
Priority Inheritance: The Real Story http://www.linuxdevices.com/articles/AT5698775833.html

1 of 5 2/19/2008 9:29 AM

Click here to learn
about this Sponsor:

Home | News | Articles | Polls | Forum

Keywords: Match: All keywordsAll keywords Search articles

Priority Inheritance: The Real Story

by Doug Locke (July 16, 2002)

In this guest editorial, TimeSys VP of Technology Doug Locke offers a
rebuttal to Victor Yodaiken's recently published whitepaper on what's wrong
with using a technique called 'priority inheritance' to avoid a problem in
real-time systems known as 'priority inversion'.

Introduction

A recent whitepaper by Victor Yodaiken presents a sequence of highly
technical arguments regarding the implementability and use of priority
inheritance, followed by a set of conclusions. The technical arguments in
the paper are not new, are generally correct, and have been widely
discussed in the real-time research community for many years. However,
the conclusions drawn in the paper are badly flawed.

Yodaiken's conclusions are drawn using the classic 'strawman' approach;
the paper constructs an artificial hypothesis, and then shows that it might
be dangerous. In this case his hypothesis is that priority inheritance is
blindly used by engineers as a panacea for all priority inversion problems,
and, because it has drawbacks under certain conditions, it is therefore
dangerous and should never be used. In other words, because some
carpenters might unsafely use a screwdriver to drive nails, screwdrivers
should never be used.

Far from being 'incompatible with reliable real-time system design,' priority
inheritance is one of a set of important and widely used tools that should be
included in any well-designed toolbox for building reliable and responsive
time-constrained systems. Like all useful tools, priority inheritance can be
used improperly and even dangerously, but when properly implemented
and used, it can also make a major contribution to the successful and
effective development of real-time systems. The fact that it prevented a
potential disaster on the Mars Pathfinder rover (see Footnote 1) is just one
illustration of its real-world usefulness as a priority inversion management
technique.

Yodaiken's paper also correctly advocates static analysis for systems which
have very critical time constraints. Static analysis is not appropriate for
every application, but its utilization should be thoroughly understood by
anyone involved in hard-real-time or safety-critical applications.

Uncontrolled Priority Inversion

Yodaiken's paper correctly describes priority inheritance as a mechanism
used to avoid priority inversion. A simple example of priority inversion is
seen when a high priority thread needs exclusive access to a resource that
is being concurrently accessed by a low priority thread. If one or more
medium priority threads then run while the low priority thread has the
resource locked, the high priority thread can be delayed indefinitely. Such
priority inversion frequently occurs in practical systems. Limiting the
adverse effects of priority inversion is extremely important in a system
where any kind of predictable response is required.

Avoiding Uncontrolled Priority Inversion

While there are many known academic solutions to the problem of avoiding

Got a HOT tip? please tell us!

Free weekly newsletter
Enter your email...

 Subscribe

Click here for a profile of each sponsor:
PLATINUM SPONSORS

(Become a sponsor)

GOLD SPONSORS

(Become a sponsor)

ADVERTISEMENT

(Advertise here)

Check out the latest Linux
powered...

mobile
phones!

other cool
gadgets

HOWTOs: from
DevShed & IBM
DeveloperWorks:

BREAKING NEWS

• LinuxDevices launches
2008 Embedded Linux
survey
• PXA270 Linux
implementation updated
• New PMC vendor debuts
Linux-ready cards for
military
• Touch-panel PC
automates with Linux,
Zigbee
• Embedded DRM

Most popular stories -- past
90 days:
• Nokia unveils Linux-powered
N810 Internet Tablet
• Low-cost board runs Linux,
Google Apps
• Open source, Lego-like
computer modules run Linux
• DIY CPU demo'd running
Minix
• A developer's perspective on
Google's Android SDK
• Top-10 gift ideas for the
Linux Gadget Geek
• Asus unveils ultra-low-cost

Priority Inheritance: The Real Story http://www.linuxdevices.com/articles/AT5698775833.html

2 of 5 2/19/2008 9:29 AM

uncontrolled priority inversion, in industrial practice two techniques are
commonly available to user-space applications -- priority inheritance
protocol and priority ceiling protocol emulation (see Footnote 2).

The priority ceiling emulation technique raises the priority of any locking
thread to the highest priority of any thread that ever uses that lock (i.e., its
priority ceiling). This requires the developer to supply the priority ceiling for
each lock. In contrast, priority inheritance will raise the priority of a thread
only when holding a lock causes it to block a higher priority thread. When
this happens, the low priority thread inherits the priority of the higher priority
thread it is blocking.

Applications running in kernel space also have at their disposal the ability to
disable interrupts or disable preemption. Disabling interrupts or preemption
is an effective, and sometimes necessary, locking technique that avoids
unbounded priority inversion, but is of limited general applicability since it
stops all other processing. It's like turning all traffic lights red in a city
whenever any car wishes to cross any intersection. However, because of
its low-overhead, it can work well for locks that are never held for more than
a few instructions.

Priority Inheritance vs. Priority Ceiling Emulation

Both priority inheritance protocol and priority ceiling emulation protocol
have strengths and weaknesses. When used correctly, they are both useful
tools in a real-time designer's toolbox.

Priority ceiling emulation has certain desirable properties -- it has good
worst-case priority inversion control, it handles nested locks well, and can
avoid deadlock in some cases. Priority inheritance can occasionally lead to
poorer worst-case behavior when there are nested locks, and does not
avoid deadlocks. However, most performance-critical applications and
RTOSs minimize their use of nested locks, and there are other
mechanisms to avoid deadlock when nesting cannot be avoided, thereby
making priority inheritance an attractive option.

On the other hand, priority inheritance can be implemented such that there
is no penalty when the locks are not contended, which covers the vast
majority of time-constrained systems. This, in addition to the fact that many
extra context switches are avoided, and medium priority tasks are not
preempted unnecessarily, leads to excellent average performance. In
practical systems, including both hard and soft real-time systems, average
performance is as important as worst-case response. In contrast, priority
ceiling emulation will pay the cost of changing a thread's priority twice
regardless of whether there is contention for the lock or not, resulting in
higher overhead and many unnecessary context switches and blocking in
unrelated tasks.

Priority ceiling emulation is an attractive choice when the set of threads
contending for the lock is known, when there may be nested locks, and
when worst-case behavior is the only concern. On the other hand, priority
inheritance is very effective when a lock is seldom part of a nested set, and
when average performance is relevant in addition to worst-case
performance.

Another important aspect to understand is that optimal use of priority ceiling
emulation requires static analysis of the system to find the priority ceiling of
each lock. While static analysis is highly desirable (even necessary) for
many applications with critical response requirements, it may be neither
desirable nor cost-effective in many other applications in which only a few
parts of the system may be critical. Also, formal real-time analysis is not
applicable to systems that are not constructed according to a set of
demanding rules. In such cases, priority inheritance is a more effective
mechanism since it does not require static analysis.

The Importance of Real-Time Design and Analysis

Priority inheritance and priority ceiling emulation are both effective and
powerful techniques to prevent uncontrolled priority inversion when locks
are used to protect critical sections in a real-time system. Real-time
software designers must make intelligent decisions to use the appropriate
technique, depending on their system requirements.

technology supports Linux
• Linux distro revamps for
UMPC market
• SPECIAL REPORT: Five
years of Motorola Linux
phones
• GUI dev tool improves
prototyping
• Dual-core VMEbus SBC
supports Linux
• Linux mobile group
announces SDK strategy
• Mobile Linux stack gains
MS file viewer
• Webkit-based browser
heads for mobile Linux
platform
• Industrial PC bristles with
serial, LAN ports
• Mobile multimedia API
gains traction
• NVidia enters mobile SoC
market -- but where's the
Linux?

Linux laptop
• Linux-based NAS storage
devices expand capacity
• Mini Linux PC breaks $100
barrier
• Penny-sized flash drive
holds 16GB

Linux-Watch headlines:
• What's behind the SCO
buyout
• Is Microsoft/Yahoo about
Windows' failure as a top
server platform?
• SCO CEO Darl McBride is
on his way out
• SCO goes private, gets
$100M to keep going, McBride
out?
• Linpus offers a Linux for
newbies and experts alike
• The experts' legal guide on
free software
• Red Hat: JBoss to capture
half of middleware market
• Linux hole patched
• 10 years of open source and
counting
• Mozilla dismisses new
Firefox flaw warning

Also visit our sister site:

Sign up for LinuxDevices.com's...

 news feed

Priority Inheritance: The Real Story http://www.linuxdevices.com/articles/AT5698775833.html

3 of 5 2/19/2008 9:29 AM

The solution to priority inversion problems starts with a sound architecture
and design that must consider the decomposition of the system into tasks
and shared resources, and how they impact the system's ability to meet its
timing constraints. Many performance problems can be solved by
developing an architecture that avoids unnecessary coupling between tasks
through shared resources.

For example, analysis tools (such as TimeWiz) allow real-time system
designers to quickly develop a system architecture and understand the
impact of their design decisions on timing properties, regardless of the
choice of techniques to manage priority inversion. In addition, engineers
can take advantage of specialized classes such as those provided by
TimeSys to ensure their real-time software architecture and design will
meet all time constraints.

Operating systems for performance-critical applications should provide a
complete set of tools to manage priority inversion. For example, TimeSys
Linux Linux / Real-Time provides priority inheritance mutexes for
application developers, and the Fall 2002 release of TimeSys
Linux/Real-Time will also offer priority ceiling emulation mutexes.

Can Priority Inheritance Be Successfully Implemented?

Yodaiken's paper correctly notes that implementing priority inheritance can
be difficult in complex environments, and implementers not intimately
familiar with its nuances can easily make mistakes, but there is ample
evidence that it can also be very effectively and correctly implemented and
used. For example, in a recent jitter test using TimeSys Linux / Real-Time
running on a heavily loaded 1.4GHz Pentium processor (see Footnote 3),
the worst-case jitter (i.e., the maximum deviation in the measured period of
a periodic task) dropped from 76,492 microseconds to 52 microseconds,
simply by enabling priority inheritance in the kernel.

Conclusions

Priority inheritance is one of two basic techniques at the application level
for managing priority inversion. This paper has described some of the
important criteria for its use by time-constrained applications, but it must be
used with care, and it must be implemented correctly. Whatever design
choices are made, the architecture and design of the system will be critical
to achieving the system's performance goals. Performing a response time
analysis (using a tool such as TimeWiz) can significantly aid in ensuring
success in meeting performance requirements.

Of course, as Yodaiken's paper notes, the best locking is no locking. There
are four simple rules for protecting resources:

Using non-locking atomic operations (such as the flip-buffer) to avoid
locking is clearly the best approach.

1.

When a lock must be acquired, it should be held for as short a time as
possible.

2.

When locks are used, training classes such as those provided by
TimeSys, for example, will ensure that engineers understand the
limitations of each of the various methods for managing priority
inversion.

3.

When selecting an operating system, ensure that it provides all the
tools for managing priority inversion, so you have the flexibility to meet
a wide range of performance requirements.

4.

Any full-featured RTOS should include a full range of Design and
Development tools, Operating System, Software Development Kits, and
Training to design and deploy embedded systems supporting the full range
of performance requirements. In addition, they should provide a selection of
tools for managing priority inversion, permitting the application engineers to
choose the best approach for their applications, and enabling the
construction of reliable, robust, and predictable time-constrained systems.
This includes both priority inheritance mutexes and priority ceiling
emulation mutexes (the latter will be available from TimeSys in Fall, 2002).
Coupled with visualization, analysis, and simulation tools such as TimeWiz
and TimeTrace to see all the scheduling, locking, and other key system
events, everything needed to meet a wide range of performance

Priority Inheritance: The Real Story http://www.linuxdevices.com/articles/AT5698775833.html

4 of 5 2/19/2008 9:29 AM

requirements, from hard real-time to soft real-time, and even non-real-time,
should be available for the design engineer.

Footnotes:

Details on the Mars Pathfinder priority inversion problem are available
here.

1.

Often incorrectly referred to as priority ceiling protocol. The original
priority ceiling protocol, described in a paper by Sha, Lehoczky, and
Rajkumar, is expensive to implement and not available in any
commercial operating system. PCP emulation (also known as the
highest locker protocol) is a simplified version of the original PCP
protocol and is part of various standards such as POSIX
(POSIX_PRIO_PROTECT), the Real-Time Specification for Java
(RTSJ), OSEK, and the Ada 95 real-time specifications. Priority
inheritance is also part of standards such as POSIX
(POSIX_PRIO_INHERIT), and the RTSJ.

2.

1.4 GHz is somewhat faster that is usually available in embedded
systems, but even with this speed, the worst-case jitter is still over 70
milliseconds! This illustrates that throwing fast hardware at the
application doesnt solve the predictability problem, but avoiding
priority inversion does.

3.

About the author: Doug Locke, Vice President of Technology
of TimeSys Corporation, has spent more than 35 years
intimately involved in the specification, architecture, design,
and implementation of time-critical systems spanning a wide
range of applications including industrial control, space (both
ground based and flight), avionics, command & control, and

automotive. His technical interests cover real-time operating systems as
well as real-time systems architecture, design, implementation, analysis,
standards, operating systems, and languages. Doug has served, and
continues to serve, on various standardization committees related to
real-time, including POSIX, Real-Time CORBA, Real-Time UML and the
Real-Time Specification for Java. Prior to joining TimeSys, he was Chief
Scientist for Lockheed Martin's Information Solutions organization, with
technical oversight responsibility for many performance-critical and
safety-critical projects. He holds a PhD in Computer Science from Carnegie
Mellon University, with a dissertation on real-time scheduling.

Talk back! Do you have questions or comments on this article? talkback
here

(Click here for further information)

7 Advantages of D2D Backup
For decades, tape has been the backup medium of choice. But, now,
disk-to-disk (D2D) backup is gaining in favor. Learn why you should make
the move in this whitepaper.

4 Legal Reasons to Control Internet Access
The Internet is obviously a valuable resource for many organizations.
However, many are exposed to legal liability concerns because they fail to
control Internet access. Learn if you're safe in this white paper.

Rapidly Resolve J2EE Application Problems
Whether you are in the process of building J2EE applications or have J2EE
applications already running in production, you must ensure that they
deliver the expected ROI. Learn how in this white paper.

Load Testing 2.0 for Web 2.0

Priority Inheritance: The Real Story http://www.linuxdevices.com/articles/AT5698775833.html

5 of 5 2/19/2008 9:29 AM

There are many unknowns in stress testing Web 2.0 applications. Find out
how to test the performance of Web 2.0 in this white paper.

Build Better Games Online
For the game infrastructure providers, life is complex. Making money from
games has become more complicated. Why? Find out in this white paper.

Building a Virtual Infrastructure from Servers to Storage
This white paper discusses the virtual storage solutions that reduce cost,
increase storage utilization, and address the challenges of backing up and
restoring Server environments.

Gaining Faster Wireless Connections with WiMAX
Welcome to what is quickly becoming the hyperconnected world where
anything that would benefit from being connected to the network will be
connected. Learn more in this white paper.

Is Your Desktop a Security Threat?
The new wave of sophisticated crimeware not only targets specific
companies, but also targets desktops and laptops as backdoor entryways
into those business’ operations and resources. Learn how to stay safe in
this white paper.

Increasing SAN Reliability by 100 Percent
Storage area networks (SAN) are a strong part of storage plans. Learn
how to increase your reliability and uptime by 100 percent in this case
study.

Home | News | Articles | Polls | Forum | About | Contact

Use of this site is governed by our Terms of Service and Privacy Policy. Except where otherwise specified, the contents of this
site are copyright © 1999-2008 Ziff Davis Enterprise Holdings Inc. All Rights Reserved. Reproduction in whole or in part in any
form or medium without express written permission of Ziff Davis Enterprise is prohibited. Linux is a registered trademark of
Linus Torvalds. All other marks are the property of their respective owners.

Ads by Google

DATE08, Munich

The world's leading event for SoC &
system-level design, 10-14 March

www.date-conference.com

