
05/01/2015

1

CS5412:
REPLICATION, CONSISTENCY
AND CLOCKS

Ken Birman, Cornell University

1CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture X

Recall that clouds have tiers

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 Up to now our focus has been on client systems and the
network, and the way that the cloud has reshaped both

 We looked very superficially at the tiered structure of the
cloud itself
 Tier 1: Very lightweight, responsive “web page builders” that can

also route (or handle) “web services” method invocations. Limited
to “soft state”

 Tier 2: (key,value) stores and similar services that support tier 1.
Basically, various forms of caches

 Inner tiers: Online services that handle requests not handled in the
first tier. These can store persistent files, run transactional
services. But we shield them from load

 Back end: Runs offline services that do things like indexing the
web overnight for use by tomorrow morning’s tier-1 services

Replication

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 A central feature of the cloud
 To handle more work, make more copies

 In the first tier, which is highly elastic, the data center
management layer pre-positions inactive copies of virtual
machines for the services we might run
 Exactly like installing a program on some machine

 If load surges, creating more instances just entails
 Running more copies on more nodes
 Adjusting the load-balancer to spray requests to new nodes

 If load drops... just kill the unwanted copies!
 Little or no warning. Discard any “state” they created locally

Replication is about keeping copies

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 The term may sound fancier but the meaning isn’t

 Whenever we have many copies of something we say
that we’ve replicated that thing
 But usually replica does connote “identical”
 Instead of replication we use the term redundancy for things

like alternative communication paths (e.g. if we have two
distinct TCP connections from some client system to the cloud)

 Redundant things might not be identical. Replicated things
usually play identical roles and have equivalent data

05/01/2015

2

Things we can replicate in a cloud

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Files or other forms of data used to handle requests
 If all our first tier systems replicate the data needed for end-user

requests, then they can handle all the work!
 Two cases to consider: in one the data itself is “write once” like a

photo. Either you have a replica, or don’t
 In the other the data evolves over time, like the current inventory

count for the latest iPad in the Apple store

 Computation
 Here we replicate some request and then the work of computing

the answer can be spread over multiple programs in the cloud
 We benefit from parallelism by getting a faster answer
 Can also provide fault tolerance

Many things “map” to replication

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 As we just saw, data (or databases), computation
 Fault-tolerant request processing
 Coordination and synchronization (e.g. “who’s in

charge of the air traffic control sector over Paris?”)
 Parameters and configuration data
 Security keys and lists of possible users and the

rules for who is permitted to do what
 Membership information in a Distributed Hash Table

or some other service that has many participants

So... focus on replication!

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 If we can get replication right, we’ll be on the road
to a highly assured cloud infrastructure

 Key is to understand what it means to correctly
replicate data at cloud scale...

 ... then once we know what we want to do, to find
scalable ways to implement needed abstraction(s)

Concept of “consistency”

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 We would say that a replicated entity behave in a
consistent manner if it behaves like a non-replicated
entity
 E.g. if I ask it some question, and it answers, and then

you ask it that question again, your answer either is the
same or reflects some update to the underlying state

 Many copies which act like just one

 An inconsistent service is one that seems “broken”

05/01/2015

3

Consistency lets us ignore implementation

A consistent distributed system will often have many
components, but users observe behavior

indistinguishable from that of a single-component
reference system

9

Reference Model Implementation

CS5412 Spring 2012 (Cloud Computing: Birman)

Dangers of Inconsistency

 Inconsistency causes bugs
 Clients would never be able to

trust servers… a free-for-all

 Weak or “best effort” consistency?
 Common in today’s cloud replication schemes
 But strong security guarantees demand consistency
 Would you trust a medical electronic-health records

system or a bank that used “weak consistency” for
better scalability?

10
My rent check bounced?

That can’t be right!

Jason Fane Properties 1150.00

Sept 2009 Tommy Tenant

CS5412 Spring 2012 (Cloud Computing: Birman)

Leslie Lamport’s insight

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 To formalize notions of consistency, start
by formalizing notions of time

 Once we do this we can be rigorous about notions
like “before” or “after” or “simultaneously”
 If we try to write down conditions for correct replication

these kinds of terms often arise

What time is it?

 In distributed system we need practical ways to
deal with time
 E.g. we may need to agree that update A occurred

before update B
 Or offer a “lease” on a resource that expires at time

10:10.0150
 Or guarantee that a time critical event will reach all

interested parties within 100ms

CS5412 Spring 2012 (Cloud Computing: Birman)

12

05/01/2015

4

But what does time “mean”?

 Time on a global clock?
 E.g. on Cornell clock tower?
 ... or perhaps on a GPS receiver?

 … or on a machine’s local clock
 But was it set accurately?
 And could it drift, e.g. run fast or slow?
 What about faults, like stuck bits?

 … or could try to agree on time

CS5412 Spring 2012 (Cloud Computing: Birman)

13

Lamport’s approach

 Leslie Lamport suggested that we should reduce
time to its basics
 Time lets a system ask “Which came first: event A or

event B?”
 In effect: time is a means of labeling events so that…
 If A happened before B, TIME(A) < TIME(B)
 If TIME(A) < TIME(B), A happened before B

CS5412 Spring 2012 (Cloud Computing: Birman)

14

Drawing time-line pictures

p

m

sndp(m)

q
rcvq(m) delivq(m)

D

CS5412 Spring 2012 (Cloud Computing: Birman)

15

Drawing time-line pictures

 A, B, C and D are “events”
 Could be anything meaningful to the application
 So are snd(m) and rcv(m) and deliv(m)

 What ordering claims are meaningful?

p

m

A

C

B
sndp(m)

q
rcvq(m) delivq(m)

D

CS5412 Spring 2012 (Cloud Computing: Birman)

16

05/01/2015

5

Drawing time-line pictures

 A happens before B, and C before D
 “Local ordering” at a single process
 Write and

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

D

CS5412 Spring 2012 (Cloud Computing: Birman)

17

Drawing time-line pictures

 sndp(m) also happens before rcvq(m)
 “Distributed ordering” introduced by a message system
 Write

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

D

CS5412 Spring 2012 (Cloud Computing: Birman)

18

Drawing time-line pictures

 A happens before D
 Transitivity: A happens before sndp(m), which happens

before rcvq(m), which happens before D

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

CS5412 Spring 2012 (Cloud Computing: Birman)

19

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Drawing time-line pictures

 B and D are concurrent
 Looks like B happens first, but D has no way to know
 No information flew between p and q in that regard…

CS5412 Spring 2012 (Cloud Computing: Birman)

20

05/01/2015

6

Happens before “relation”

 We say that “A happens before B”, written AB, if
1. APB according to the local ordering in p, or
2. A is a snd and B is a rcv and AMB in M, or
3. A and B are related under transitive closure of rules (1) and (2)

 Notice that, so far, this is just a mathematical
notation, not a “systems tool”

 Given a trace of what happened in a system we
could use these tools to talk about the trace

 But we need a way to “implement” this idea

CS5412 Spring 2012 (Cloud Computing: Birman)

21

Logical clocks

 A simple tool that can capture parts of the
happens-before relation

 First version uses just a single integer
 Designed for big (64-bit or more) counters
 Each process p maintains LTp, a local counter
 A message m will carry LTm

CS5412 Spring 2012 (Cloud Computing: Birman)

22

Rules for managing logical clocks

 When an event happens at a process p it increments
LTp

 Any event that matters to p causes in increment
 Normally also snd and rcv events (since we want receive to

occur “after” the matching send)

 When p sends m, set
 LTm = LTp

 When q receives m, set
 LTq = max(LTq, LTm)+1

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Timeline with LT annotations

 LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2
 LT(C) = 1, LT(rcvq(m))=max(2,2)+1=3, etc…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

LTq 0 0 0 1 1 1 1 3 3 3 4 5 5

LTp 0 1 1 2 2 2 2 2 2 3 3 3 3

CS5412 Spring 2012 (Cloud Computing: Birman)

24

05/01/2015

7

Logical clocks

 If A happens before B, AB,
then LT(A)<LT(B)

 But converse might not be true:
 If LT(A)<LT(B) can’t be sure that AB
 This is because processes that don’t communicate still

assign timestamps and hence events will “seem” to have
an order

CS5412 Spring 2012 (Cloud Computing: Birman)

25

Can we do better?

 One option is to use vector clocks
 Here we treat timestamps as a list

 One counter for each process

 Rules for managing vector times differ from what
we did with logical clocks

CS5412 Spring 2012 (Cloud Computing: Birman)

26

History of vector clocks?

CS5412 Spring 2012 (Cloud Computing: Birman)

27

 Originated in work at UCLA on file systems that
allowed updates from multiple sources concurrently
 Jerry Popek’s FICUS system
 Current versioning systems (e.g. SVN, CVS) also use that

idea

 Gradually adopted in distributed systems

 Most of the “formal” work was done by Fidge and
Mattern in Europe, long after idea was in wide use

Vector clocks

 Clock is a vector: e.g. VT(A)=[1, 0]
 We’ll just assign p index 0 and q index 1
 Vector clocks require either agreement on the numbering, or

that the actual process id’s be included with the vector

 Rules for managing vector clock
 When event happens at p, increment VTp[indexp]
 Normally, also increment for snd and rcv events

 When sending a message, set VT(m)=VTp

 When receiving, set VTq=max(VTq, VT(m))

CS5412 Spring 2012 (Cloud Computing: Birman)

28

05/01/2015

8

Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

2
3

2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

3
0

3
0

3
0

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a
snd event. Decision depends on how the timestamps will be used.

CS5412 Spring 2012 (Cloud Computing: Birman)

29

Rules for comparison of VTs

 We’ll say that VTA ≤ VTB if
 I, VTA[i] ≤ VTB[i]

 And we’ll say that VTA < VTB if
 VTA ≤ VTB but VTA ≠ VTB

 That is, for some i, VTA[i] < VTB[i]

 Examples?
 [2,4] ≤ [2,4]
 [1,3] < [7,3]
 [1,3] is “incomparable” to [3,1]

CS5412 Spring 2012 (Cloud Computing: Birman)

30

Time-line with VT annotations

 VT(A)=[1,0]. VT(D)=[2,4]. Hence VT(A)<VT(D)
 VT(B)=[3,0]. Hence VT(B) and VT(D) are incomparable

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

2
3

2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

3
0

3
0

3
0

VT(m)=[2,0]

CS5412 Spring 2012 (Cloud Computing: Birman)

31

Vector time and happens before

 If AB, then VT(A)<VT(B)
 Write a chain of events from A to B
 Step by step the vector clocks get larger

 If VT(A)<VT(B) then AB
 Two cases: if A and B both happen at same process p, trivial
 If A happens at p and B at q, can trace the path back by

which q “learned” VTA[p]

 Otherwise A and B happened concurrently

CS5412 Spring 2012 (Cloud Computing: Birman)

32

05/01/2015

9

Temporal distortions

 Things can be complicated because we can’t predict
 Message delays (they vary constantly)
 Execution speeds (often a process shares a machine

with many other tasks)
 Timing of external events

 Lamport looked at this question too

CS5412 Spring 2012 (Cloud Computing: Birman)

33

Temporal distortions

 What does “now” mean?

p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

34

Temporal distortions

 What does “now” mean?
p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Temporal distortions

 Timelines can “stretch”…

 … caused by scheduling effects, message
delays, message loss…

p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

36

05/01/2015

10

Temporal distortions

 Timelines can “shrink”

 E.g. something lets a machine speed up

p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Temporal distortions

 Cuts represent instants of time

 But not every “cut” makes sense
 Black cuts could occur but not gray ones

p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

38

Consistent cuts and snapshots

 Idea is to identify system states that “might” have
occurred in real life
 Need to avoid capturing states in which a message is

received but nobody is shown as having sent it
 This the problem with the gray cuts

CS5412 Spring 2012 (Cloud Computing: Birman)

39

Temporal distortions

 Red messages cross gray cuts “backwards in time”

p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

40

05/01/2015

11

Temporal distortions

 Red messages cross gray cuts “backwards in time”

 In a nutshell: the cut includes a message that
“was never sent”

p0 a

e

p3

b

p2

p1
c

CS5412 Spring 2012 (Cloud Computing: Birman)

41

An application: Deadlock detection

 p worries: perhaps we have a deadlock
 p is waiting for q, so sends “what’s your state?”
 q, on receipt, is waiting for r, so sends the same

question… and r for s…. And s is waiting on p

CS5412 Spring 2012 (Cloud Computing: Birman)

42

Suppose we detect this state

 We see a cycle…

 … but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for

CS5412 Spring 2012 (Cloud Computing: Birman)

43

Phantom deadlocks!

 Suppose the system has a very high rate of locking
 Then perhaps a lock release message “passed” a

query message
 i.e. we see “q waiting for r” and “r waiting for s” but in fact,

by the time we checked r, q was no longer waiting!

 In effect: we checked for deadlock on a gray cut – an
inconsistent cut

CS5412 Spring 2012 (Cloud Computing: Birman)

44

05/01/2015

12

One solution is to “freeze” the system

X

Y

Z

A

B

STOP!

CS5412 Spring 2012 (Cloud Computing: Birman)

45

One solution is to “freeze” the system

X

Y

Z

A

B

STOP!

Ok…

Yes sir!

I’ll be late!

Was I speeding?

Sigh…

CS5412 Spring 2012 (Cloud Computing: Birman)

46

One solution is to “freeze” the system

X

Y

Z

A

B

Sorry to trouble you, folks. I just
need a status snapshot, please

CS5412 Spring 2012 (Cloud Computing: Birman)

47

One solution is to “freeze” the system

X

Y

Z

A

B

No problem

Hey, doesn’t a guy have a
right to privacy?

Done…

Here you go…

Sigh…

CS5412 Spring 2012 (Cloud Computing: Birman)

48

05/01/2015

13

One solution is to “freeze” the system

X

Y

Z

A

B

Ok, you can go now

CS5412 Spring 2012 (Cloud Computing: Birman)

49

Why does it work?

 When we check bank accounts, or check for
deadlock, the system is idle

 So if “P is waiting for Q” and “Q is waiting for R”
we really mean “simultaneously”

 But to get this guarantee we did something very
costly because no new work is being done!

CS5412 Spring 2012 (Cloud Computing: Birman)

50

Consistent cuts and snapshots

 Goal is to draw a line across the system state such
that
 Every message “received” by a process is shown as

having been sent by some other process
 Some pending messages might still be in communication

channels

 And we want to do this while running

CS5412 Spring 2012 (Cloud Computing: Birman)

51

Turn idea into an algorithm

 To start a new snapshot, pi …

 Builds a message: “Pi is initiating snapshot k”.
 The tuple (pi, k) uniquely identifies the snapshot

 Writes down its own state
 Starts recording incoming messages on all channels

CS5412 Spring 2012 (Cloud Computing: Birman)

52

05/01/2015

14

Turn idea into an algorithm

 Now pi tells its neighbors to start a snapshot
 In general, on first learning about snapshot (pi, k), px

 Writes down its state: px’s contribution to the snapshot
 Starts “tape recorders” for all communication channels
 Forwards the message on all outgoing channels
 Stops “tape recorder” for a channel when a snapshot

message for (pi, k) is received on it

 Snapshot consists of all the local state contributions
and all the tape-recordings for the channels

CS5412 Spring 2012 (Cloud Computing: Birman)

53

Chandy/Lamport – 1

 Outgoing wave of requests… incoming wave of
snapshots and channel state

 Snapshot ends up accumulating at the initiator, pi

 Algorithm doesn’t tolerate process failures or
message failures

CS5412 Spring 2012 (Cloud Computing: Birman)

54

Chandy/Lamport – 2

p

q
r

s

t

u

v

w

x
y

z

A network
CS5412 Spring 2012 (Cloud Computing: Birman)

55

Chandy/Lamport – 3

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start a
snapshot

CS5412 Spring 2012 (Cloud Computing: Birman)

56

05/01/2015

15

Chandy/Lamport – 4

p

q
r

s

t

u

v

w

x
y

z

A network

p records local state

CS5412 Spring 2012 (Cloud Computing: Birman)

57

Chandy/Lamport – 5

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring
incoming channels

CS5412 Spring 2012 (Cloud Computing: Birman)

58

Chandy/Lamport – 6

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-y”

CS5412 Spring 2012 (Cloud Computing: Birman)

59

Chandy/Lamport – 7

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on
outgoing channels…

CS5412 Spring 2012 (Cloud Computing: Birman)

60

05/01/2015

16

Chandy/Lamport – 8

p

q
r

s

t

u

v

w

x
y

z

A network
CS5412 Spring 2012 (Cloud Computing: Birman)

61

Chandy/Lamport – 9

p

q
r

s

t

u

v

w

x
y

z

A network

q is done

CS5412 Spring 2012 (Cloud Computing: Birman)

62

Chandy/Lamport – 10

p

q
r

s

t

u

v

w

x
y

z

A network

q

CS5412 Spring 2012 (Cloud Computing: Birman)

63

Chandy/Lamport – 11

p

q
r

s

t

u

v

w

x
y

z

A network

q

CS5412 Spring 2012 (Cloud Computing: Birman)

64

05/01/2015

17

Chandy/Lamport – 12

p

q
r

s

t

u

v

w

x
y

z

A network

q

zs

CS5412 Spring 2012 (Cloud Computing: Birman)

65

Chandy/Lamport – 13

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

z

x

u

s

CS5412 Spring 2012 (Cloud Computing: Birman)

66

Chandy/Lamport – 14

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r

CS5412 Spring 2012 (Cloud Computing: Birman)

67

Chandy/Lamport – 15

p
q

r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!

CS5412 Spring 2012 (Cloud Computing: Birman)

68

05/01/2015

18

Chandy/Lamport “snapshot”

CS5412 Spring 2012 (Cloud Computing: Birman)

69

 Once we collect the state snapshots plus the channel
contents we have a consistent cut from the system
 It “could” have occured as a concurrent instant in the

system execution (although in fact, it obviously didn’t)
 Processing such a snapshot requires understanding the

state in this form
 But many algorithms use this pattern of messages

without necessarily writing down the whole state or
logging all the messages in the channels

Relation to vector time?

CS5412 Spring 2012 (Cloud Computing: Birman)

70

 In the textbook the connection of consistent cuts to
the notion of logical time is explored
 A consistent cut is a snapshot taken at a set of

concurrent points in a system trace
 In effect, all the members of the system concurrently

write down their states
 We can restate Chandy/Lamport to implement it

precisely in this manner!
 But not for today, so we’ll leave that for you to read

about in Chapter 10 of the text

Conclusions

CS5412 Spring 2012 (Cloud Computing: Birman)

71

 By formalizing notion of time we can build tools for
thinking about fancier ideas such as consistency of
replicated data

 Today we looked more closely at time than at
consistency
 We introduced idea of consistency to motivate need to look

closely at time
 But didn’t tie the logical or vector timestamp ideas back to

implementation of replicated data

 Next lectures will make this connection explicit

