records that this message
must be suppressed and informs the
sender on recovery.

Process P

Process Q

Recovery Line Logging…

M2

2-10-2003 50

Log-End Line

• Terminate log to preserve these semantics:
– No message may cross Log-End line backwards
– No late message may cross Log-End line

• Solution:
– Send Ready_to_stop_logging message after receiving

all late messages
– Process stops logging when it receives Stop_log

message from initiator or when it receives a message
from a process that has itself stopped logging

Process P

Process Q

Recovery Line Log-End LineLogging…

2-10-2003 51

Additional Issues

• How do we
– Deal with non-FIFO channels? (MPI allows

non-FIFO communication)
– Write the global checkpoint out to stable

storage?
– Implement non-blocking communication?
– Save internal state of MPI library?
– Implement collective communication?

2-10-2003 52

Collective Communication

• Single communication involving multiple
processes
– Single-Sender: one sender, multiple receivers

ex: Bcast, Scatter

– Single-Receiver: multiple senders, one receiver
ex: Gather, Reduce

– AlltoAll: every process in group sends data to
every other process

ex: AlltoAll, AllGather, AllReduce, Scan

– Barrier: everybody waits for everybody else to
reach barrier before going on.
(Only collective call with explicit synchronization guarantee)

2-10-2003 53

Possible Solutions

• We have a protocol for point-to-point
messages. Why not reimplement all
collectives as point-to-point messages?
– Lots of work and less efficient than native

implementation.

• Checkpoint collectives directly without
breaking them up.
– May be complex but requires no

reimplementation of MPI internals.

2-10-2003 54

Single-Receiver Collectives
MPI_Gather(), MPI_Reduce()

• In a Single-Receiver Collective the
receiver may be in one of three regions
– Before checkpoint
– Inside Log
– After Log

Process P
(Receiver)

Process Q

Process R

2-10-2003 55

Process P
(Receiver)

Process Q

Process R

Single-Receiver Collectives
Receive is before the checkpoint

• If the Receive is before the Recovery
Line sends could only have occurred:
– Behind the Recovery Line
– Inside the Log

2-10-2003 56

Process P
(Receiver)

Process Q

Process R

Single-Receiver Collectives
Receive is before the checkpoint

• The send from behind the recovery line
will not be reexecuted.

• We should leave it alone if possible.

2-10-2003 57

Process P
(Receiver)

Process Q

Process R

Single-Receiver Collectives
Receive is before the checkpoint

• The send from inside the log will be
reexecuted.

• We already got its data and it will be
regenerated with the same data.

• Thus, we should suppress it.

2-10-2003 58

Single-Receiver Collectives
Receive is before the checkpoint

• Therefore, since neither Q or R will
resend, we don’t need to re-receive!

Process P
(Receiver)

Process Q

Process R

2-10-2003 59

Process P
(Receiver)

Process Q

Process R

Single-Receiver Collectives
Receive is inside the log

• If the Receive is inside the log sends
could only have occurred:
– Behind the Recovery Line
– Inside the Log

• We will log/suppress these collectives.

2-10-2003 60

Process P
(Receiver)

Process Q

Process R

Single-Receiver Collectives
Receive is after the log

• If the Receive is after the log sends could
only have occurred:
– Inside the Log
– After the Log

• We will reexecute such collectives.

2-10-2003 61

Summary of collectives

• Single-Receiver Collectives introduced.
• There are solutions for every type of

collectives.
• Each solution works off of the same

protocol platform but with different key
choices.

• Result: a single protocol for all of MPI.

2-10-2003 62

Implementation

• Implemented the protocol on the Velocity
cluster in conjunction with a single-processor
checkpointer.

• We executed 3 scientific codes with and
without checkpointing.
– Dense Conjugate Gradient
– Laplace Solver
– Neuron Simulator

• 16 processors on the CMI cluster
• Measured the overheads imposed by the

different parts of our checkpointer.

2-10-2003 63

Performance of Implementation
Dense Conjugate Gradient

0

500

1000

1500

2000

2500

3000

4096x4096 8192x8192 16834x16834

P r o b l e m S i z e

131MB

33MB

8.2MB

Laplace Solver

0

500

1000

1500

2000

2500

3000

3500

512x512 1024x1024 2048x2048

Problem Size

2.1MB

532KB

138KB

Neurosys

0

500

1000

1500

2000

2500

16x16 32x32 64x64 128x128

P r o b l e m S i z e

Original Application

Managing Ctrl Data. No Checkpoints

Saving Message logs, etc. No Checkpoints

Full Checkpoints

1.24MB

308KB

75K18KB

2-10-2003 64

Contributions to Date

• Developed and implemented a novel
protocol for distributed application-level
checkpointing.

• Protocol can transparently handle all
features of MPI.
– Non-FIFO, non-blocking, collective,

communicators, etc.
• Can be used as sand-box for distributed

application-level checkpointing
research.

2-10-2003 65

Future Work

• Extension of application-level
checkpointing to Shared Memory

• Compiler-enabled runtime optimization
of checkpoint placement
(Extending the work of CATCH)

• Byzantine Fault Tolerance

2-10-2003 66

Shared Memory

• Symmetric Multiprocessors – nodes of
several (2-64) processors connected by
a fast network.

• Different nodes are connected by a
slower network.

• Typical communication style:
– Hardware shared memory inside the node
– MPI-type message passing between nodes

2-10-2003 67

OpenMP

• An industry standard shared memory
API.

• Goal: create a thin layer on top of
OpenMP to do distributed checkpointing.

• Must work with any OpenMP
implementation.

2-10-2003 68

Issues with checkpointing OpenMP

• Parallel for
– different threads execute different

iterations in parallel
– iteration assignment is non-deterministic

• Flush
– shared data that has been locally updated

by different threads is redistributed globally

• Locks
– carry only synchronization, no data

2-10-2003 69

OpenMP – parallel for

• Different OpenMP threads execute
different iterations in parallel.

• Iteration allocation is non-deterministic.

T1

T2

T3

i=0 i=1 i=5

i=2 i=7 i=8

i=3 i=4 i=6

2-10-2003 70

OpenMP – parallel for

• While executing a parallel for we keep
track of which iterations we’ve
completed.

Above: [0,1,2,5] are completed
[7] is in progress

T1

T2

T3

i=0 i=1 i=5

i=2 i=7 i=8

i=3 i=4 i=6
Recovery Line

2-10-2003 71

OpenMP – parallel for

• If any thread in a recovery line
checkpoints inside a parallel for, we
must reexecute the parallel for.

• Iterations lying behind the recovery line
are skipped by the threads that get
them.

T1

T2

T3

i=0 i=1 i=5

i=2 i=7 i=8

i=3 i=4 i=6
Recovery Line

Skip P Skip P Skip P

Skip P

2-10-2003 72

OpenMP – parallel for

• Question: How we ensure that Thread 2
gets Iteration 7 on recovery?

T1

T2

T3

i=0 i=1 i=5

i=2 i=7 i=8

i=3 i=4 i=6
Recovery Line

Skip P Skip P Skip P

Skip P ?

2-10-2003 73

Recovery Line

OpenMP – Flush

• Flush(x) updates all threads to the
current value of x. (last written by T1)

• We can tread Flushes as data flows and
use our MPI protocol.

• The above is a lot like a Late message.

T1

T2
Flush(x)

Read(x) Write(x)

Read(x)

2-10-2003 74

OpenMP – Locks

• Locks are data flows that carry no data.
• This lock flow is trivial to enforce.
• Backwards lock flows are more complex.
• We cannot guarantee true

synchronization wrt outside world.

T1

T2
Recovery Line

Locked region

Locked region

