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Abstract

An Object Adapter is an integral part of the Common Object
Request Broker Architecture (CORBA). An Object Adapter as-
sists an Object Request Broker (ORB) in delivering client re-
quests to server object implementations (servants). Services
provided by an Object Adapter include: (1) generating and
interpreting object references, (2) activating and deactivating
servants, (3) demultiplexing requests to map object references
onto their corresponding servants, and (4) collaborating with
automatically-generated IDL skeletons to invoke operations
on servants.

This paper provides two contributions to the study of Ob-
ject Adapters. First, it outlines the CORBA Portable Object
Adapter (POA) specification, which is a recent addition to
the CORBA standard that greatly simplifies the development
of portable and extensible servants and server applications.
The design goals, architectural components, and semantics of
the POA are explained. Second, the paper describes the de-
sign choices made to adapt the POA for the TAO Real-time
ORB. Key design issues regarding efficient demultiplexing, up-
call and collocation optimizations, ORB and POA concur-
rency configurations, POA synchronization, and predictability
are covered.

1 Introduction

The Common Object Request Broker Architecture (CORBA)
[1] is an emerging standard for distributed object computing
(DOC) middleware. DOC middleware resides between clients
and servers, simplifying application development by providing
a uniform view of heterogeneous network and OS layers.

At the heart of DOC middleware areObject Request Brokers
(ORBs), such as CORBA [1], DCOM [2], and Java RMI [3].

�This work was supported in part by Boeing, CDI, DARPA contract
9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and US
Sprint.

ORBs eliminate many tedious, error-prone, and non-portable
aspects of developing and maintaining distributed applications
by automating common network programming tasks such as
object location, object activation, parameter marshaling, fault
recovery, and security. Thus, ORBs facilitate the develop-
ment of flexible distributed applications and reusable services
in heterogeneous distributed environments.

The Portable Object Adapter (POA) specification [4] is an
important new component that the OMG has defined for the
CORBA standard. The POA is an integral part of the server-
side of the CORBA reference model. It allows developers
to construct CORBA server applications that are portable be-
tween heterogeneous ORB implementations [5].

This paper is organized as follows: Section 2 gives an
overview of the CORBA architecture and shows how the Ob-
ject Adapter fits into this architecture; Section 3 describes the
functionality provided by a CORBA Object Adapter and in-
troduces the POA [4]; Section 4 outlines the designed goals
of the POA as specified by the OMG; Section 5 presents an
overview of the POA architecture; Section 6 illustrates the key
interactions and collaborations of POA components; Section 7
discusses the POA features necessary for a Real-time ORB;
and Section 8 presents concluding remarks.

2 CORBA Architecture

CORBA Object Request Brokers (ORBs) [6] allow clients to
invoke operations on distributed objects without concern for:

Object location: CORBA objects can be collocated with the
client or distributed on a remote server, without affecting their
implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.
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Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects
stemming from differences in hardware such as storage layout
and data type sizes/ranges.

Figure 1 illustrates the components in the CORBA refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above. Each com-

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

DIIDII ORBORB
INTERFACEINTERFACE

ORBORB    CORECORE

operation()operation()

OBJECTOBJECT

ADAPTERADAPTER

in  argsin  args

out  args + return  valueout  args + return  value

CLIENTCLIENT

GIOPGIOP//IIOPIIOP

OBJECTOBJECT
((SERVANTSERVANT))

IDLIDL
STUBSSTUBS

STANDARD  INTERFACESTANDARD  INTERFACE STANDARD  LANGUAGE  MAPPINGSTANDARD  LANGUAGE  MAPPING

ORB-ORB-SPECIFIC  INTERFACESPECIFIC  INTERFACE STANDARD  PROTOCOLSTANDARD  PROTOCOL

INTERFACEINTERFACE

REPOSITORYREPOSITORY

IMPLEMENTATIONIMPLEMENTATION

REPOSITORYREPOSITORY

IDLIDL
COMPILERCOMPILER

IDLIDL
SKELETONSKELETON

DSIDSI

Figure 1: Components in the CORBA Reference Model

ponent in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by
obtaining object references to objects and invoking opera-
tions on them. Objects can be remote or collocated rela-
tive to the client. Ideally, accessing a remote object should
be as simple as calling an operation on a local object,i.e.,
object !operation(args) . Figure 1 shows the under-
lying components that ORBs use to transmit remote operation
requests transparently from client to object.

Object: In CORBA, an object is an instance of an Interface
Definition Language (IDL) interface. The object is identified
by an object reference, which uniquely names that instance
across servers. AnObjectIdassociates an object with its ser-
vant implementation, and is unique within the scope of an Ob-
ject Adapter. An object has one or more servants associated
with it that implement the interface.

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented using
one or more objects. In non-OO languages like C, servants are
typically implemented using functions andstruct s. A client

never interacts with a servant directly, but always through an
object.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
For objects executing remotely, a CORBA-compliant [1] ORB
Core communicates via some version of the General Inter-
ORB Protocol (GIOP), most commonly the Internet Inter-
ORB Protocol (IIOP), which runs atop the TCP transport pro-
tocol. An ORB Core is typically implemented as a run-time
library linked into both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,e.g., one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
(1) initialize and shutdown the ORB, (2) convert object ref-
erences to strings and back, and (3) create argument lists for
requests made through thedynamic invocation interface(DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface(SII) that marshals application parameters into a
common data-level representation. Conversely, skeletons de-
marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms
OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing program-
ming language transparency, IDL compilers eliminate com-
mon sources of network programming errors and provide op-
portunities for automated compiler optimizations [7].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility is
useful when an application has no compile-time knowledge
of the interface it is accessing. The DII also allows clients
to makedeferred synchronouscalls, which decouple the re-
quest and response portions of twoway operations to avoid
blocking the client until the servant responds. In contrast,
SII stubs currently only supporttwoway, i.e., request/response,
andoneway, i.e., request only operations, though the OMG has
standardized an asynchronous method invocation interface in
the recent Messaging Service specification [8].

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to a servant that has no compile-time knowledge of
the IDL interface it is implementing. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.
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Object Adapter: An Object Adapter associates a servant
with objects, demultiplexes incoming requests to the servant,
and collaborates with the IDL skeleton to dispatch the appro-
priate operation upcall on that servant. Recent CORBA porta-
bility enhancements [1] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB. Ob-
ject Adapters enable ORBs to support various types of ser-
vants that possess similar requirements. This design results
in a smaller and simpler ORB that can still support a wide
range of object granularities, lifetimes, policies, implementa-
tion styles, and other properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on
the object and make invocations on it. In addition, the In-
terface Repository provides a common location to store ad-
ditional information associated with interfaces ORB objects,
such as stub/skeleton type libraries.

Implementation Repository: The Implementation Reposi-
tory [9] contains information that allows an ORB to activate
servers to process servants. Most of the information in the Im-
plementation Repository is specific to an ORB or OS environ-
ment. In addition, the Implementation Repository provides a
common location to store information associated with servers,
such as administrative control, resource allocation, security,
and activation modes.

3 Object Adapter Overview

This section describes the functionality provided by a CORBA
Object Adapter. In addition, this section introduces the
Portable Object Adapter (POA) and contrasts the POA with
its predecessor, the Basic Object Adapter (BOA).

3.1 Object Adapter Functionality

A CORBA Object Adapter is responsible for: (a) generating
object references, (b) activation and deactivation of servants,
(c) demultiplexing requests to servants, and (d) collaborating
with IDL skeletons to invoke servant operations. These re-
sponsibilities are described in detail below:

Generating object references: An Object Adapter is re-
sponsible for generating object references for the CORBA ob-
jects registered with it. Object references identify a CORBA
object and contain addressing information that allow clients to
to invoke operations on that object in a distributed system. Ob-
ject Adapters cooperate with the communication mechanisms

in the ORB Core and underlying OS to ensure that the infor-
mation necessary to reach an object is present in the object
reference.

Figure 2 shows a typical Interoperable Object Reference
(IOR), which supports the Internet Inter-ORB Protocol (IIOP)
[1]. An IOR contains the IIOP version, host name, and port

iiop:1.0//pachanga:10015/P353bccdb00094ae8/firstPOA/myservant

Object
Adapter Id

Protocol Id

Communication
Endpoint

Time Stamp Object Id

Figure 2: Interoperable Object Reference

number that identifies a communication endpoint for the server
process; some means to ensure uniqueness for certain types of
IORs,e.g., timestamps fortransientIORs; the identity of the
Object Adapter; and the identity of the CORBA object.

Activation and deactivation of servants: Object Adapters
can activate CORBA objects to handle client requests. To ac-
complish this, an Object Adapter can be programmed to cre-
ate servants that handle requests for those objects. Similarly,
Object Adapters can deactivate objects and can destroy their
corresponding servants when they are no longer needed,e.g.,
to reduce server memory consumption.

Demultiplexing requests to servants: Object Adapters de-
multiplex CORBA requests to the appropriate servants. When
an ORB Core receives a request, it collaborates with the Ob-
ject Adapter through a private,i.e., non-standardized, interface
to ensure that the request reaches the proper servant. The Ob-
ject Adapter parses the request to locate the Object Id of the
servant, which it uses to locate the correct servant and invoke
the appropriate operation on the servant.

Invoking servant operations: The operation name is spec-
ified in the CORBA request. Once the Object Adapter locates
the target servant, it dispatches the requested operation on the
servant. Before the request is invoked on the servant, how-
ever, the Object Adapter uses an IDL skeleton to transform
the parameters in the request into arguments. The skeleton
then passes the demarshaled arguments as parameters to the
intended servant operation.

3.2 Portable Object Adapter (POA)

The Portable Object Adapter (POA) is a standard component
in the CORBA model recently specified by the OMG [4].
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The POA allows programmers to construct servants that are
portable between different ORB implementations. Portability
is achieved by standardizing the skeletons classes produced by
the IDL compiler, as well as the interactions between the ser-
vants and the Object Adapter.

The POA’s predecessor was the Basic Object Adapter
(BOA). The BOA was widely recognized to be incomplete
and underspecified. For instance, the API for registering ser-
vants with the BOA was unspecified. Therefore, different im-
plementors made many interpretations and extensions to pro-
vide a complete ORB. These interpretations and extensions
were incompatible with each other, however, and there was
no simple upgrade to the BOA that made existing applications
portable.

The solution adopted by the OMG was to abandon the BOA
and create a new Object Adapter thatwas portable. ORB
implementors can maintain their proprietary BOA to support
their current customer base. Existing programs continue to
work and are supported by their ORB vendors. In the future,
the OMG will no longer include the BOA with the CORBA
specification.

4 The POA Design Goals

The OMG’s design goals for the Portable Object Adapter
(POA) specification include the following:

Portability: The POA allows programmers to construct ser-
vants that are portable between different ORB implementa-
tions. Hence, the programmer can switch ORBs without hav-
ing to modify existing servant code. The lack of this feature
was a major shortcoming of the Basic Object Adapter (BOA).

Persistent identities: The POA supports objects with persis-
tent identities. More precisely, the POA is designed to support
servants that can provide consistent service for objects whose
lifetimes span multiple server process lifetimes.

Automation: The POA supports transparent activation of
objects and implicit activation of servants. This automation
makes the POA easier and simpler to use.

Conserving resources: There are many situations where a
server must support many CORBA objects. For example, a
database server that models each database record as a CORBA
object can potentially service hundreds of objects. The POA
allows a single servant to support multiple Object Ids simul-
taneously. This allows one servant to service many CORBA
objects, thereby conserving memory resources on the server.

Flexibility: The POA allows servants to assume complete
responsibility for an object’s behavior. For instance, a servant
can control an object’s behavior by defining the object’s iden-
tity, determining the relationship between the object’s identity

and the object’s state, managing the storage and retrieval of the
object’s state, providing code that will be executed in response
to requests, and determining whether or not the object exists
at any point in time.

Behavior governed by policies: The POA provides an ex-
tensible mechanism for associating policies with servants in
a POA. Currently, the POA supports seven policies, such as
threading, retention, and lifespan policies, that can be selected
at POA creation time. An overview of these policies is pre-
sented in Section 5.

Nested POAs: The POA allows multiple distinct, nested in-
stances of the POA to exist in a server. Each POA in the server
provides a namespace for all the objects registered with that
POA and all the child POAs that are created by this POA.
The POA supports recursive deletes,i.e., destroying a POA
destroys all its child POAs.

SSI and DSI support: The POA allows programmers to
construct servants that inherit from (1) static skeleton classes
(SSI) generated by OMG IDL compilers or (2) a Dynamic
Skeleton Interface (DSI). Clients need not be aware that a
CORBA object is serviced by a DSI servant or an IDL ser-
vant. Two CORBA objects supporting the same interface can
be serviced one by a DSI servant and the other with an IDL
servant. Furthermore, a CORBA object may be serviced by a
DSI servant during some period of time, while the rest of the
time is serviced by an IDL servant.

5 The POA Architecture

The ORB is an abstraction visible to both the client and server.
In contrast, the POA is an ORB component visible only to the
server,i.e., clients are not directly aware of the POA’s exis-
tence or structure. This section describes the architecture of
the request dispatching model defined by the POA and the
interactions between its standard components and the ORB
Core.

User-supplied servants are registered with the POA.1

Clients hold object references upon which they make requests,
which the POA ultimately dispatches as operations on a ser-
vant. The ORB, POA, servant, and skeleton all collaborate to
determine (1) which servant the operation should be invoked
on and (2) to dispatch the invocation.

Figure 3 shows the POA architecture. As shown in this fig-
ure, a distinguished POA, called theRoot POA, is created
and managed by the ORB. TheRoot POA is always avail-
able to an application through the ORB initialization interface,
resolve initial references . The application devel-
oper can register servants with theRoot POA if the policies

1This statement is a simplification – more detail is provided below.
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of theRoot POA specified in the POA specification are suit-
able for the application.

A server application may want to create multiple POAs
to support different kinds of CORBA objects and/or differ-
ent kinds of servant styles. For example, a server application
might have two POAs: one supporting transient CORBA ob-
jects and the other supporting persistent CORBA objects [10].
A nested POA can be created by invoking thecreate POA
factory operation on a parent POA.

The server application in Figure 3 contains three other
nested POAs:A, B, andC. POA A andB are children of the
Root POA; POA C is B’s child. Each POA has anActive
Object Tablethat maps Object Ids to servants. Other key com-
ponents in a POA are described below:

POA Manager: A POA manager encapsulates the process-
ing state of one or more POAs. By invoking operations on a
POA manager, server applications can cause requests for the
associated POAs to be queued or discarded. In addition, ap-
plications can use the POA manager to deactivate POAs. Fig-
ure 4 shows the processing states of a POA Manager and the
operations required to transition from one state to another.

activate

discard_requests

Inactive

Active Discarding

discard_requests

deactivate

create_POA

hold_requests

hold_requestsactivate

deactivatedeactivate

destroy

Holding

Figure 4: POA Manager Processing States

Adapter Activator: An adapter activator can be associated
with a POA by an application. The ORB will invoke an op-
eration on an adapter activator when a request is received for
a child POA that does not yet exist. The adapter activator can
then decide whether or not to create the required POA on de-
mand.

For example, if the target object reference was created by
a POA whose full name is/A/B/C and only POA/A and
POA /A/B currently exist, theunknown adapter opera-
tion will be invoked on the adapter activator associated with
POA /A/B . In this case, POA/A/B will be passed as the par-
ent parameter andC as the name of the missing POA to the
unknown adapter operation.

Servant Manager: A servant manager is a locality con-
strainted servant that server applications can associate with
a POA [11]. The ORB uses a servant manager to activate
servants on demand, as well as to deactivate servants. Ser-
vant managers are responsible for (1) managing the associa-
tion of an object (as characterized by its Object Id value) with
a particular servant and (2) for determining whether an ob-
ject exists or not. There are two types of servant managers:
ServantActivator and ServantLocator . The type
used in a particular situation depends on the policies in a POA,
which are described next.

POA Policies: The characteristics of each POA other than
theRoot POA can be customized at POA creation time using
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differentpolicies. The policies of theRoot POA are specified
in the POA specification. The POA specification defines the
following policies:

� Threading policy: This policy is used to specify the
threading model used with the POA. A POA can either be
single-threaded or have the ORB control its threads. If it is
single-threaded, all requests are processed sequentially. In a
multi-threaded environment, all upcalls made by this POA to
implementation code,i.e., servants and servant managers, are
invoked in a manner that is safe for code that is unaware of
multi-threading.

In contrast, if the ORB-controlled threading policy is speci-
fied, the ORB determines the thread (or threads) that the POA
dispatches its requests in. In a multi-threaded environment,
concurrent requests may be delivered using multiple threads.

� Lifespan policy: This policy is used to specify whether
the CORBA objects created within a POA are persistent
or transient. Persistent objects can outlive the process in
which they are created initially. In contrast, transient ob-
jects cannot outlive the process in which they are created
initially. Once the POA is deactivated, use of any object
references generated for a transient object will result in an
CORBA::OBJECTNOTEXIST exception.

� Object Id uniqueness policy: This policy is used to
specify whether the servants activated in the POA must have
unique Object Ids. With the unique Id policy, servants acti-
vated with that POA support exactly one Object Id. However,
with the multiple Id policy, a servant activated with that POA
may support one or more Object Ids.

� ObjectId assignment policy: This policy is used to
specify whether Object Ids in the POA are generated by the
application or by the ORB. If the POA also has the persis-
tent lifespan policy, ORB assigned Object Ids must be unique
across all instantiations of the same POA.

� Implicit activation policy: This policy is used to spec-
ify whether implicit activation of servants is supported in the
POA. A C++ server can create a servant, and then by setting
its POA and invoking its this method, it can register the
servant implicitly and create an object reference in a single
operation.

� Servant retention policy: This policy is used to spec-
ify whether the POA retains active servants in anActive Ob-
ject Map. A POA either retains the associations between ser-
vants and CORBA objects or it establishes a new CORBA ob-
ject/servant association for each incoming request.

�Request processing policy: This policy is used to spec-
ify how requests should be processed by the POA. When a
request arrives for a given CORBA object, the POA can do
one of the following:

� Consult its Active Object Map only– If the Object Id is
not found in the Active Object Map, the POA returns an
CORBA::OBJECTNOTEXIST exception to the client.

� Use a default servant– If the Object Id is not found in
the Active Object Map, the request is dispatched to the
default servant (if available).

� Invoke a servant manager– If the Object Id is not found
in the Active Object Map, the servant manager (if avail-
able) is given the opportunity to locate a servant or raise
an exception. The servant manager is an application-
supplied object that can incarnate or activate a servant
and return it to the POA for continued request pro-
cessing. Two forms of servant manager are supported:
ServantActivator , which is used for a POA with
the RETAIN policy, andServantLocator , which is
used with theNONRETAIN policy.

Combining these policies with the retention policies described
above provides the POA with a great deal of flexibility. Sec-
tion 6 provides further details on how the POA processes re-
quests.

6 The POA Semantics

The POA is used primarily in two modes: (1) request process-
ing and (2) the activation and deactivation of servants and ob-
jects. This section describes these two modes and outlines the
semantics and behavior of the interactions that occur between
the components in the POA architecture.

6.1 Request Processing

Each client request contains anObject Key. The Object Key
conveys the Object Id of the target object and the identity of
the POA that created the target object reference. The end-to-
end processing of a client request occurs in the follow steps:

1. Locate the server process: When a client issues a re-
quest, the ORB first locates an appropriate server process, us-
ing the Implementation Repository to create a new process if
necessary. In an ORB that uses IIOP, the host name and port
number in the Interoperable Object Reference (IOR) identify
the communication endpoint of the server process.

2. Locate the POA: Once the server process has been lo-
cated, the ORB locates the appropriate POA within that server.
If the designated POA does not exist in the server process, the
server has the opportunity to re-create the required POA by us-
ing an adapter activator. The name of the target POA is speci-
fied by the IOR in a manner that is opaque to the client.
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3. Locate the servant: Once the ORB has located the appro-
priate POA, it delivers the request to that POA. The POA finds
the appropriate servant by following its servant retention and
request processing policies, which are described in Section 5.

4. Locate the skeleton: The final step the POA performs is
to locate the IDL skeleton that will transform the parameters
in the request into arguments. The skeleton then passes the
demarshaled arguments as parameters to the correct servant
operation, which it locates via one of the operation demulti-
plexing strategies described in Section 7.1.

5. Handling replies, exceptions and location forwarding:
The skeleton marshals any exceptions, return values,inout ,
andout parameters returned by the servant so that they can
be sent to the client. The only exception that is given special
treatment is theForwardRequest exception. It causes the
ORB to deliver the current request and subsequent requests to
the object denoted in theforward reference member of
the exception.

6.2 Object Reference Creation

Object references are created in servers. Object references
encapsulate Object Id and other information required by the
ORB to locate the server and POA with which the object is as-
sociated,e.g., in which POA scope the reference was created.
Object references can be created in the following ways:

Explicit creation of object references: A server application
can directly create a reference with thecreate reference
and create reference with id operations on a POA
object. These operations only create a reference, but do not
associate the designated object with an active servant.

Explicit activation of servants: A server applica-
tion can activate a servant explicitly by associating it
with an Object Id using theactivate object or
activate object with id operations. Once activated,
the server application can map the servant to its corre-
sponding reference using theservant to reference or
id to reference operations.

Implicit activation of servants: If the server application at-
tempts to obtain an object reference corresponding to an inac-
tive servant and the POA supports the implicit activation pol-
icy, the POA can automatically assign a generated unique Ob-
ject Id to the servant and activate the resulting object.

Once a reference is created in the server, it can be
exported to clients in a variety of ways. For instance,
it can be advertised via the OMG Naming and Trading
Services. Likewise, it can be converted to a string via
CORBA::object to string and published in some way
that allows the client to discover the string and convert it to a

reference usingCORBA::string to object . Moreover,
it can be returned as the result of an operation invocation,i.e.,
using thefactory methodpattern [12]. Regardless of how an
object reference is obtained, however, once a client has an ob-
ject reference it can invoke operations on the object.

7 Designing a POA for Real-time
ORBs

The Distributed Object Computing group at Washington Uni-
versity has developed a high-performance, real-time ORB
endsystem called The ACE ORB (TAO) [13]. TAO provides
end-to-end quality of service guarantees to applications by
vertically integrating CORBA middleware with OS I/O sub-
systems, communication protocols, and network interfaces.

To adapt the CORBA Portable Object Adapter (POA) spec-
ification into TAO, certain architectural considerations were
necessary to fulfill real-time requirements. This section out-
lines these considerations, describes the design patterns we ap-
plied to maximize the predictability and performance of TAO’s
POA, and provides references to information on TAO’s design
and performance results.

7.1 Efficient Request Demultiplexing

7.1.1 Conventional ORB Demultiplexing Strategies

A standard GIOP-compliant client request contains the iden-
tity of its remote object and remote operation. A remote ob-
ject is represented by an Object Keyoctet sequence and
a remote operation is represented as astring . Conventional
ORBs demultiplex client requests to the appropriate operation
of the servant implementation using thelayered demultiplex-
ing architecture shown in Figure 5. These steps perform the
following tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times,e.g., through the data
link, network, and transport layers up to the user/kernel bound-
ary and the ORB Core.

Steps 3, 4, and 5: The ORB Core uses the addressing in-
formation in the client’s Object Key to locate the appropriate
Object Adapter, servant, and the skeleton of the target IDL op-
eration.

Step 6: The IDL skeleton locates the appropriate operation,
demarshals the request buffer into operation parameters, and
performs the operation upcall.

However, layered demultiplexing is generally inappropriate
for high-performance and real-time applications for the fol-
lowing reasons [14]:

7



2:2: DEMUX  TO DEMUX  TO

        I/OI/O  HANDLE  HANDLE

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

KK

O
P

E
R

A
T

IO
N

O
P

E
R

A
T

IO
N

22

.........
O

P
E

R
A

T
IO

N
O

P
E

R
A

T
IO

N
11

.........

.........IDL

SKEL  1

IDLIDL

SKEL  SKEL  22

IDLIDL

SKEL  SKEL  MM

OS  KERNELOS  KERNEL

OS  IOS  I//O  SUBSYSTEMO  SUBSYSTEM

NETWORK  ADAPTERSNETWORK  ADAPTERS

SERVANT  SERVANT  11 SERVANT  SERVANT  22 SERVANT  SERVANT  NN

5:5: DEMUX  TO DEMUX  TO

     SKELETON     SKELETON

6:6: DEMUX  TO DEMUX  TO

     OPERATION     OPERATION

1:1: DEMUX  THRU DEMUX  THRU

     PROTOCOL  STACK     PROTOCOL  STACK

4:4: DEMUX  TO DEMUX  TO

     SERVANT     SERVANT

LAYERED

DEMUXING

ORB  COREORB  CORE

OBJECT  ADAPTER

3:3: DEMUX  TO DEMUX  TO

     OBJECT  ADAPTER     OBJECT  ADAPTER

Figure 5: Layered CORBA Request Demultiplexing

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for an indeterminate period of time while
lower priority packets are demultiplexed and dispatched [15].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [16, 17] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

7.1.2 TAO’s Optimized ORB Demultiplexing Strategies

To address the limitations with conventional ORBs, TAO pro-
vides the demultiplexing strategies shown in Figure 6. TAO’s
optimized demultiplexing strategies include the following:
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Figure 6: Optimized CORBA Request Demultiplexing Strate-
gies

Perfect hashing: The perfect hashing strategy shown in Fig-
ure 6(A) is a two-step layered demultiplexing strategy. This
strategy uses an automatically-generated perfect hashing func-
tion to locate the servant. A second perfect hashing function
is then used to locate the operation. The primary benefit of
this strategy is that servant and operation lookups requireO(1)
time in the worst-case.

TAO uses the GNUgperf [18] tool to generate perfect
hash functions for object keys and operation names. This per-
fect hashing scheme is applicable when the keys to be hashed
are knowna priori. In many deterministic real-time systems,
such as avionic mission control systems [19], the servants and
operations can be configured statically. For these applications,
it is possible to use perfect hashing to locate servants and op-
erations.

Active demultiplexing: TAO also provides a more dynamic
demultiplexing strategy calledactive demultiplexing, shown in
Figure 6(B). In this strategy, the client passes a handle that di-
rectly identifies the servant and operation inO(1) time in the
worst-case. This handle can be configured into a client when it
obtains a servant’s object reference,e.g., via a Naming service
or Trading service. Once the request arrives at the server ORB,
the Object Adapter uses the handle supplied in the CORBA re-
quest header to locate the servant and its associated operation
in a single step.

Unlike perfect hashing, TAO’s active demultiplexing strat-
egy does not require that all Object Ids be knowna priori.
This makes it more suitable for applications that incarnate and
etherealize CORBA objects dynamically.

Both perfect hashing and active demultiplexing can demul-
tiplex client requests efficiently and predictably. Moreover,
these strategies perform optimally regardless of the number of
active connections, application-level servant implementations,
and operations defined in IDL interfaces. [20] presents a de-
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tailed study of these and other request demultiplexing strate-
gies for a range of target objects and operations.

TAO’s Object Adapter uses the Service Configurator pattern
[21] to select perfect hashing or active demultiplexing dynam-
ically at ORB installation-time [22]. Both of these strategies
improve request demultiplexing performance and predictabil-
ity above the ORB Core.

To facilitate various strategies for finding and dispatch-
ing servants, TAO uses the active object map class hierarchy
shown in Figure 7. This design is an example of the Bridge

Array
ObjTable

Dynamic 
Hash

Linear
ObjTableDemux

Active

Table_Impl

A
Table

forward

Figure 7: Class Hierarchy of POA Active Object Maps

and Strategy patterns [12], where the interface of the map is
decoupled from its implementation so that the two can vary
independently.

7.2 Supporting Custom ORB Core and POA
Configurations

An increasingly important class of distributed applications re-
quire stringent quality of service (QoS) guarantees. These ap-
plications includetelecommunication systemssuch as call pro-
cessing and switching;command and control systemssuch as
avionics mission control programs and tactical shipboard com-
puting; multimediasuch as video-on-demand and teleconfer-
encing; andsimulationssuch as battle readiness planning.

In order for ORB middleware to support real-time applica-
tion QoS requirements, it must be adaptable and configurable.
To achieve this, TAO supports various server configurations,
including different ORB Core configurations that allow appli-
cations to customize request processing and the management
of transport connections. For instance, TAO’s ORB Core can
be configured to process all requests in one thread, each re-
quest in a separate thread, or each connection in a separate
thread.

To ensure consistent behavior throughout the layers in an
ORB endsystem, TAO’s POA is designed to support TAO’s
various ORB Core configurations. The important variations
are (1) each ORB Core in a process has its own POA and (2) all
ORB Cores in a process share one POA, as described below:

POA per ORB Core: Figure 8 shows this ORB configura-
tion, where each ORB Core in a server process maintains a

Object Id
Object Id

SERVANT SERVANT SERVANT

Active Object Map

POA A

Object Id

Active Object Map

POA C

ORB Core
A

ORB Core
B

ORB Core
C

Network

Object Id
Object Id

Active Object Map

POA B

Figure 8: POA-per-ORB Configuration

distinct POA instance. This configuration is generally chosen
for deterministic real-time applications, such as avionics mis-
sion computing [19], where each ORB Core has its own thread
of control that runs at a distinct priority.

When this configuration is used, each POA is not accessed
by other threads in the process. Thus, no locking is re-
quired within a POA, thereby reducing the overhead and non-
determinism incurred to dispatch servant requests. The draw-
back of this configuration, however, is that registering servants
becomes more complicated if servants must be registered in
multiple POAs.

Global POA: Figure 9 show this ORB configuration, where
all ORB Cores in a server process share the same POA in-
stance. The main benefit of this configuration is that servant
registration is straightforward since there is only one POA.
However, the drawback is that this POA requires additional
locks since it is shared by all the threads in the process. These
threads may simultaneously change the state of active object
maps in the POA by adding and removing servants.
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7.3 POA Synchronization

TAO has been designed to minimize synchronization in the
critical request processing path of the ORB in order to improve
its predictability and maximize its performance. Under certain
ORB configurations, no synchronization is required in a POA.
For example, if only one thread uses a POA, as described in
Section 7.2, there is no need for mutual exclusion in the POA.
Likewise, no synchronization is needed if the state of a POA
does not changed during the execution of a server. This situ-
ation can happen when all the servants and servant managers
are registered at server startup and no dynamic registrations
occur at run-time.

To enable applications to select the most efficient POA syn-
chronization, TAO’s POA contains the following POA creation
policy extensions:

// IDL
enum SynchronizationPolicyValue
{

NULL_LOCK, THREAD_LOCK, DEFAULT_LOCK
};

interface SynchronizationPolicy
: CORBA::Policy

{
readonly attribute

SynchronizationPolicyValue value;
};

SynchronizationPolicy create_synchronization_policy
(in SynchronizationPolicyValue value);

Objects that support theSynchronizationPolicy
interface can be obtained using the POA’s
create synchronization policy operation. They
are passed to thePOA::create POAoperation to specify
the synchronization used in the created POA. Thevalue
attribute ofSynchronizationPolicy contains the value
supplied to the create synchronization policy
operation from which it was obtained. The following values
can be supplied:

NULL LOCK: No synchronization will be used to protect
the internal state of the POA. This option should be used when
the state of the created POA will not change during the execu-
tion of the server or when only one thread will use the POA.

THREAD LOCK: The internal state of the POA will be
protected against simultaneous changes from multiple threads.
This option should be used when multiple threads will use the
POA simultaneously.

DEFAULT LOCK: The ORB configuration file will be
consulted to determine whether to use a thread lock or null
lock. This option should be used when the server programmer
wants to delay the POA synchronization choice until run-time.

If no SynchronizationPolicy object is passed
to create POA, the synchronization policy defaults to
DEFAULTLOCK. TheDEFAULTLOCKoption allows appli-
cations to make the synchronization decision once for all the
POAs created in the server. For example, if the server is sin-
gle threaded, the application can specify in the configuration
file that the default lock should be the null lock. Hence, the
application does not have to specify theNULL LOCKpolicy in
every call tocreate POA.

Figure 10 shows the class hierarchy of the POA locks. The
locking strategies used in TAO’s POA are an example of the
External Polymorphism pattern [23], where C++ classes unre-
lated by inheritance and/or having no virtual methods can be
treated polymorphically.

7.4 POA Dispatching Optimizations

The POA is in the critical request processing path of a server
ORB. Thus, TAO performs the following upcall and colloca-
tion optimizations to reduce run-time processing overhead and
jitter:

Upcall optimizations: Figure 11 shows a naive way to
parse an object key. The Object Key is parsed and the indi-
vidual fields of the key are stored in their respective objects.
The problem with this approach is that it requires memory al-
location for the individual objects and data copying to move
the Object Key fields to the individual objects. Both of these
operations increase POA overhead.
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Certain optimizations are possible during request dispatch-
ing in the POA. TAO takes advantage of the fact that the Ob-
ject Key is available through the entire upcall. Thus, it does
not modify the contents of the Object Key and the objects for
the individual portions of the Object Key can be optimized to
point to the correct locations in the Object Key. This approach
is shown in Figure 12.

P353bccdb00094ae8/firstPOA/myservant

POA Name

Time Stamp Object Id

Object Key

Figure 12: Optimized Parsing of Object Key

Collocation optimizations: One of the key strengths of
CORBA is that it decouples (1) the implementation of servants
from (2) how servants are configured into server processes
throughout a distributed system. CORBA is largely used for
communication between remote objects. However, there are
configurations where a client and servant must be collocated
in the same address space [24]. In this case, there is no need
to marshal data or transmit operations through a “loopback”
device.

TAO’s POA optimizes for collocated client/servant configu-
rations by generating a special stub for the client. This stub
forwards all requests to the servant. Figure 13 shows the
classes produced by the TAO IDL compiler.

The stub and skeleton classes shown in Figure 13 are re-
quired by the POA specification; the collocation class is spe-
cific to TAO. This feature is entirely transparent since the
client only uses the abstract interface and never uses the collo-
cation class directly. Therefore, the POA provides the colloca-
tion class, rather than the regular stub class when the servant
is in the same address space of the client.

7.5 Predictability

Guaranteeing end-to-end predictability in TAO requires the
POA to avoid calling external, unpredictable operations such
as calling a servant locator for an incoming request. Hence,
for TAO the following features of the POA can be disabled:2

2The emerging Real-time CORBA standard [25] also specifies that these
POA features can be disabled for real-time applications.
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Servant Managers are not required: There is no need to
locate servants in a real-time environment since all servants
must be registered with POAsa priori.

Adapter Activators are not required: Real-time applica-
tions create all their POAs at the beginning of execution.
Therefore, they need not use or provide an adapter activator.
The alternative is to create POAs during request processing, in
which case guarantees of end-to-end predictability are harder
to achieve.

POA Managers are not required: The POA must not in-
troduce extra levels of queuing in the ORB. Queuing can lead
to priority inversion and extra locking. Therefore, the POA
Manager in TAO can be disabled.

Our previous experience [20, 16, 26, 27, 28] measuring the
performance of CORBA implementations showed that TAO
supports efficient and predictable QoS better than other ORBs.

8 Concluding Remarks

A CORBA Object Adapter provides the following function-
ality: it (1) generates and interprets object references, (2) ac-
tivates and deactivates servants, (3) demultiplexes requests to
map object references onto their corresponding servants, and
(4) collaborates with the automatically-generated IDL skele-
tons to invoke operations on servants.

OMG’s new Portable Object Adapter (POA) specification
defines a wide range of standard policies that enable devel-

opers to tailor an ORB’s behavior to meet many different ap-
plication use-cases. Although the POA is a relatively recent
addition to the OMG CORBA model, it builds on the experi-
ence of the users and designers of the the Basic Object Adapter
(BOA) [29] and other Object Adapters, such as OO Database
Adapters [30]. In general, the POA is much more powerful
and portable than the BOA, however.

In this paper, we provided a detailed discussion of the
design and implementation of OMG’s POA. In addition,
we explained the features and optimizations necessary for
a POA to work with the TAO real-time ORB. The imple-
mentation of the POA described in this paper is available
at www.cs.wustl.edu/ �schmidt/TAO.html . TAO
has the first implementation of the POA specification in the
CORBA industry.
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