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REPLICATION, CONSISTENCY 
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Lecture X

Recall that clouds have tiers
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 Up to now our focus has been on client systems and the 
network, and the way that the cloud has reshaped both

 We looked very superficially at the tiered structure of the 
cloud itself
 Tier 1: Very lightweight, responsive “web page builders” that can 

also route (or handle) “web services” method invocations.  Limited 
to “soft state”

 Tier 2: (key,value) stores and similar services that support tier 1.  
Basically, various forms of caches

 Inner tiers: Online services that handle requests not handled in the 
first tier.  These can store persistent files, run transactional 
services.  But we shield them from load

 Back end: Runs offline services that do things like indexing the 
web overnight for use by tomorrow morning’s tier-1 services

Replication
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 A central feature of the cloud
 To handle more work, make more copies

 In the first tier, which is highly elastic, the data center 
management layer pre-positions inactive copies of virtual 
machines for the services we might run
 Exactly like installing a program on some machine

 If load surges, creating more instances just entails
 Running more copies on more nodes
 Adjusting the load-balancer to spray requests to new nodes

 If load drops... just kill the unwanted copies!
 Little or no warning.  Discard any “state” they created locally

Replication is about keeping copies
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 The term may sound fancier but the meaning isn’t

 Whenever we have many copies of something we say 
that we’ve replicated that thing
 But usually replica does connote “identical”
 Instead of replication we use the term redundancy for things 

like alternative communication paths (e.g. if we have two 
distinct TCP connections from some client system to the cloud)

 Redundant things might not be identical.  Replicated things 
usually play identical roles and have equivalent data
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Things we can replicate in a cloud
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 Files or other forms of data used to handle requests
 If all our first tier systems replicate the data needed for end-user 

requests, then they can handle all the work!
 Two cases to consider: in one the data itself is “write once” like a 

photo.  Either you have a replica, or don’t
 In the other the data evolves over time, like the current inventory 

count for the latest iPad in the Apple store

 Computation
 Here we replicate some request and then the work of computing 

the answer can be spread over multiple programs in the cloud
 We benefit from parallelism by getting a faster answer
 Can also provide fault tolerance

Many things “map” to replication
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 As we just saw, data (or databases), computation
 Fault-tolerant request processing
 Coordination and synchronization (e.g. “who’s in 

charge of the air traffic control sector over Paris?”)
 Parameters and configuration data
 Security keys and lists of possible users and the 

rules for who is permitted to do what
 Membership information in a Distributed Hash Table 

or some other service that has many participants

So... focus on replication!
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 If we can get replication right, we’ll be on the road 
to a highly assured cloud infrastructure

 Key is to understand what it means to correctly 
replicate data at cloud scale...

 ... then once we know what we want to do, to find 
scalable ways to implement needed abstraction(s)

Concept of “consistency”
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 We would say that a replicated entity behave in a 
consistent manner if it behaves like a non-replicated 
entity
 E.g. if I ask it some question, and it answers, and then 

you ask it that question again, your answer either is the 
same or reflects some update to the underlying state

 Many copies which act like just one

 An inconsistent service is one that seems “broken”



05/01/2015

3

Consistency lets us ignore implementation

A consistent distributed system will often have many 
components, but users observe behavior 

indistinguishable from that of  a single-component 
reference system

9

Reference Model Implementation
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Dangers of Inconsistency

 Inconsistency causes bugs
 Clients would never be able to 

trust servers… a free-for-all

 Weak or “best effort” consistency?
 Common in today’s cloud replication schemes
 But strong security guarantees demand consistency
 Would you trust a medical electronic-health records 

system or a bank that used “weak consistency” for 
better scalability?

10
My rent check bounced?

That can’t be right!

Jason Fane Properties               1150.00

Sept 2009                Tommy Tenant
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Leslie Lamport’s insight
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 To formalize notions of consistency, start
by formalizing notions of time

 Once we do this we can be rigorous about notions 
like “before” or “after” or “simultaneously”
 If we try to write down conditions for correct replication 

these kinds of terms often arise

What time is it?

 In distributed system we need practical ways to 
deal with time
 E.g. we may need to agree that update A occurred 

before update B
 Or offer a “lease” on a resource that expires at time 

10:10.0150 
 Or guarantee that a time critical event will reach all 

interested parties within 100ms
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But what does time “mean”?

 Time on a global clock?
 E.g. on Cornell clock tower?
 ... or perhaps on a GPS receiver?

 … or on a machine’s local clock
 But was it set accurately?
 And could it drift, e.g. run fast or slow?
 What about faults, like stuck bits?

 … or could try to agree on time
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Lamport’s approach

 Leslie Lamport suggested that we should reduce 
time to its basics
 Time lets a system ask “Which came first: event A or 

event B?”
 In effect: time is a means of labeling events so that…
 If A happened before B, TIME(A) < TIME(B)
 If TIME(A) < TIME(B), A happened before B
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Drawing time-line pictures

p

m

sndp(m)

q
rcvq(m)    delivq(m)

D

CS5412 Spring 2012 (Cloud Computing: Birman)

15

Drawing time-line pictures

 A, B, C and D are “events” 
 Could be anything meaningful to the application
 So are snd(m) and rcv(m) and deliv(m)

 What ordering claims are meaningful?

p

m

A

C

B
sndp(m)

q
rcvq(m)    delivq(m)

D
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Drawing time-line pictures

 A happens before B, and C before D
 “Local ordering” at a single process
 Write        and 

p

q

m

A

C

B

rcvq(m)    delivq(m)

sndp(m)

D
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Drawing time-line pictures

 sndp(m) also happens before rcvq(m)
 “Distributed ordering” introduced by a message system
 Write

p

q

m

A

C

B

rcvq(m)    delivq(m)

sndp(m)

D
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Drawing time-line pictures

 A happens before D
 Transitivity: A happens before sndp(m), which happens 

before rcvq(m), which happens before D

p

q

m

D

A

C

B

rcvq(m)    delivq(m)

sndp(m)
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p

q

m

D

A

C

B

rcvq(m)    delivq(m)

sndp(m)

Drawing time-line pictures

 B and D are concurrent
 Looks like B happens first, but D has no way to know
 No information flew between p and q in that regard…
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Happens before “relation”

 We say that “A happens before B”, written AB, if
1. APB according to the local ordering in p, or
2. A is a snd and B is a rcv and AMB in M, or
3. A and B are related under transitive closure of rules (1) and (2)

 Notice that, so far, this is just a mathematical 
notation, not a “systems tool”

 Given a trace of what happened in a system we 
could use these tools to talk about the trace

 But we need a way to “implement” this idea
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Logical clocks

 A simple tool that can capture parts of the 
happens-before relation

 First version uses just a single integer
 Designed for big (64-bit or more) counters
 Each process p maintains LTp, a local counter
 A message m will carry LTm
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Rules for managing logical clocks

 When an event happens at a process p it increments 
LTp

 Any event that matters to p causes in increment
 Normally also snd and rcv events (since we want receive to 

occur “after” the matching send)

 When p sends m, set
 LTm = LTp

 When q receives m, set
 LTq = max(LTq, LTm)+1
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Timeline with LT annotations

 LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2
 LT(C) = 1, LT(rcvq(m))=max(2,2)+1=3, etc…

p

q

m

D

A

C

B

rcvq(m)    delivq(m)

sndp(m)

LTq 0 0 0 1 1 1 1 3 3 3 4 5 5

LTp 0 1 1 2 2 2 2 2 2 3 3 3 3
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Logical clocks

 If A happens before B, AB,
then LT(A)<LT(B)

 But converse might not be true:
 If LT(A)<LT(B) can’t be sure that AB
 This is because processes that don’t communicate still 

assign timestamps and hence events will “seem” to have 
an order
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Can we do better?

 One option is to use vector clocks
 Here we treat timestamps as a list

 One counter for each process

 Rules for managing vector times differ from what 
we did with logical clocks
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History of vector clocks?
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 Originated in work at UCLA on file systems that 
allowed updates from multiple sources concurrently
 Jerry Popek’s FICUS system
 Current versioning systems (e.g. SVN, CVS) also use that 

idea 

 Gradually adopted in distributed systems

 Most of the “formal” work was done by Fidge and 
Mattern in Europe, long after idea was in wide use

Vector clocks

 Clock is a vector: e.g. VT(A)=[1, 0]
 We’ll just assign p index 0 and q index 1
 Vector clocks require either agreement on the numbering, or 

that the actual process id’s be included with the vector

 Rules for managing vector clock
 When event happens at p, increment VTp[indexp]
 Normally, also increment for snd and rcv events 

 When sending a message, set VT(m)=VTp

 When receiving, set VTq=max(VTq, VT(m))
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Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m)    delivq(m)

sndp(m)

VTq 0 
0

0 
0

0 
0

0 
1

0 
1

0 
1

0 
1

2 
2

2 
2

2 
2

2
3

2 
3

2 
4

VTp 0 
0

1 
0

1 
0

2 
0

2 
0

2 
0

2 
0

2 
0

2 
0

3 
0

3
0

3 
0

3 
0

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a 
snd event.  Decision depends on how the timestamps will be used.
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Rules for comparison of VTs

 We’ll say that VTA ≤ VTB if
 I, VTA[i] ≤ VTB[i]

 And we’ll say that VTA < VTB if
 VTA ≤ VTB but VTA ≠ VTB

 That is, for some i, VTA[i] < VTB[i]

 Examples?
 [2,4] ≤ [2,4]
 [1,3] < [7,3]
 [1,3] is “incomparable” to [3,1]
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Time-line with VT annotations

 VT(A)=[1,0].  VT(D)=[2,4].  Hence VT(A)<VT(D)
 VT(B)=[3,0]. Hence VT(B) and VT(D) are incomparable

p

q

m

D

A

C

B

rcvq(m)    delivq(m)

sndp(m)

VTq 0 
0

0 
0
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0

0 
1
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1
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1
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1
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2
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2
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2

2
3

2 
3
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4

VTp 0 
0

1 
0

1 
0

2 
0

2 
0

2 
0

2 
0

2 
0

2 
0

3 
0

3
0

3 
0

3 
0

VT(m)=[2,0]
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Vector time and happens before

 If AB, then VT(A)<VT(B)
 Write a chain of events from A to B
 Step by step the vector clocks get larger

 If VT(A)<VT(B) then AB
 Two cases: if A and B both happen at same process p, trivial
 If A happens at p and B at q, can trace the path back by 

which q “learned” VTA[p]

 Otherwise A and B happened concurrently
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Temporal distortions

 Things can be complicated because we can’t predict
 Message delays (they vary constantly)
 Execution speeds (often a process shares a machine 

with many other tasks)
 Timing of external events

 Lamport looked at this question too
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Temporal distortions

 What does “now” mean?

p0 a

f

e

p3

b

p2

p1
c

d
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Temporal distortions

 What does “now” mean?
p0 a

f

e

p3

b

p2

p1
c

d
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Temporal distortions

 Timelines can “stretch”…

 … caused by scheduling effects, message 
delays, message loss…

p0 a

f

e

p3

b

p2

p1
c

d

CS5412 Spring 2012 (Cloud Computing: Birman)

36



05/01/2015

10

Temporal distortions

 Timelines can “shrink”

 E.g. something lets a machine speed up

p0 a

f

e

p3

b

p2

p1
c

d
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Temporal distortions

 Cuts represent instants of time

 But not every “cut” makes sense
 Black cuts could occur but not gray ones

p0 a

f

e

p3

b

p2

p1
c

d
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Consistent cuts and snapshots

 Idea is to identify system states that “might” have 
occurred in real life
 Need to avoid capturing states in which a message is 

received but nobody is shown as having sent it
 This the problem with the gray cuts
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Temporal distortions

 Red messages cross gray cuts “backwards in time”

p0 a

f

e

p3

b

p2

p1
c

d
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Temporal distortions

 Red messages cross gray cuts “backwards in time”

 In a nutshell: the cut includes a message that 
“was never sent”

p0 a

e

p3

b

p2

p1
c
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An application: Deadlock detection

 p worries: perhaps we have a deadlock
 p is waiting for q, so sends “what’s your state?”
 q, on receipt, is waiting for r, so sends the same 

question… and r for s…. And s is waiting on p
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Suppose we detect this state

 We see a cycle…

 … but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for
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Phantom deadlocks!

 Suppose the system has a very high rate of locking
 Then perhaps a lock release message “passed” a 

query message
 i.e. we see “q waiting for r” and “r waiting for s” but in fact, 

by the time we checked r, q was no longer waiting!

 In effect: we checked for deadlock on a gray cut – an 
inconsistent cut
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One solution is to “freeze” the system

X

Y

Z

A

B

STOP!
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One solution is to “freeze” the system

X

Y

Z

A

B

STOP!

Ok…

Yes sir!

I’ll be late!

Was I speeding?

Sigh…
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One solution is to “freeze” the system

X

Y

Z

A

B

Sorry to trouble you, folks.  I just 
need a status snapshot, please
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One solution is to “freeze” the system

X

Y

Z

A

B

No problem

Hey, doesn’t a guy have a 
right to privacy?

Done…

Here you go…

Sigh…
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One solution is to “freeze” the system

X

Y

Z

A

B

Ok, you can go now

CS5412 Spring 2012 (Cloud Computing: Birman)

49

Why does it work?

 When we check bank accounts, or check for 
deadlock, the system is idle

 So if “P is waiting for Q” and “Q is waiting for R” 
we really mean “simultaneously”

 But to get this guarantee we did something very 
costly because no new work is being done!
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Consistent cuts and snapshots

 Goal is to draw a line across the system state such 
that
 Every message “received” by a process is shown as 

having been sent by some other process
 Some pending messages might still be in communication 

channels

 And we want to do this while running
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Turn idea into an algorithm

 To start a new snapshot, pi …

 Builds a message: “Pi is initiating snapshot k”.  
 The tuple (pi, k) uniquely identifies the snapshot

 Writes down its own state
 Starts recording incoming messages on all channels

CS5412 Spring 2012 (Cloud Computing: Birman)
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Turn idea into an algorithm

 Now pi tells its neighbors to start a snapshot
 In general, on first learning about snapshot (pi, k), px

 Writes down its state: px’s contribution to the snapshot
 Starts “tape recorders” for all communication channels
 Forwards the message on all outgoing channels
 Stops “tape recorder” for a channel when a snapshot 

message for (pi, k) is received on it

 Snapshot consists of all the local state contributions 
and all the tape-recordings for the channels
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Chandy/Lamport – 1

 Outgoing wave of requests… incoming wave of 
snapshots and channel state

 Snapshot ends up accumulating at the initiator, pi

 Algorithm doesn’t tolerate process failures or 
message failures
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Chandy/Lamport – 2

p

q
r

s

t

u

v

w

x
y

z

A network
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Chandy/Lamport – 3

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start a 
snapshot
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Chandy/Lamport – 4

p

q
r

s

t

u

v

w

x
y

z

A network

p records  local state
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Chandy/Lamport – 5

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring 
incoming channels
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Chandy/Lamport – 6

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-y”
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Chandy/Lamport – 7

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on 
outgoing channels…
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Chandy/Lamport – 8

p

q
r

s

t

u

v

w

x
y

z

A network
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Chandy/Lamport – 9

p

q
r

s

t

u

v

w

x
y

z

A network

q is done
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Chandy/Lamport – 10

p

q
r

s

t

u

v

w

x
y

z

A network

q
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Chandy/Lamport – 11

p

q
r

s

t

u

v

w

x
y

z

A network

q
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Chandy/Lamport – 12

p

q
r

s

t

u

v

w

x
y

z

A network

q

zs
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Chandy/Lamport – 13

p

q
r

s

t
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v

w

x
y

z

A network

q

v

z

x

u

s
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Chandy/Lamport – 14

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r
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Chandy/Lamport – 15

p
q

r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!
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Chandy/Lamport “snapshot”
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 Once we collect the state snapshots plus the channel 
contents we have a consistent cut from the system
 It “could” have occured as a concurrent instant in the 

system execution (although in fact, it obviously didn’t)
 Processing such a snapshot requires understanding the 

state in this form
 But many algorithms use this pattern of messages 

without necessarily writing down the whole state or 
logging all the messages in the channels

Relation to vector time?
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 In the textbook the connection of consistent cuts to 
the notion of logical time is explored
 A consistent cut is a snapshot taken at a set of 

concurrent points in a system trace
 In effect, all the members of the system concurrently 

write down their states
 We can restate Chandy/Lamport to implement it 

precisely in this manner!
 But not for today, so we’ll leave that for you to read 

about in Chapter 10 of the text

Conclusions
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 By formalizing notion of time we can build tools for 
thinking about fancier ideas such as consistency of 
replicated data

 Today we looked more closely at time than at 
consistency
 We introduced idea of consistency to motivate need to look 

closely at time
 But didn’t tie the logical or vector timestamp ideas back to 

implementation of replicated data

 Next lectures will make this connection explicit


