

Architettura del modello - 4

- L'ORB è l'infrastruttura di comunicazione tra cliente e servente
 - Dal punto di vista dei processi applicativi l'ORB tratta riferimenti a oggetti (object reference)
 - Ciascuna istanza di ORB dovrà rendere questi riferimenti comprensibili ad altri ORB e processi residenti su nodi distinti
- □ Compito principale dell'ORB è localizzare i servizi disponibili a un processo cliente
 - Un sistema CORBA non è compilato come applicazione unica dunque non conosce a priori i nomi dei servizi disponibili

Laurea Magistrale in Informatica, Università di Padova

5/33

Sistemi distribuiti: il modello CORBA

Architettura del modello – 6

- □ Un *object adapter* fa da tramite tra l'ORB e l'oggetto remoto per le richieste in ingresso
 - L'unmarshalling delle invocazioni viene eseguito dallo skeleton dell'oggetto
- □ 2 tipi di *skeleton*
 - \circ Statico \rightarrow compilato
 - <u>Dinamico</u> → skeleton generico con realizzazione specifica del metodo invoke offerto al cliente
 - Parte della realizzazione dell'oggetto distribuito

Laurea Magistrale in Informatica, Università di Padova

7/33

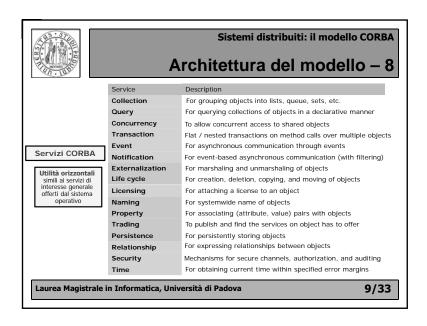
Sistemi distribuiti: il modello CORBA

Architettura del modello – 5

- L'interfaccia tra proxy e ORB non deve essere necessariamente realizzata in forma standard
 - Essendo specificato in CORBA IDL può essere compilato in un linguaggio a scelta e quindi integrato nella realizzazione concreta del proxy
- Non tutti i proxy e le relative interfacce ORB possono essere realizzati/e staticamente
 - Un'applicazione può voler/dover determinare il servizio di interesse solo a tempo d'esecuzione e invocarlo dinamicamente
 - O L'interfaccia offre un metodo invoke generico

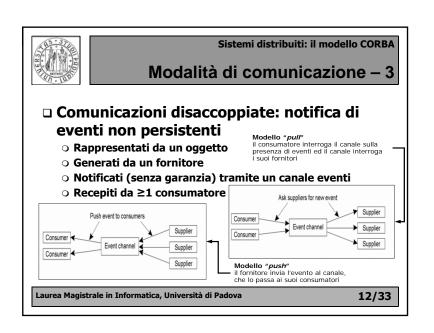
Laurea Magistrale in Informatica, Università di Padova

6/33

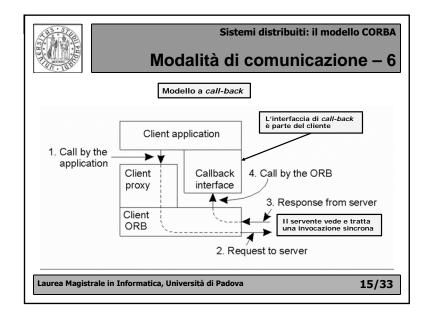


Sistemi distribuiti: il modello CORBA

Architettura del modello – 7


- □ Anagrafe (*directory*) delle interfacce
 - Basato sulle definizioni IDL statiche con identificatore attribuito dal compilatore IDL
 - Senza garanzie di unicità (!)
 - O Operazioni standard di navigazione nel repertorio
 - Uguali per ogni ORB
- □ Anagrafe delle implementazioni
 - O Designa ciò che occorre per realizzare e attivare oggetti
 - O Modalità strettamente legate alle specifiche istanze ORB

Laurea Magistrale in Informatica, Università di Padova



Modalità di comunicazione - 4

- □ RMI e notifica di evento non conservano la richiesta fino alla consegna della risposta
 - O Comunicazioni transitorie
- □ Il modello a code di messaggi permette comunicazioni persistenti
 - O Adottato da CORBA in forma basata su oggetti
 - O 2 stili di realizzazione, entrambi a carico del chiamante
 - Modello a call-back
 - Modello a *polling*
 - Comportano accoppiamento tra chiamante e chiamato

Laurea Magistrale in Informatica, Università di Padova

13/33

Sistemi distribuiti: il modello CORBA

Modalità di comunicazione - 5

□ Modello a *call-back*

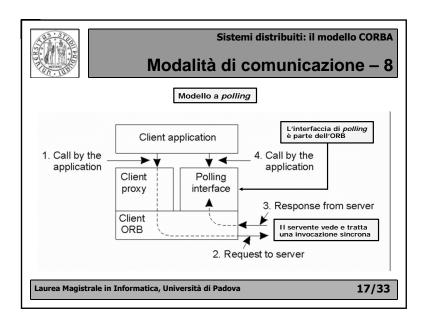
- Il cliente fornisce il riferimento a un proprio oggetto che realizza un interfaccia di call-back cui trasmettere i risultati della richiesta
 - La richiesta diventa asincrona per il chiamante
 - La richiesta resta sincrona per il servente

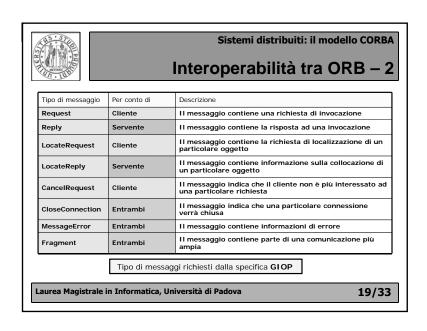
L'interfaccia del cliente verso il servente viene sdoppiato

- Uno contiene i metodi invocabili dal cliente trasformati in modo che nessuno di essi contenga parametri di ritorno
 - Quasi come un normale proxy
- L'altro (aggiuntivo) contiene i metodi che l'ORB dovrà invocare per restituire il valore di ritorno prodotto dalle richieste del cliente
 - · Interfaccia di call-back

Laurea Magistrale in Informatica, Università di Padova

14/33


Sistemi distribuiti: il modello CORBA


Modalità di comunicazione - 7

□ Modello a polling

- L'ORB fornisce un insieme di operazioni astratte che consentono al cliente di interrogarlo circa la presenza di risposte di ritorno
 - L'invocazione sincrona viene così resa asincrona nella vista del cliente
- Il cliente utilizza queste operazioni per la sua vista dell'interfaccia del servente
 - Con una operazione invia la chiamata all'ORB richiedendo di trattenere la risposta fino a una futura interrogazione esplicita
 - Realizzata nel proxy del cliente
 - Con l'altra il cliente interroga l'ORB per ottenere la risposta
 - Realizzata nell'ORB ma $\underline{automaticamente}$ a partire dall'IDL della richiesta

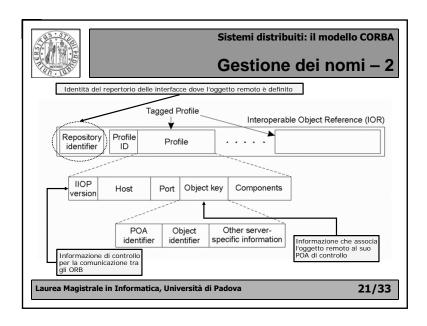
Laurea Magistrale in Informatica, Università di Padova

Interoperabilità tra ORB - 1

- L'infrastruttura CORBA si basa su un insieme di ORB eterogenei residenti sui nodi del sistema
 - CORBA specifica ciò che ciascun ORB deve fare ma non ne fornisce realizzazioni standard
- Un protocollo standard consente agli ORB di comunicare
 - GIOP (General Inter-ORB Protocol) ne è la specifica, che richiede middleware di comunicazioni affidabili
 - IIOP (Internet Inter-ORB Protocol) ne è realizzazione base che si poggia su TCP/IP
 - DIOP (Datagram Inter-ORB Protocol) specializza GIOP con semantica asynchronous one-way utilizzando UDP/IP

Laurea Magistrale in Informatica, Università di Padova

18/33



Sistemi distribuiti: il modello CORBA

Gestione dei nomi – 1

- □ Il riferimento agli oggetti CORBA deve essere <u>portabile</u> su diversi linguaggi di programmazione
- ☐ Il riferimento portabile è usato dall'ORB
 - Il cliente ne usa una versione specifica del linguaggio di programmazione
- □ La versione portabile è detta *Interoperable Object Reference* (IOR)

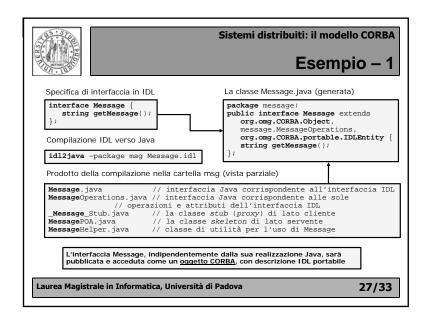
Laurea Magistrale in Informatica, Università di Padova

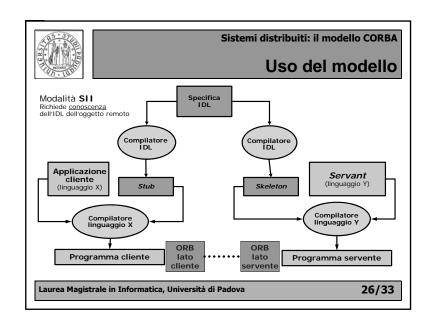
Gestione dei nomi – 3

- □ Il campo <Object key> dello IOR riferisce direttamente l'oggetto remoto
 - O Se disponibile, questa informazione consente direct binding
 - Il riferimento viene subito inviato al corrispondente processo servente (POA)
- □ L'informazione iniziale può essere invece limitata alla *directory* delle interfacce
 - In questo caso si ha indirect binding e il cliente deve prima interrogare il processo gestore della directory che esegue tutte le azioni necessarie per consentire e attivare la connessione tra cliente e servente

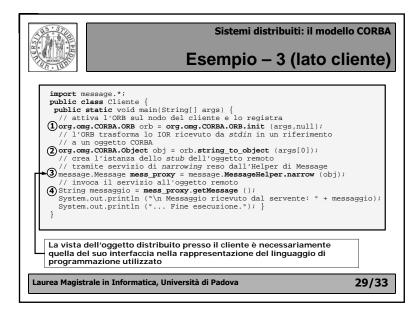
Laurea Magistrale in Informatica, Università di Padova

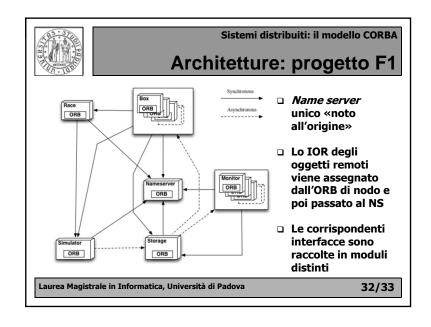
22/33

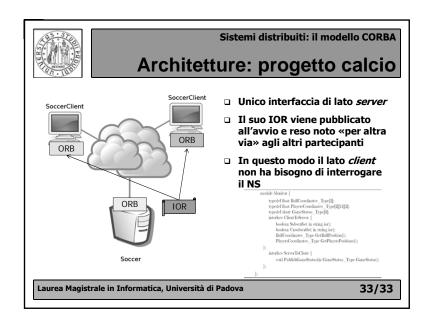

Sistemi distribuiti: il modello CORBA


Lato servente – 1

- □ Servant
 - O La parte dell'oggetto che realizza i metodi remoti
 - O Realizzato in uno specifico linguaggio di programmazione
 - Non portabile e non necessariamente un oggetto
- □ Portable Object Adapter (POA)
 - Componente che rende il codice di lato servente come un insieme di oggetti a disposizione di clienti distribuiti
 - O La sua specifica lo rende portabile su ORB eterogenei
 - Rende il servant fruibile ai clienti creandone l'immagine di oggetto → activate() activate_object_with_id (params)


Laurea Magistrale in Informatica, Università di Padova




Esempio – 4 (lato servente)

□ Le azioni del processo servente

- 1. Inizializzare l'ORB sul proprio nodo traendone un riferimento locale e ottenendo la propria registrazione
- 2. Creare un'istanza del POA di nodo configurando le politiche di attivazione degli oggetti (p.es. persistenza)
 - O Si può istituire un'intera gerarchia di POA a partire da una radice predefinita
- Registrare il servant sul POA traendone il riferimento IOR all'oggetto CORBA corrispondente
- 4. Attivare il POA
- 5. Porre l'applicazione servente in attesa lanciando l'esecuzione della propria vista dell'ORB

Laurea Magistrale in Informatica, Università di Padova

