CS5412 Spring 2012 (Cloud Computing: Birman) 1

CS5412:

REPLICATION, CONSISTENCY
AND CLOCKS

- Ken Birman, Cornell University

Recall that clouds have tiers

o Up to now our focus has been on client systems and the
network, and the way that the cloud has reshaped both

0 We looked very superficially at the tiered structure of the
cloud itself

O Tier 1: Very lightweight, responsive “web page builders” that can
also route (or handle) “web services” method invocations. Limited
to “soft state”

O Tier 2: (key,value) stores and similar services that support tier 1.
Basically, various forms of caches

O Inner tiers: Online services that handle requests not handled in the
first tier. These can store persistent files, run transactional
services. But we shield them from load

O Back end: Runs offline services that do things like indexing the
web overnight for use by tomorrow morning’s tier-1 services

CS5412 Spring 2012 (Cloud Computing: Birman)

Replication

O A central feature of the cloud
O To handle more work, make more copies

O In the first tier, which is highly elastic, the data center
management layer pre-positions inactive copies of virtual
machines for the services we might run

m Exactly like installing a program on some machine
O If load surges, creating more instances just entails

® Running more copies on more nodes

m Adjusting the load-balancer to spray requests to new nodes
O If load drops... just kill the unwanted copies!

m Little or no warning. Discard any “state” they created locally

CS5412 Spring 2012 (Cloud Computing: Birman)

Replication is about keeping copies

O The term may sound fancier but the meaning isn't

0 Whenever we have many copies of something we say
that we’ve replicated that thing
O But usually replica does connote “identical”

O Instead of replication we use the term redundancy for things
like alternative communication paths (e.g. if we have two
distinct TCP connections from some client system to the cloud)

O Redundant things might not be identical. Replicated things
usually play identical roles and have equivalent data

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Things we can replicate in a cloud

o Files or other forms of data used to handle requests

O If all our first tier systems replicate the data needed for end-user
requests, then they can handle all the work!

O Two cases to consider: in one the data itself is “write once” like a
photo. Either you have a replica, or don’t

O In the other the data evolves over time, like the current inventory
count for the latest iPad in the Apple store

o Computation

O Here we replicate some request and then the work of computing
the answer can be spread over multiple programs in the cloud
O We benefit from parallelism by getting a faster answer

O Can also provide fault tolerance

CS5412 Spring 2012 (Cloud Computing: Birman)

So... focus on replication!

o If we can get replication right, we'll be on the road
to a highly assured cloud infrastructure

O Key is to understand what it means to correctly
replicate data at cloud scale...

O ... then once we know what we want to do, to find
scalable ways to implement needed abstraction(s)

CS5412 Spring 2012 (Cloud Computing: Birman)

Many things “map” to replication

O As we just saw, data (or databases), computation
O Fault-tolerant request processing

0 Coordination and synchronization (e.g. “who’s in
charge of the air traffic control sector over Paris?”)

O Parameters and configuration data

O Security keys and lists of possible users and the
rules for who is permitted to do what

0 Membership information in a Distributed Hash Table
or some other service that has many participants

CS5412 Spring 2012 (Cloud Computing: Birman)

Concept of “consistency”

0 We would say that a replicated entity behave in a
consistent manner if it behaves like a non-replicated
entity
O E.g. if | ask it some question, and it answers, and then

you ask it that question again, your answer either is the
same or reflects some update to the underlying state

O Many copies which act like just one
O An inconsistent service is one that seems “broken”

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Consistency lets us ignore implementation
=

A consistent distributed system will often have many
components, but users observe behavior
indistinguishable from that of a single-component
reference system

rﬂ\\\\ ; - u
L
Reference Model Implementation

CS5412 Spring 2012 (Cloud Computing: Birman)

My rent check bounced?

| miem That can’t be right!
O Inconsistency causes bugs o
a Clients would never be able to
trust servers... a free-for-all)
oA GVEN b 0

0 Weak or “best effort” consistency?
g Common in today’s cloud replication schemes
O But strong security guarantees demand consistency

O Would you trust a medical electronic-health records
system or a bank that used “weak consistency” for
better scalability?

CS5412 Spring 2012 (Cloud Computing: Birman)

Leslie Lamport’s insight

o To formalize notions of consistency, start
by formalizing notions of time

0 Once we do this we can be rigorous about notions
like “before” or “after” or “simultaneously”

O If we try to write down conditions for correct replication
these kinds of terms often arise

CS5412 Spring 2012 (Cloud Computing: Birman)

What time is it?

0 In distributed system we need practical ways to
deal with time

O E.g. we may need to agree that update A occurred
before update B

O Or offer a “lease” on a resource that expires at time
10:10.0150

O Or guarantee that a time critical event will reach all
interested parties within 100ms

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

But what does time “mean’?

O Time on a global clock?
o E.g. on Cornell clock tower?
O ... or perhaps on a GPS receiver?
O ... or on a machine’s local clock
O But was it set accurately?
O And could it drift, e.g. run fast or slow?
0 What about faults, like stuck bits?

O ... or could try to agree on time

CS5412 Spring 2012 (Cloud Computing: Birman)

Lamport’s approach

O Leslie Lamport suggested that we should reduce

time to its basics

O Time lets a system ask “Which came first: event A or

event B2”

O In effect: time is a means of labeling events so that...

u |f A happened before B, TIME(A) < TIME(B)
m If TIME(A) < TIME(B), A happened before B

CS5412 Spring 2012 (Cloud Computing: Birman)

Drawing time-line pictures

N

revy(m) deliv,(m)

CS5412 Spring 2012 (Cloud Computing: Birman)

Drawing time-line pictures

q c \ b

revy(m) deliv,(m)
o A, B, C and D are “events”
O Could be anything meaningful to the application

O So are snd(m) and rev(m) and deliv(m)

0 What ordering claims are meaningful?

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Drawing time-line pictures

snaj,(m)
d A ﬁ B
m
q C > D

revy(m) deliv,(m)

O A happens before B, and C before D
O “Local ordering” at a single process

O Write 45z and ¢'p

CS5412 Spring 2012 (Cloud Computing: Birman)

Drawing time-line pictures

snd,(m)

A—>\ B

m

e N,

revy(m) deliv,(m)

p

O A happens before D

O Transitivity: A happens before snd, (m), which happens
before rcv,(m), which happens before D

CS5412 Spring 2012 (Cloud Computing: Birman)

Drawing time-line pictures

snd,(m)

c D
revy(m) deliv,(m)

o snd (m) also happens before rev (m)
O “Distributed ordering” infroduced by a message system

. N
O Write snd f m)=yrevy(m)

CS5412 Spring 2012 (Cloud Computing: Birman)

Drawing time-line pictures

q c \ b

revy(m) deliv,(m)

O B and D are concurrent
O Looks like B happens first, but D has no way to know

O No information flew between p and q in that regard...

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Happens before “relation”

21

o We say that “A happens before B”, written A—B, if
1. A>'B according to the local ordering in p, or
2. Aisasnd and B is a rev and A—™B in M, or

3. A and B are related under transitive closure of rules (1) and (2)

o Notice that, so far, this is just a mathematical
notation, not a “systems tool”

O Given a trace of what happened in a system we
could use these tools to talk about the trace

O But we need a way to “implement” this idea

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Rules for managing logical clocks

O When an event happens at a process p it increments
LT

p
O Any event that matters to p causes in increment

o Normally also snd and rcv events (since we want receive to
occur “after” the matching send)

O When p sends m, set
oL, =T,

O When g receives m, set
o LT, = max(LT,, LT,)+1

CS5412 Spring 2012 (Cloud Computing: Birman)

Logical clocks

2
O A simple tool that can capture parts of the
happens-before relation
O First version uses just a single integer
o Designed for big (64-bit or more) counters
O Each process p maintains LT, a local counter

O A message m will carry LT

CS5412 Spring 2012 (Cloud Computing: Birman)

Timeline with LT annotations

snd,(m)

revy(m) deliv,(m)
Lefofofefufufafafefefsele]e]
o LT(A) =1, LT(snd,(m)) = 2, LT(m) = 2
o LT(C) = 1, LT(rev,(m))=max(2,2)+1=3, etc...

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Logical clocks

o If A happens before B, A—>B,
then LT(A)<LT(B)
O But converse might not be true:
o If LT(A)<LT(B) can’t be sure that A—>B

O This is because processes that don't communicate still
assign timestamps and hence events will “seem” to have
an order

CS5412 Spring 2012 (Cloud Computing: Birman)

27

History of vector clocks?

o Originated in work at UCLA on file systems that
allowed updates from multiple sources concurrently

O Jerry Popek’s FICUS system

O Current versioning systems (e.g. SVN, CVS) also use that
idea

0 Gradually adopted in distributed systems

O Most of the “formal” work was done by Fidge and
Mattern in Europe, long after idea was in wide use

CS5412 Spring 2012 (Cloud Computing: Birman)

Can we do better?

0 One option is to use vector clocks
O Here we treat timestamps as a list
o One counter for each process

O Rules for managing vector times differ from what
we did with logical clocks

CS5412 Spring 2012 (Cloud Computing: Birman)

Vector clocks

o Clock is a vector: e.g. VT(A)=[1, O]
o We'll just assign p index O and q index 1
O Vector clocks require either agreement on the numbering, or
that the actual process id’s be included with the vector
O Rules for managing vector clock
O When event happens at p, increment VT [index_]

m Normally, also increment for snd and rcv events
O When sending a message, set VT(m)=VT,
O When receiving, set VT ,=max(VT,, VT(m))

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Time-line with VT annotations

snay,(m)
p A B
Lofe e plefefe[ele e [o]e]
T m\
q c D

R RRARRAHARRHAR

Could also be [1,0] if we decide not to increment the clock ona |
| snd event. Decision depends on how the timestamps will be used.

oo

CS5412 Spring 2012 (Cloud Computing: Birman)

Time-line with VT annotations

snd,(m)
A B

Lrlepfefeefele[ee [e [o e]

VT(m)=[2,0]
q c 5

revy(m) deliv,(m)
Ll lefefe[eelefas []88 [¢]
o VT(A)=[1,0]. VT(D)=[2,4]. Hence VT(A)<VT(D)
o VT(B)=[3,0]. Hence VT(B) and VT(D) are incomparable

p

Ion

CS5412 Spring 2012 (Cloud Computing: Birman)

Rules for comparison of VTs

o We'll say that VT, < VT, if
O v, VT[] < VT,[i]
g And we'll say that VT, < VT, if
O VT, < VT, but VT, # VT,
O That is, for some i, VT[i] < VTlil
0 Examples?
o [2,4] <[2,4]
o[1,3]<[7,3]
o [1,3] is “incomparable” to [3,1]

CS5412 Spring 2012 (Cloud Computing: Birman)

32

Vector time and happens before

o If A—>B, then VT(A)<VT(B)

O Write a chain of events from A to B

O Step by step the vector clocks get larger
o If VT(A)<VT(B) then A—B

O Two cases: if A and B both happen at same process p, trivial

o If A happens at p and B at q, can trace the path back by

which g “learned” VT,[p]

o Otherwise A and B happened concurrently

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

33

Temporal distortions

O Things can be complicated because we can’t predict
O Message delays (they vary constantly)

O Execution speeds (often a process shares a machine
with many other tasks)

O Timing of external events

O Lamport looked at this question too

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Temporal distortions

m What does “now” mean?

N N |

P1

P2

Ps

SLU—

CS5412 Spring 2012 (Cloud Computing: Birman)

Temporal distortions
0 What does “now” mean?

NN S i

P1 >

f

: \

CS5412 Spring 2012 (Cloud Computing: Birman)

Temporal distortions

m Timelines can “stretch”...

N A

P2

Ps

f
m ... caused by scheduling effects, message
delays, message loss...

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

37

Temporal distortions

m Timelines can “shrink”

AN LS f

: Ny T

m E.g. something lets a machine speed up

CS5412 Spring 2012 (Cloud Computing: Birman)

Consistent cuts and snapshots

39
O ldea is to identify system states that “might” have
occurred in real life

O Need to avoid capturing states in which a message is
received but nobody is shown as having sent it

O This the problem with the gray cuts

CS5412 Spring 2012 (Cloud Computing: Birman)

38

Temporal distortions

m Cuts represent instants of time

N XD i
SN

m But not every “cut” makes sense

m Black cuts could occur but not gray ones

CS5412 Spring 2012 (Cloud Computing: Birman)

Temporal distortions

40

m Red messages cross gray cuts “backwards in time”

NN ﬁ

BN VA
SN\ |

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

ENaY

41

Temporal distortions

m Red messages cross gray cuts “backwards in time”

Po 2 >

b c e .
" \ |
P2 >
) y \ R

m In a nutshell: the cut includes a message that

“was never sent”

CS5412 Spring 2012 (Cloud Computing: Birman)

Suppose we detect this state

O We see a cycle...

P ———— waiting for ——(
Waiting for Waiting for
s Waiting for r

O ... butis it a deadlock?

CS5412 Spring 2012 (Cloud Computing: Birman)

42

An application: Deadlock detection

O p worries: perhaps we have a deadlock
O p is waiting for q, so sends “what’s your state?”

O g, on receipt, is waiting for r, so sends the same
question... and r for s.... And s is waiting on p

CS5412 Spring 2012 (Cloud Computing: Birman)

Phantom deadlocks!

O Suppose the system has a very high rate of locking
O Then perhaps a lock release message “passed” a
query message

O i.e. we see “q waiting for r” and “r waiting for s” but in fact,
by the time we checked r, g was no longer waiting!

O In effect: we checked for deadlock on a gray cut — an
inconsistent cut

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

One solution is to “freeze” the system
[«

CS5412 Spring 2012 (Cloud Computing: Birman)

One solution is to “freeze” the system
[«

X
Was 1 speeding?

Ok...

1'll be late! Y

ves sir! B

Sigh...

CS5412 Spring 2012 (Cloud Computing: Birman)

One solution is to “freeze” the system

Sorry to trouble you, folks. | just
need a status snapshot, please

CS5412 Spring 2012 (Cloud Computing: Birman)

One solution is to “freeze” the system

X

Here you go... A
5 No problem
/9
b

B
Hey, doesn’t a guy have a
right to privacy?

Sigh...

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

One solution is to “freeze” the system

49

Ok, you can go now

CS5412 Spring 2012 (Cloud Computing: Birman)

Consistent cuts and snapshots

0 Goal is to draw a line across the system state such
that

O Every message “received” by a process is shown as
having been sent by some other process

O Some pending messages might still be in communication
channels

0 And we want to do this while running

CS5412 Spring 2012 (Cloud Computing: Birman)

Why does it work?

0 When we check bank accounts, or check for
deadlock, the system is idle

o So if “P is waiting for Q” and “Q is waiting for R”
we really mean “simultaneously”

O But to get this guarantee we did something very
costly because no new work is being done!

CS5412 Spring 2012 (Cloud Computing: Birman)

52

Turn idea into an algorithm

o To start a new snapshot, p;,
O Builds a message: “P, is initiating snapshot k”.
u The tuple (p;, k) uniquely identifies the snapshot
O Writes down its own state

O Starts recording incoming messages on all channels

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

EEa)

53

Turn idea into an algorithm

O Now p; tells its neighbors to start a snapshot

O In general, on first learning about snapshot (p,, k), p,
O Writes down its state: p,’s contribution to the snapshot
O Starts “tape recorders” for all communication channels
O Forwards the message on all outgoing channels
O Stops “tape recorder” for a channel when a snapshot

message for (p,, k) is received on it

O Snapshot consists of all the local state contributions

and all the tape-recordings for the channels

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 2

55

o
p%q//
/=L
-

CS5412 Spring 2012 (Cloud Computing: Birman)

A network

Chandy /Lamport — 1

o Outgoing wave of requests... incoming wave of
snapshots and channel state

O Snapshot ends up accumulating at the initiator, p;

O Algorithm doesn't tolerate process failures or
message failures

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 3

w

| want to start a t /
p

/=L

T

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Chandy /Lamport — 4

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

p starts monitoring
incoming channels

Chandy /Lamport — 5

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 6
|»

p /
=

Yy

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy/Lamport — 7
| o

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Chandy /Lamport — 8

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 10

| o
=
= q Q[ﬁ:’ ks
A

~~
~
-~
=

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 9

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 11

P
t~ ’ p
=7 i.-- o
::: ———————— ! 1
o P o
— ! \
// DII ~~~'|-"|\£> !
-0 'O
Ym e _ / . - = S
= PR ol
,____~~~~:\ \\Q
"‘D—Izﬁ
A network

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

Chandy /Lamport — 12

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 13

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 14
|o

o -ﬁ
se /?f///
%z

A network

CS5412 Spring 2012 (Cloud Computing: Birman)

Chandy /Lamport — 15

A snapshot of a network

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

] -7

Chandy /Lamport “snapshot”

0 Once we collect the state snapshots plus the channel

contents we have a consistent cut from the system

O It “could” have occured as a concurrent instant in the
system execution (although in fact, it obviously didn't)

O Processing such a snapshot requires understanding the
state in this form

O But many algorithms use this pattern of messages
without necessarily writing down the whole state or
logging all the messages in the channels

CS5412 Spring 2012 (Cloud Computing: Birman)

71

Conclusions

O By formalizing notion of time we can build tools for
thinking about fancier ideas such as consistency of
replicated data

O Today we looked more closely at time than at
consistency

O We introduced idea of consistency to motivate need to look
closely at time

O But didn’t tie the logical or vector timestamp ideas back to
implementation of replicated data

O Next lectures will make this connection explicit

CS5412 Spring 2012 (Cloud Computing: Birman)

Relation to vector time?

70

O In the textbook the connection of consistent cuts to
the notion of logical time is explored

O A consistent cut is a snapshot taken at a set of
concurrent points in a system trace

O In effect, all the members of the system concurrently
write down their states

O We can restate Chandy/Lamport to implement it
precisely in this manner!

O But not for today, so we'll leave that for you to read
about in Chapter 10 of the text

CS5412 Spring 2012 (Cloud Computing: Birman)

05/01/2015

