

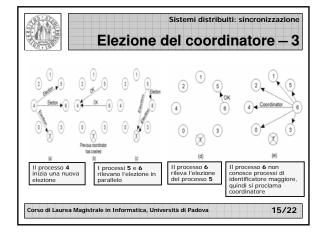
Sistemi distribuiti: sincronizzazione

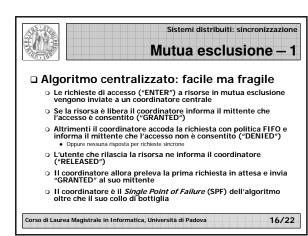
Elezione del coordinatore – 1

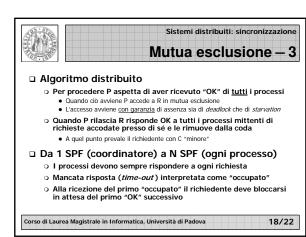
- □ La presenza di un coordinatore facilita la costruzione di algoritmi distribuiti
- □ Eleggere un coordinatore richiede accordo disťribuito
 - L'obiettivo dell'algoritmo di elezione è assicurarne la terminazione con l'accordo di tutti i partecipanti

□ Prerequisiti

- Un identificatore unico e ordinabile (maggiore, minore) è associato a ciascun processo del sistema (o del gruppo)
- Ogni processo conosce gli identificatori di tutti gli altri processi del sistema (o del gruppo)


Corso di Laurea Magistrale in Informatica, Università di Padova


13/22


Corso di Laurea Magistrale in Informatica, Università di Padova

14/22

Sistemi distribuiti: sincronizzazione

Mutua esclusione – 4

- □ Algoritmo a gettone circolante (token ring)
 - Processi collegati in sequenza circolare ordinata e punto a punto lungo la quale deve transitare un gettone
 - O II processo in posizione O riceve per primo il gettone
 - Il possesso del gettone consente al processo di accedere 1 risorsa in mutua esclusione
 Per poi passare il gettone al suo vicino
 - Se il processo non ha immediato bisogno di risorse passa subito il gettone al vicino
 Il vicino conferma la ricezione altrimenti viene rimosso dalla sequenza
 - Nel caso peggiore un processo richiedente aspetta una intera rotazione del gettone
- $\hfill \square$ II gettone è 1 SPF \rightarrow se perso, va rigenerato

Corso di Laurea Magistrale in Informatica, Università di Padova

19/22

Sistemi distribuiti: sincronizzazione

Mutua esclusione – 5

- □ I 3 algoritmi possono essere raffrontati in relazione a 3 criteri fondamentali
 - O Numero di messaggi necessari al processo per poter operare sulla risorsa richiesta (ingresso e uscita)
 - O II tempo necessario perché la richiesta abbia successo
 - o Le debolezze dell'algoritmo
- □ Questi 3 criteri possono essere applicati a varie classi di algoritmi distribuiti

Corso di Laurea Magistrale in Informatica, Università di Padova

20/22

Sistemi distribuiti: sincronizzazione

Mutua esclusione – 6

Algoritmo	# Messaggi per accesso e rilascio risorsa	Max attesa di accesso spesa per invio messaggi (costo >> lavoro)	Punti deboli (SPF)
Centralizzato	3 (ENTER, GRANTED, RELEASED)	2 (ENTER, GRANTED)	Guasto del coordinatore
Distribuito	2 (n – 1) (GRANT?, RELEASED) da uno a tutti gli altri	2 (n – 1)	Guasto di qualsiasi processo
Gettone circolante	1 ∞ (se tutti [1] o nessuno [∞] sono interessati alla risorsa)	0 n - 1 (gettone in possesso, gettone all'altro capo)	Gettone perso Guasto di processo

Raffronto prestazionale tra gli algoritmi

Corso di Laurea Magistrale in Informatica, Università di Padova

21/22

Sistemi distribuiti: sincronizzazione

Argomenti non trattati

- □ Argomenti importanti per la problematica di questa lezione <u>non trattati</u> per limiti temporali del corso
 - O Sincronizzazione degli orologi fisici
 - Il middleware di ogni nodo del sistema distribuito aggiusta il valore del suo orologio fisico in modo coerente con quello degli altri
 - O Sincronizzazione degli orologi logici
 - Leslie Lamport ha mostrato come l'accordo degli orologi fisici <u>non</u> sia necessario ma lo sia solo <u>l'ordinamento</u> degli eventi (relazione "precede")
 - O Transazioni distribuite
 - Come ottenere mutua esclusione e **operazioni atomiche** su dati condivisi (*Atomicity Consistency Isolation Durability*)

Corso di Laurea Magistrale in Informatica, Università di Padova

22/22