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A b s t r a c t  In recent years, many high-level 
synchronization constructs have been proposed. Each 
claims to satisfy criteria such as expressive power, ease of 
use, and modifiability. Because these terms are so 
imprecise, we have no good methods for evaluating how 
well these mechanisms actually meet snch requirements. 
This paper presents a methodology for performing such an 
evaluation. Synchronization problems are categorized 
according to some basic properties, and this categorization 
is used in formulating more precise definitions of the 
criteria mentioned, and in devising techniques for assessing 
how well those criteria are met. 

1. M o t i v a t i o n  

In recent years, much attention has been given to 
the development of high-level synchronization meehanislns. 
The need for a mechanism that is higher level than 
semaphot~es, and easier to use, is widely recognized. 
However, the requirements we expect such a mechanism to 
meet are not fully understood. Properties such as 
expressive power, ease of use, modularity, and modifiability, 
are agreed to be important, but these terms are wlgue; how 
the 3 . apply to synchronization constructs in particular is 
unclear. Because of this lack of clarity, and because our 
experience in concurrent programming is so limited, no 
standard methods have been established for evaluating 
synchronization constructs. 
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Currently, the power of new mechanisms is 
demonstrated by showing solutions to a number of 
standard synchronization problems. The problems selected 
to demonstrate the use of any construct are usually those 
most easily solved by the mechanism, and those that 
illustrate the most significant improvements over other 
constructs. Unfortunately, we currently have no way of 
selecting a set of problems to be used in evaluating 
mechanisms that we know will provide adequate 
information for choosing between mechanisms. When 
trying to objectively compare constructs, one has no way of 
judging which of the standard problems to use as a basis of 
comparison. Examining all of them is an impossible task; 
there is no way to determine which will provide new 
insights or additional information. 

It is clear that some well-defined methodology for 
evaluating synchronization mechanisms is needed. Because 
the properties in which we are interested are so vague, we 
can not expect to develop completely objective techniques. 
Rather,  we will make use of the examples so frequently 
cited. Our goal is to determine what makes each example 
important, and which properties of a mechanism can be 
evaluated by looking at particular example~. In this way, 
we can derive a set of examples that includes all of these 
properties with a minimum of redundancy; it will then be 
possible to tell when an evaluation is complete. If We have 
a specific set of examples to use in testing, and a specific 
set of characteristics to examine in those examples, our 
methods of evaluating and comparing synchronization 
constructs will be greatly improved. 

In this paper, the requirements synchronization 
mechanisms should satisfy have been divided into three 
areas: modularity, expressive power, and ease of use. In 
Section 2, we discuss the modularity criteria: how shared 
resources should be structured, at)d how mechanisms can 
support this structure. Section 3 presents a categorization 
of synchronization problems ~hat will enable us to select a 
set of examples for use in our evaluations. We also use 
this categorization when developing methods for measuring 
the expressive power and usability of synchronization 
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mechanisms (Section 4). The remainder of the paper 
examines specific synchronization constructs and illustrates 
how the evaluation techniques described in the previous 
sections are applied to actual mechanisms. 

2. M o d u l a r i t y  R e q u i r e m e n t s  

Proper modularizadon of concurrent programs is 
essential if the software is to be easily ttnderstandable and 
maintainable. This section discusses the modularity 
requirements shared ~esources must satisfy and describes a 
model for shared resources, hased on abstract data 
types[16], that is assumed throughout the remainder of this 
paper. 

In this model, resources :ire considered to be 
objects of abstract types. A resource will therefore have a 
set of operations associated with it, and the only way to 
access the resottrce will be to invoke one of those 
operations. There are two modularity requirements that 
should be satisfied by concurrent programs accessing shared 
resources. The first follows from the principle that the 
definition of an abstraction should be separated from its 
use. As applied to shared resources, this principle implies 
that the shared resource abstraction should contain the 
implementation of the synchronization scheme, as well as 
the definitions of the internal structure and operations of 
the resource. This encapsulation of synchronization and 
resource will allow users of the resource to assume it to be 
properly synchronized; no synchronization code need be 
located at each point of access to the resource. 

The other modularity requirement governs the 
structure of the shared resource definition. The module in 
which the shared resource is implemented serves two 
purposes. First, it defines the abstract behavior of the 
resource (by defining the resource operations). This 
behavior is independent, of whether the resource will be 
accessed concurrently. Second, it provides the 
synchronization to control shared access. These two parts 
serve different functions and should be separable into two 
subsidiary abstractions, the unsynchronized resource, and 
the synchronization. The structure of protected resource 
objects is thus: 

protected resource 

resource synchronizer 

One of our requirements for synchronization mechanisms is 
that  they support this structure. 

In addition to reducing complexity and aiding in 
program design, the use of this structure has other 
important effects. For example, in the case of monitors, 
use of this structure greatly reduces the chance of deadlock 
from nested monitor calls [18]. We discuss the use of this 
structure in monitor solutions later. 

3. C a t e g o r i z i n g  S y n c h r o n i z a t i o n  Problems  

Synchronization mechanisms serve two main 
functions with respect to shared resources. First, they 
enforce exclusion of certain processes from the resource 
when they will interfere with work already in progress. As 
such, these "exclusion constraints" ensure that consistency 
is maintained. Second, synchronization mechanisms schedule 
access to the resource and allow the specification that 
certain processes have priority over others in gaining entry 
to the resource. "Priority constraints" are usually concerned 
with efficiency rather than correctness criteria. 

Synchronization schemes are thus composed of a 
set of constraints, each having the form: 

if  condition then exclude process A 
or: 

if condition then process A has priori ty over 
process B 

where the conditions may be any boolean expressions 
involving information about the shared resource and the 
accessing processes. 

Within the two main classes (priority and 
exclusion), constraints differ mainly in the kinds of 
infornmtion referred to in these conditional clauses..This 
information falls into several categories: 
1. the access operation requested : 

The resource is a data abstraction, so it can only be 
accessed through operations of the resource type. In 
some synchronization schemes, the constraints depend 
on the operation requested. In stating, for instance, 
that readers of a data base have priority over writers, 
we :ire giving a constraint in terms of the types of 
operations requested. In contrast, a strict 
first_come_firsLserve ordering uses no information 
about the operations requested. We will often refer 
to this information as the type of the request. 

2. the limes at which reqt,esls were made: 
Though it is rarely necessary to know exact limes of 
requests, the time of a request relative to other 
events is often important. Time information is most 
frequently used to determine the order of requests. 

3. request parameters: 
In many cases, the arguments passed with a request 
for resource access are needed to deternfine the order 
in which processes should be adnfitted to the 
resource. For example, in the disk head scheduler 
presented in [13], the order in which access is granted 
is determined by the the track mnnber requested. 

4. the "synchronization state" of the resource: 
Synchronization state includes all state information 
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needed only for synchronization purposes; it would 
not be part of the resource state were the resource 
not being accessed concurrently. Included in this 
category is information about the processes currently 
accessing the resource, and the procedures those 
processes are executing. An exainple of 
synchronization state information frequently used is a 
count of the nulnber of processes currently accessing 
the resource. 

5. the local state of the resource : 
Local state includes information that would be 
present regardless of whether the resource were being 
accessed concurrently or sequentially. It is 
information meaningful to the actual unsynchronized 
resource abstraction, for example, whether a buffer is 
full or empty. 

6. history infornmtion: 
History information is information about whether a 
given event has occurred, such as whether a specific 
procedure has been executed. This information type 
differs from synchronization state in that it refers to 
resource operations that have already completed, as 
opposed to those still in progress. It is often 
interchangeable, with local state information, since 
past events in which we fire interested will most 
likely have left some noticeable change in the state of 
the resource. It is convenient to treat it as a separate 
category, because it may be easier for the 
synchronizer to keep track of the history of 
operations executed than to obtain the required state 
information from the resource. 

4. Evaluation Criteria 

We have identified two major types of 
constraints, and several classes of information that 
distinguish different kinds of constraints within the two 
major categories. We can now define two basic 
requirements that a synchronization mechanism must meet. 
First,  it must provide a straightforward means of expressing 
each type of constraint and using each type of information. 
This reqnirement is our measurement of expressive power. 
In addition, complex synchronization schemes are composed 
of many constraints. Such schemes will be easy to 
implement only if each constraint can be implemented 
without regard to which other constraints are present in 
the overall scheme. It must be easy to combine the 
implementations of all the constraints to construct the 
solution to the entire synchronization problem. If a 
mechanism supports this constraint independence or 
additivity property, and satisfies the expressive power 
criteria, synchronization schemes will be easy to implement 
as well as easy to modify. We lhus consider constraint 
independence to be our criterion for ease of use. 

4.1 Expressive Power 

The first criterion in which we are interested is 
whether the mechanism provides straighlforward methods 
for expressing priority and exclusion constraints, and 
whether one has the ability to express those constraints in 
terms of any of the information types described earlier. 
One way to test this ability is 1o use the mechanism to 
implement solutions to a set of ex;,mples that covers all 

information classes. 2 If there is no direct way to use a 
certain kind of information, it should become obvious when 
an attempt is made to implement a solution requiring it. 
By examining how various types .of infor,nation ;ire handled 
in each solution, we can draw conclusions about whether 
the mechanism can easily access each type of information. 

A more general way to measure expressive power 
is simply to examine each mechanism and attempt to 
determine what features it has that will enable it to deal 
with each type of constrainl. For example, monitor queues 
are a construct for handling request time information, 
while serializer crowds retain synchronization state 
information. The mechanisnl must provide some nleans of 
manipulating each type of information. The ability to 
identify the particular way in which to handle each 
information type will also make a mechanism easier to use 
because the structure of a solution will be indicated by the 
kinds of information referred to in the specification. 

4.2 Ease of Use 

Given that single constraints are easy to 
implement, complex synchronization schemes will be easy to 
implement only if they can be decomposed into individual 
constraints that can then be realized independently. We 
need to be able to break down complex problems into small 
parts that can be soh'ed one at a time. If the 
implementation of any one constraint is dependent upon 
the other constraints present, solutions quickly become 
difficult to construct as the number of constraints 
increases. Since the implementor niust be aware of the 
entire set of constraints, and niake sure that each 
constraint is consistent with every olher constraint present, 
the complexity of constructing the solution (not the 
complexity of the solution itself) increases with the number 
of combinations of constraints present. It is therefore far 
more difficult to construct a solution than if it were 
possible to implement each constraint separately, regardless 

2. In the evaluations we performed on several 
mechanisms, we used the following set of test cases: the 
bounded buffer problem to represent use of local state 
infor,mtion, a first come first serve scheme for request 
time, a readers_priority database[8] for request type and 
synchronization state, the disk scheduler problem and 
alarmclock problem[13] to make use of parameters passed, 
and the one-slot buffer[7] for history information. 
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of which other constraints were present. 

In addition to the difficulty of initially 
constructing solutions, if this constraint independence 
property is not met, the solutions will be very difficult to 
modify. A change in the specificalio,l of one constraint 
will necessitate reimplementalion of the entire solution. 

One way to lest whether a mechanism allows 
independent implementation of constraints is to examine 
solutions to two similar synchronization problems. If the 
problems share some constr:,ints, but differ in others, then 
the common constraints shoukl be similarly implemented in 
both solutions. Differences in the way a given constraint is 
implemented in two different synchronization problems, or 
solutions in which the implementations of each individual 
constraint are not even identifiable as separate parts of the 
solution, indicate that our independence criterion for 
constraints is being violated. 

Two readerswriters problems can be used for this 
analysis. The readers_priority and writers_priority 
examples have the same exclusion constraints, but differ in 
priority constraints; hmvever, the constraints in each make 
use of the same information types. The extent to which 
the exclusion constraint implementations differ in the two 
solutions, and the difficulty of modifying the priority 
constraint in one to obtain a solution to the other, will 
indicate how independent the constraints are. 

To be sure that constraint implementations are 
independent, we should also check that the implemenlation 
of a constraint remains the same when the other 
constraints are modified to use different types of 
information. (The readers_priority and writers_priority 
problems used the same information for priority 
constraints.) Still another readers_writers problem could be 
used for this purpose. For instance, a 
first_come_firstserve scheme has the sa,ne exclusion 
constraint, but uses request time information for the 
priority constraint. We would expect the implementation 
of the exclusion constraint to remain unchanged when a 
modification from readers_priority to first come first_serve 
is made, although the overall change can be expected to be 
more difficult than a change from re;,ders to writers 
priority. 

It is also possible that usage of two partict,lar 
types of information will conflict. In this case, constraint 
independence will be violated only in exa,nples using both 
types of information. This case is not as serious as general 
inability to implement constraints independently, but it is 
not as easy to check. Although indications of such 
conflicts usually become apparent when analyzing how each 
individual type is used, the only complete method of 
evaluation seems to be to check ;ill possible pairs of the six 
information types. We will see thai a situation in which 
two particular constraint types conflict while all others are 
independent occurs in the monitor mechanis,n. 

5. E v a f u a t i o n  o f  Exis t ing Mechanisms 

The methodology described has been used to 
evaluate three existing synehroniz~,tion mechanisms [5]. 
While it is impossible to present complete evahmtions here, 
some examples are given to illustrate the use of the 
method. We will also summarize the conclusions drawn 
from analyzing the three constructs. 

5.1 Pa lh  Express ions  

In this section we present examples to show how 
information about the power and usability of a mechanism 
can be derived from examining solutions to a few 
synchronization problems , using the methods described. 
The path expression solutions given here were presented by 
Campbell and Habernlann in [7]. 

The path expression mechanism permits 
synchronization to be specified by stating the set of 
allowable orderings of operations that access the resource. 
If a request is made for an oper~,fion on the resource, and 
that operation does not occur next in any sequence allowed 
by the path expression, then the process executing the 
operation is blocked until a slate is reached in which that 
operation cm,ld occur next. The mechanism provides a set 
of operators for specifying the allowable relationships 
among operatious on the resource. The version of path 
expressions used here is that presented by Campbell and 
Habermann in [7].  The following relationships among 
operations may be specified: concurrency (denoted by 
'!l ~"), selection ( " ,  "), sequencing (" ;"), and repetition 
(denoted by the path-end p;,ir). We will m~,ke the 
assu,nption that the selection operator always chooses the 
process that has been waiting longest. While this 
assumption is not made in [7], it is necessary for many 
problems, including some that al)pear in that paper. 

The path expression mecfianism is very appealing 
for several reasons. First, path expressions take a 
non-procedural approach to specifying synchronization. As 
such, they seem to take umch of the burden of tile 
implementation off the user. Second, they are designed 
specifically to be t,sed as part of the definition of the 
abstract type of the resource. The synchronization is thus 
autonmtically associated with the resource, satisfying our 
first modularity requirement. 

Unfortunately, path expression soh, tions to many 
standard synchronization problems are complex and 
difficult to understand. The fact that so many versions of 
the mechanism exist s3~ggests that the designers have found 
some weaknesses and attempted to correct them. In this 
section, we will analyze two examples, one to show how 
expressive power is evaluated, and one to illustrate analysis 
of constraint dependencies. We then summarize 
conclusions drawn from a complete evaluation of the 
mechanism. 
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5.1.1 Express ive  Power  

The solution to the readerspriority problem, as 
given in [7], is shown in Figure 1. This problem states that 
readers lm~y enter a resource concurrently, but a writer 
excludes ;ill other users. In addition, if both readers and 
writers are waiting to access the resource, readers have 
priority over writers. (This specification allows writers to 
starve.) Thus, this problem has exclusion constraints based 
on request type and syn~'hronization state information, and 
priority constraints based on request type. The 
implementation of the exclusion constraint is 
straightforward. In isolation, it would be implemented as: 

path { read } , write end 

(Its implementation in this solution is somewhat more 
complex due to the need for coordination with other paths. 
We discuss this in more detail later.) 

The realization of the priority constraint in this 
solution is less straightforward than that of the exclusion 
constraint. Readers gain priority in two ways. First, since 
requestreads Inay execute concurrently, but requestwrites 
may not, a requestwrite may be blocked indefinitely while 
requestreads are allowed to proceed because other 
requestreads are already executing. If, in addition, we 
assume that when a selection is m~lde, the longest waiting 
process will be chosen, readers will also gain priority in the 
following way. The first path shown (in Figure 1) allows 
only one writeattempt at a time. Therefore, since 
requestwrite is invoked from writcattempt, there will be at 
most one requestwrite w;titing fit the second path at any 
time. All other WRITEs in progress will be blocked at the 
first path. However, while a requestwrite or write is in 
progress, any number of requestreads may enqueue at the 
second path, awaiting their turn to execute. Thus, during 
execution of a requestwrite, any number of READs and 
WRITEs may have started. The READs will have been 
allowed to proceed as far as the second path; no other 
WRITEs could have reached that point. Since the 
selection operator in the second path will restart the 

Figure 1. Readers Priority Solution 

path writeattempt end 
path { requestread } , requestwrite end 
path { read } , (openwrite ; write) end 

where 

requestwrite = begin openwrite end 
writeattempt = begin requestwrite end 
requestread = begin read end 
R E A D  = begin requestread end 
WRITE = begin writeattempt; write end 

process that has been waiting longest at that path, any 
number of requestreads may have priority over the next 
requestwrite, regardless of the order of invocation of the 
corresponding READs and WRITEs. 

The interactions among the paths in this example 
are complex; it is not clear from looking at the solution 
how each resource operation is affected by the 
synchronization. It is therefore difficult to convince oneself 
that the solution handles all cases properly. In fact, it 
does not produce the same behavior as the readers_priority 
exan'lple presented by Courtois, Heylnans, and Parnas[8]. 3 
It is obvious thai the priority scheme is implemented in a 
rather indirect manner. 

Thus, our evaluation of this example shows that 
path expressions allow straightforward implementation of 
exclusion constraints based on request type and 
synchronization state, but do not provide a direct means of 
specifying priority. 

By examining path expression solutions to 
problems that make use of the other categories of 
information, we were able to draw the following 
co,lclusions about the power of the mech:,nism. The paths 
themselves are limited in the kinds of information they can 
use. Distinctions can be made on the basis of request type. 
Also, given our extra constraint on selection, request 
ordering information is accessible (:although additional 
"request operations" may be needed). The aotomatic 
mutual exclusion among processes named in paths affords a 
means of expressing exchtsion constraints, although not of 
directly accessing synchronization state information. There 
is obviously no way to use parameter values in paths, nor is 
local resource state information available. Furthermore, no 
direct means of expressing priority constraints is provided. 

When paths cannot express the type of constraint 
needed, it is still possible to implement the solution. This 
is done by creating additional procedures in the resource 
module (which we will call synchronization procedures), 
and explicitly keeping track of the needed information. 
Synchronization is accomplished by calling other procedures 
to signal that the apl)ropriate state has been reached. 
These procedures are named at crucial points in paths, and 
serve as gates, to keep the actual access procedt,res from 
executing until the appropriate time. The readers_priority 
example used synchronization procedures (requestread, 
requestwrite, openread) to maintain priorities. The 

3. If a write is in progress, and another WRITE starts, 
the second writer can start writeattempt and requestwrite, 
and become blocked at the third path. If a reader enters 
before the end of the first write, it will be blocked at entry 
to the second path by the requestwrite in progress. The 
second writer will therefore gain access to the resource 
before the reader, though readers should have priority. 
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alarmclock example presented in [11] is another case in 
which synchronization procedures are used as gates. 

Thus, extra synchronization procedures are needed 
to handle request order, local stale, and parameter 
information. The use of these extra procedures adds a 
great deal of interaction between procedures and paths, and 
blurs the distinction between resource implementation and 
synchronization implementation. When synchronization 
procedures are needed, the implementor is forced to design 
the resource and synchronization together, making the task 
more complex. The implementation becomes more difficult 
to understand because no clear distinction exists between 
operations to access the resource and operations to 
synchronize it. Our modularity requirement that resource 
and synchronization should be separated stems from the 
need to avoid this complexity. Thus, the mechanism does 
not adequately support our second ntoduhtrity requirement. 
The use of synchronization procedures also detracts from 
the non-procedural approach of the nlechanism. 

It is interesting to note the correspondence 
between weaknesses illustrated through use of our 
evaluation methodology, and those that the mechanism 
designers have attempted to correct in later versions of the 
mechanism. In the second version of path expressions[lit, 
a priority operator was added, its was it conditional 
operator that allowed use of resource stale information and 
synchronization stale information in paths. The version 
presented in [10] introduced a nunleric operator that 
improved explicit use of synchronization state information, 
as well as history information. Finally, Andler[2] has 
introduced i)redicales and state variables for use in paths. 
This version comes closest to satisfying our requirements, 
although synchronization procedures are still needed in 
some examples. We thus have evidence that the 
weaknesses revealed by this method of analysis correspond 
to some extent with tllose found in other evaluations. The 
advantage here is that we could immediately identify 
several weaknesses and avoid the many iterations th:~t take 
place to correct the problems found from analysis of 
examples one at a time. 

5.1.2 Ease of Use 

The other property that must be examined, 
according to our methodology, is the additivity property of 
constraints. The use of synchronization procedures has a 
great impact ill this area as well. Because of the 
interactions between synchronization procedures and paths, 
it is difficult to differentiate the implementations of various 
constraints. As stated earlier, the exclusion constraint for 
the readers_writers problems, when implemented in 
isolation, is: 

path { read } , write end 

In the readers_priority solution [Figure 1], the openread 
procedure, which is part of the priority constraint 

implementation, is in the path implementing tile exclusion 
constraint. The openread operation is invoked from within 
the requestread operation named ill the second path and 
serves to coordinate the exclusion constraint with the 
priority constraint. Thus, if the exclusion constraint were 
already written and we wanted to add the priority 
constraint, we would need to determine how the 
implementation of the new constraint interacted with the 
old and add the appropriate procedures to coordinate them. 
The constraints are therefore not independent. This 
conclusion is further supported by a comparison of the 
readers_priority sohttion with a writerspriority solution 
(Figure 2). The path implementing the exclusion constraint 
is different in the writers_priority solution. Furthermore, 
to modify a readers_priority solution to writers_priority 
invoh'es changing every synchronization procedure and 
every path, even though the exclusion constraints are 
unchanged, and the priority constraints make use of the 
same kinds of information. A modification to one 
constraint invoh'es changing lhe entire solution. 

5.2 Monitors and Serializers 

Similar analyses of monitors [13] and serializers [3] 
yielded very different results from that of path expressions. 
We summarize the results of those evaluations in this 
section; more detailed explanations of the application of our 
evahlation techniques to these constructs can be found in 
15]. 

Monitors allow access to ;ill of the information 
types described: the condition queue construct is obviously 
useful for maintaining request type and request time 
information; priority queues provide a means for using most 
needed iuformation from arguments. Synchronization state, 
as well as any other needed information, must be explicitly 
kept by the user as local data of the monitor. The ways in 
which the information must be handled are, in general, 
direct and easy to understand. We also found that 
constraints were independent in most cases; the difficulty in 
making modifications corresponded to the extent of the 
change desired. One exception to the constraint 

Figure 2. Writers Priority Solution 

path readatten~pt end 
path requestread , { requestwrite } end 
path { openread ; read } , write end 

where 

readattempt = begin requestread end 
requestread = begin openread end 
requestwrite = begin write end 
READ = begin readattempt ; read end 
WRITE = begin requestwrite end 
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independence property is due to the explicit signal 
mechanism. Because'of the use of explicit signals, a total 
ordering of processes must be defined by the priority 
constr;,ints; thus, an exclusion constraint cannot be 
implemented without priority constraints. The 
implementor must decide in advance the order in which 
waiting processes will be signalled. 

The other case in which constraint independence 
is violated is due to a conflict between two particular 
information types. The monitor mechanism uses queues to 
maintain both request type and request time information. 
Request type dislincrions are made by placing processes 
with different types on separate queues, thus allowing them 
to be handled differently. Request ordering is maintained 
by placing the processes to be ordered on the same queue. 
Thus, a problem using request type information as well as 
request order requires that processes be placed on separate 
queues as well as the same queue. These two information 
types therefore conflict. The problem is solved by 
maintaining two stages of queuing; processes are first 
enqueued on a single queue, and, when they reach the head 
of  that queue, separated onto distinct queues based on 
request type. Because the interference between constraints 
occurs only in this limited case, and since a standard 
solution is available, the problem is not serious. It is, 
however, an illustration of interaction among constraints in 
a synchronization scheme. 

Monitors do not directly support the 
modularization suggested in Section 2. While the 
synchronization is located with the resource, rather than 
with users of the resource, the mechanism does not 
encourage separation of the resource implementation from 
the synchronization. In many examples shown in [13], the 
resource and the synchronizaiton data are both considered 

~to be local data o f  the monitor, and no distinctions are 
made in the way each is accessed. Monitors do, however, 
allow the proper modularization, and a standard method 
for properly structuring shared resources is easily 
developed. Such a structure consists-,of~hree modules: a 

shared :resource ,nodule, a resource, and a monitor. Shared 
resource objects contain two parts: a resource object and a 
monitor object. The operations of the shared resource 
invoke monitor operations before and after each resource 
operation; users have access only to the shared resource. 
Overall, this method of using monitors satisfies our 
modularity requirements, but is totally dependent on 
implementors properly using the mechanism. 

This structure significantly reduces the problem of 
nested monitor calls [18]. The nested monitor call problem 
results when an operation in one monflor is always invoked 
from an operation within another monitor. If the. second 
monitor waits, a deadlock will result because the second 
monitor is released by the wait, but the calling monitor is 
not. Therefore, no other process can enter the higher-level 
monitor to gain entry to the lower-level one and signal the 
waiting process. The higher-level monitor thus waits 

forever. 

Such a situation is likely to arise when resources 
are hierarchically structured, ;rod monitors are used at 
several levels, if the resource oper;Jtions ;ire the monitor 
operations. When shared resources are structured as 
described above, the mo,fitor is rele;ised before the resource 
operation is invoked.. Thus, even if monitors are used to 
protect several different levels in a hierarchically structured 
resource, each monitor is released before the lower level 
operation is called. Therefore, no deadlock will result. 
Deadlocks can, of course, still arise if resource operations 
are invoked from within monitor operations. 

The serializer mechanism was proposed by 
Atkinson and Hewitt[3] to improve upon the modularity of 
monitors, and to enhance verifiability and ease of use by 
inclusion of an automatic signalling construct to replace 
monitors'  explicit signalling mechanism. 

The way in which the seri;dizer mechanism 
developed [4] illustrates the need for defining the 
requirements synchronization condtructs shottkl meet. The 
monitor example in which weaknesses in modularity were 
perceived was the readers_writers problem. While the first 
version of serializers successfidly improved modularity, it 
had several deficiencies in expressive power. It had 
essentially been created around the readerswriters 
problems, and so included data strt, ctures for handling 
request type, request  time, ~n{I synchronization state 
information, but could not easily handle resource state, 
arguments passed to requests, or history information. Local 
variables and priority queues had to be added later. This 
situation emphasizes the need for a clear definition of the 
types of problems synchronization mechanisms should be 
able to handle. 

With respect to our expressive power criteria, 
serializers are similar to monitors. Each of the information 
types is accessible. Serializers provide an additional data 
structure for maintaining synchronizaticm state information 

crowds. Crowds maintain information about processes 
currently accessing the resource in much the salne way 
monitor conditions and serializer queues maiutain 
inform;ition about processes waiting to enter the resource. 
This eliminates the need for explicitly keeping counts, as 
required in monitors. Because counts are not very difficult 
to maintain, the advantages of the additional mechanism 
are unclear. 

The automatic signals of serializers have an 
unexpected benefit: they separate the means of using 
request time and request type infor,nation. In monitor 
solutions, as menlioned earlier, these two information types 
interfere with each other because both require queues. 
Serializers allow processes waiting for different conditions 
to be enqueued on the same queve. Request order is still 
maintained by enqueuing the requests to be ordered on a 
single queue; different request types on a qt,eue can be 
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distinguished by differences in the conditions for which 
enqueued processes are waiting. Of course, this extra 
mechanism also comes at the expense of efficiency. 

The other substanlial benefit of serializers is the 
improved modul~,rily. Serializers provide, as part of the 
mechanism, the means for slructuring resources in the 
melhod st,ggesled for monitors. Conceptually, the serializer 
surrounds the unsynchronized resource. The serializer and 
resource modules can be implemcnled indepeodently, but 
the serializer object conlains the resource. In addition, 
serializers provide a way of leaving control of the serializer 
while resource accesses are being perfor,ned. The 
"join_.crowd" operation not only places the invoking process 
in a crowd, it releases control of the serializer, making it 
available to other processes. The "leave_crowd" operation 
reenters the serializer. This structure thus avoids the 
"nested monitor call" problem while providing a structure 
for automaticldly associating the synchronization with the 
resource. If lhe resource is created inside a serializer, users 
can only access the resource by going through the 
serializer. In monitor solutions, if lhe resource is inside the 
monitor, no concurrency is possible, and deadlocks are 
likely. If the resource is oulside the monitor, deadlocks are 
avoided, but it is up to the implementor to guarantee 
protection by properly programming the extra shared 
resource module. Thus, serializers provide nmre mechanism 
than do monitors, at more cost, and a decision must be 
made as Io which is more appropriate for given situations. 

6. C o n c l u s i o n s  

This paper has presented a method for evaluating 
synchronization mechanisms to determine how well they 
satisfy criteria such as expressive power, ease of use and 
modifiability. We have shown that by identifying the kinds 
of  problems for which these mechanisms will be used, and 
carefully defining the properties in which we are interested, 
it is possible to develop a systematic method for assessing a 
construct's adherence to these requirements. Our 
evaluations of existing constructs show that the techniques 
described here have not only produced results that concur 
with our intuitive judgements about the mechanisms 
(drawn from long periods of experimenting and ad hoe 
testing), but have also provided additional information 
about weaknesses in mechanisms that allow us to predict 
which problems will be difficult to solve using a given 
mechanism. Thus, the information provided is important 
both to the designers of a mechanism, and to anyone 
needing to compare several mechanisms or select one for a 
given application. 

Our analysis thus far has been limited to 
synchronization constructs for a shared resource model. 
We have not looked extensively at message-passing models, 
or more recent mechanisms, such as guarded commands[19] 
and the mechanism proposed by Hoare in "Communicating 
Sequential Processes"['20], which may be used for many of 
the same synchronization problems. Since these and similar 

constructs will probably be used extensively in distributed 
systems, it is important to be able to evaluate and compare 
them. The techniques presented in this paper may prove 
useful in these evaluations. 
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