
FSMLABS TECHNICAL REPORT

Against priority inheritance

Victor Yodaiken
Finite State Machine Labs (FSMLabs)

Copyright Finite State Machine Labs 2001,2002

July 9, 2002

1 Inversion and inheritance

There is a mismatch between the properties required from priority driven real-
time systems and the property required for mutual exclusion. A priority sched-
uled real-time system must ensure that the highest priority runnable task can
start to run in a bounded time — and the bound needs to be small. A mutual ex-
clusion mechanism must ensure that every task requesting a certain resource
wait as long as it takes for the task that owns the resource to release it, no
matter what the priorities of the tasks. These two constraints can easily conflict
causing priority inversion — a scheduled task that is waiting for a lower priority
task. The classical nightmare case here is when a low priority task owns a re-
source, a high priority task is blocked waiting for the resource, and intermediate
priority tasks keep preempting the low priority task so it cannot make progress
towards releasing the resource. Here we have unbounded priority inversion. In
1980, Lampson and Redall concisely described the problem with reference to
exclusive entry monitors.

Unless care is taken, the assignment of priorities can be subverted
by monitors.[2]

Lampson and Redall explain that to avoid unbounded inversion, the pro-
grammer needs to analyze the program to determine the priority of the highest
priority task that locks the resource. The lock operation can then be modified
so that any task that holds the lock is temporarily promoted to this priority while
it holds the lock. The low priority task is considered to be acting on behalf of the
highest priority blocked task and the priority promotion prevents intermediate
priority tasks from interfering. This method (now often called priority ceiling)
works reliably, but has some drawbacks and the analysis can be difficult. Pri-
ority inheritance[3] promises a solution to unbounded priority inversion without

1



code analysis. The basic idea of priority inheritance is to provide dynamic cal-
culation of the ceiling priority. When a task blocks on a resource owned by a
lower priority task, the lower priority task inherits the priority of the blocking task
and continues.

The RTLinux core does not support priority inheritance 1 for a simple rea-
son: priority inheritance is incompatible with reliable real-time system design.
Priority inheritance is neither efficient nor reliable. Implementations are ei-
ther incomplete (and unreliable) or surprisingly complex and intrusive. In fact,
the original academic paper presenting priority inheritance [3] specifies (and
“proves correct”) an inheritance algorithm that is wrong. Worse, the basic in-
tent of the mechanism is to compensate for writing real-time software without
taking care of the interaction between priority and mutual exclusion. All too
often the result will be incorrect software with errors that are hard to find during
test.

Priority inheritance suffers from the drawbacks of all attempts to solve the
wrong problem. Synchronization is a price we pay for, sometimes unavoidable,
resource conflicts. The best strategy for reducing resource conflict costs is to
reduce competition for shared resources. Think of synchronization protocols as
analogous to tool check-in/check-out protocols in a repair shop. If the workers
are spending too much time arguing over who gets what tool or which work-
bench, the solution is better scheduling of work, not company wide meetings
to resolve each argument. In a companion article[5] I discuss some methods
we use to reduce contention in real programs.

2 A quartet of complaints

The purpose for priority inheritance is: bounding inversion delays without re-
quiring static analysis.

2.1 Problem: nested critical regions

The first problem is that nested critical regions protected by priority inheritance
locks generate long inversion delays. In practice critical regions protected
by priority inheritance locks must not contain any inheriting locking op-
erations.

Suppose T � owns mutex � � and is waiting for mutex ��� which is owned by
T � and so on. If High now blocks on � � we have to march down the chain pro-
moting each element. If not, High would be in danger of unbounded inversion
as lower tasks in the chain failed to advance because of intermediate priority
tasks. So priority inheritance needs to be a transitive operation. Consider the
worst case inversion delay under priority inversion. Ignoring the overhead of
the algorithm itself, our task High has to wait for every chained critical section
to complete! The delay is at least the sum of the compute times of the critical

1Although it is available on some add-on packages

2



sections. It’s quite possible that the the inversion delays of High may be dom-
inated by the critical sections of distantly related tasks. Note that adding task
T to the system may have dramatic effects on the worst case delays of High
by connecting High to a new chain of linked locks. Suppose, for example, that
task High can block on a chain of tasks that terminates with a task that blocks
on an operating system internal mutex. Now suppose that we add an appar-
ently unrelated task that may acquire this operating system mutex and become
the head of its own chain of tasks linked by inheriting mutexes. Suddenly, the
worst case inversion delay of High is no less than the sum of the critical section
compute times of all the tasks in both chains.

Finally consider what happens if a waiting task in an inheritance chain has
its timer go off. All tasks down-chain must be disinherited. All of this activity
adds to the inversion delay.

2.2 Problem: mixed inheriting and non-inheriting operations

Priority inheritance fails if tasks mix inheriting and non-inheriting blocking oper-
ations. In practice, critical regions protected by priority inheritance locks
must not contain any non-inheriting blocking operations either.

Priority inheritance algorithms assume that each locked resource has a sin-
gle identifiable owner that can inherit. But many blocking operations do not
have single identifiable owners. Consider what happens if a task T has a pri-
ority inheriting mutex � protecting a critical region that contains a blocking I/O
operation on an interprocess communication pseudo-device, such as a pipe or
fifo. If task High blocks on � and Low is waiting for task VeryLow to write
data into the pipe, then our classic unbounded inversion delay is possible —
unless the inheritance algorithm is transitive across different types of blocking
operations.
Low lock � read p
High lock �
VeryLow lock � � write p

That is, the inheritance operation must first promote Low and then see that
Low is waiting on the pipe for VeryLow and promote VeryLow. Even worse, if
VeryLow is itself waiting on a blocking operation, we have to follow that chain
too. However, in general it is impossible to follow the chain because a pipe may
not have any owner or it may have many owners and there is often no way to
find out. Pipes are simply not suitable for priority inheritance.

Priority inheritance algorithms require that the owner of the lock must re-
lease the lock — otherwise the inherited priority is not properly returned. But
the standard algorithm for producer consumer involves the producer unlocking
and the consumer locking. Suppose that T � consumes data passed by T � using
a semaphore � to synchronize so that T � decrements and blocks and T � posts.
If the T � can hold inheriting mutex � when it decrements � , then it is possible

3



that High will block on � and pass its priority to T � which is not going to be able
to use it. If T � preempts T � , then inversion can arbitrarily delay High. Perhaps
you think that we can make the inheritance algorithm promote T � when it sees
that T � is blocked on � . But what if there are many producer tasks? What if the
producer tasks take turns? Semaphores are not designed for inheritance.

The existence of priority inherit locks makes this error easy to make. There
is no good way to statically test that there are no instances of this type of use
of locks in the system, and there is no sensible recovery if the error is caught
at runtime. Many operating systems run signal handlers in the context of the
current task for efficiency. In such a case, a signal handler that releases a lock
can cause a fatal error that may not show up on tests.

You might respond that this is hardly fair because priority ceiling has the
same trouble. But the static analysis required for priority ceiling is at a level that
would uncover our semaphore problem. And who cares about being fair? I care
about what happens when the nuclear power plant software needs to shut that
valve at once! And I shudder to think of how the programmers designing that
plant software may have believed that they didn’t need static analysis because
priority inheritance took care of the problem automatically.

One solution would be to ban inheritance-resistant blocking operations, but
POSIX specifies at least the following synchronizing methods that are com-
pletely unsuitable for inheritance: semaphores, read/write locks, and blocking
I/O. POSIX semaphores are not required to be decremented and incremented
in pairs by the same task or even to have an identifiable owner. Read/write
locks can have many owners and cannot be efficiently implemented if all own-
ers are identified. And blocking I/O is just hopeless when you think about in-
heritance.

According to Vahalia [4], the Solaris developers made inheritance “sort-
of” work on reader/writer locks. A reader/writer lock allows many readers to
hold the lock at the same time but gives exclusive access to a single writer
— there are no readers when a writer has the lock. Which reader gets to
inherit when a writer blocks? “All of them” is a bad answer because we need
to then make acquiring a read lock very expensive (defeating the purpose)
and each lock would need auxiliary storage big enough to identify a potentially
large number of readers. So the Solaris designers decided to make the first
reader the “reader of record” and only promote that one. What happens if the
first reader releases the lock before the others? Things don’t work, that’s what
happens: low priority remaining readers still block the writer and they do not
inherit. Basically, this trick means that devastating errors will be unlikely to
show up in tests.

2.3 Problem: Performance

Priority inheritance worst case performance is worse than the easy alternatives
in most cases. In practice, unless the guarded critical region requires a
relatively high compute cost, priority inheritance has guaranteed poor

4



performance.
Lampson and Redall’s method and all elaborations of that method, including

priority inheritance, have a certain level of built in inversion delay while the lower
priority task completes the critical region. While you can argue that the lower
priority task is doing something on behalf of the higher priority task sharing the
resource, the bottom line is that the higher priority task is waiting for the lower
priority task. But inheritance increases this built delay.

At its most simple: inheritance costs include:

1. Blocking the higher priority task;

2. Passing the priority down;

3. Restarting the lower priority task;

4. The compute time of the critical section in the lower priority task;

5. Unblocking the higher priority task when the resource is freed;

6. Restarting the higher priority task.

If we allow nesting of priority inherit locks, this can be multiplied by the
length of the longest chain.

Now let’s consider a simple alternative design: disable all preempts during
the critical section. The worst case inversion delay of a task under the “disable
preemption” method is the longest compute time of any critical region of any
lower priority task in the system. There is no false preempt, no block, no restart,
and no transitivity. If the guarded operation is short, such as a link or unlink
operation on a queue, there is no doubt that priority inheritance loses. So
priority inheritance is only a performance win for task T if the sum of the critical
section compute costs plus the overhead of any chain of connected resources
is lower than the cost of the most expensive critical resource on some lower
priority task that does not belong to any chain including T.

2.4 Problem: Operating System Performance

Inheritance algorithms are complicated and easy to get wrong. In practice
putting priority inheritance into an operating system increases the inver-
sion delays produced by the operating system.

You could say that many components of operating systems are complicated
and easy to get wrong, but it is widely believed that “implementation of the ba-
sic priority inheritance protocol is rather straightforward”[3]. In fact, the “basic
priority inheritance” algorithm specified by Sha, Rajkumar, and Lehoczky[3] is
rather straightforward, but it is also incorrect. Basic priority inheritance spec-
ifies that when a task releases a lock, it restores its priority to the priority it
had before it acquired the lock: inherited priorities are restored using a stack
algorithm. Suppose task T locks � � and then ��� and then it inherits a priority
on � � . If T then unlocks ��� and reverts to the priority it had prior to locking

5



� � it would discard the inherited priority. Instead of using a stack of inherited
priorities, a correct inheritance algorithm must keep a list for task of each held
lock and for each held lock, there must be a list every inherited priority and
when a task releases a lock it must revert to the highest remaining inherited
priority. This entire operation must be done atomically to avoid missing inheri-
tances and false inheritances. When a task unlocks an inherit lock it searches
through a list of all locks it holds, and for each held lock checks a list of inherited
priorities to determine whether what its new priority should be – all atomically.
Now consider what happens if we take transitivity into account.

We often want to keep wait-queues in priority order. But priority inheritance
can change the priority of threads waiting in queues. As task High blocks on� � in the example above each task down the queue must inherit and then be
moved to the correct spot in its wait queue. Generally we would do this with two
queue operations: dequeue and insert where the insert operation on a 	 length
queue can take 	 steps. In the worst case, as the chain is created task 
���
needs to reorder task 
�� � ’s wait queue, task 
���� needs to reorder both 
�� �
and 
��� and, so we may have something like ������ ��� queue reorder operations
each taking 	�� � steps. Note that the each descent of a chain and all the queue
operations in the descent must be done atomically. Imagine if we protect an
operation on a shared queue with a priority inherit mutex and our worst case
synchronization cost for protecting the queue operation is an atomic operation
consisting of 
 dequeues and 
 inserts. Now imagine that task SuperHigh
becomes runnable at the moment this inherit operation for High starts. Even if
SuperHigh does not share any resources with High, it must still wait for this
entire atomic operation to complete. So the operating system itself becomes a
source of inversion delays for tasks as the operating system atomically carries
out the inheritance algorithm on unrelated tasks.

The VxWorks designers originally tried to evade the issue by having a
thread retain its highest inherited priority until it released all locks — but this
can cause unbounded inversion. Suppose Low locks

� � and then
� � and inherits

from SuperHigh on
� � , releases

� � and continues to use the super-high priority.
Reportedly, recent versions of VxWorks have the full algorithm implemented —
but see below. The reader should see [4] for a gruesome description of what
was needed in Solaris for an implementation that seems to be complete (ignor-
ing the issues raised above on read/write locks and other inheritance unfriendly
blocking operations).

Just as chip designers have a certain “transistor budget” that cannot be ex-
ceeded without making a chip too expensive to produce, design, and operate,
operating system designers have an ”algorithmic complexity” budget. Just as
deciding to add decode of complex instructions may mean that the chip has a
smaller cache, deciding to add priority inheritance may mean that the operating
system can’t use faster data structures.

6



2.5 Summarizing

Let’s summarize the notes:

1. Priority inheritance protected critical sections should not contain inherit-
ing blocking operations.

2. Priority inherit protected critical sections should not contain non-inheriting
blocking operations.

3. Priority inheritance adds a significant amount of complexity to the oper-
ating system.

4. Priority inheritance protected critical sections should be relatively costly
in terms of compute time or they perform worse than the simplest alter-
native.

As a short comment, if we spot a compute expensive critical region that
contains no nested blocking operations, our first thought should not be to cheer
that we have finally found a good place to use priority inheritance. Instead we
should ask why the task needs to do so much computation inside a critical
region.

3 Concluding notes

Avoiding unbounded priority inversion is important, but not not mysterious. Re-
liable solutions are not easy, but despite claims that actually designing and
analyzing code is too hard[1], there is no good substitute. Priority inversion
is caused by scheduling when a low priority task holds a resource that may
be required by a higher priority task. The obvious solutions are to (1) make
the operation using this resource atomic and fast (so there is no scheduling),
or (2) remove the contention, or (3) priority schedule the operations. Priority
inheritance attempts to provide option (3) as a side-effect. The paper [5] will
describe better solutions in detail, but let me conclude with quick examples of
all three options.

How do we make an operation atomic? In RTLinux programmers can use
the pthread spin lock operation to disable interrupts and, in an SMP sys-
tem, set a spin lock. For most queue operations, the sequence
pthread spin lock; deq; pthread spin unlock has a far better worst
case performance than anything more complex and it is easy to analyze and
validate. Even better, we can use an existing atomic operation like read and
write on RT-fifos.

How can we remove contention? The ancient trick of a flip-buffer is always
useful. Suppose we have a producer and 5 consumers of sensed data. We can
easily reserve, say, 10 buffers. The producer can scan the buffer list looking for
a free one and simply drop data if there are no free buffers. The consumers can
scan through the buffers using sem trylock. When a consumer is done, it can

7



mark the buffer free. What do we do if no buffers are available? In most cases,
consumers can simply fail if there is no data to consume. Or they can use a
counting semaphore to block for data. On RTLinux, the counting semaphore is
priority sorted so the highest priority waiter will get the first chance at new data.
What about the producer? One strategy is to have the producer do a second
scan on a failure and try to grab the semaphore. Because we have 10 buffers
and only 5 consumers, we can require that each consumer only hold at most
one buffer. The producer can then be assured that there are 5 usable buffers
holding stale data that can be overwritten.

And how can we explicitly schedule operations? Suppose we have a database
of some sort and we have queries that can potentially take a while to process.
Define a structure, say

struct request { myrequest_t request_identifier;
pthread_t requestor;
sem_t *s;
myrecord_t *return_data;
}

The requester fills out a request, writes the request to a RT-fifo, does a
semaphore post on the server thread semaphore and does a semaphore lock
to wait. A server process wakes up, orders the queue of requests and com-
pletes them in priority order. If we set the server priority to be equal to that
of the highest possible requester, then no inversion can take place. For long
transaction on behalf of low priority threads, the server can break the trans-
action into components and keep checking for both new requests and calling
sched yield to allow high priority users to advance.

4 Thanks

This note has been in rough draft for many years and has benefited from com-
ments from many people who should not be held responsible for my views or
errors. Thanks to Mark Brown at IBM, Prof. Ismael Ripoll at the University of
Valencia in Spain, Kevin Danqwardt of K. Computing, and Michael Barabanov
and Cort Dougan of FSMLabs for the most recent useful comments.

References

[1] Barbie. Recorded message:math is too hard, around 1995.

[2] B. W. Lampson and D. D. Redell. Experience with processes and monitors
in mesa. Communications of the ACM, 23(2):105–117, feb 1900.

[3] John P. Lehoczky Lui Sha, Ragunathan Rajkumar. Priority inheritance pro-
tocols: An approach to real-time synchronization. IEEE Transactions on
Computers, 39:1175–1185, 1990.

8



[4] Uresh Vahalia. Unix Internals: The new frontiers. Prentice-Hall, 1996.

[5] Victor Yodaiken. Synchronization strategies in rtlinux. Technical Report
2FSM2002, FSMLabs, 2002.

9


