Concurrency in Go

Where did Go’s concurrency model come from?

Communicating Sequential Processes (CSP)

Seminal paper by C.A.R. Hoare (1978)
Parallel composition of communicating sequential processes
Communication synchronizes

No sharing of memory

CSp

SQUEAK :osrie

NEWSQUEAK

ROB PIKE
ROB PIKE

KENTHOMPSON G O
ROBERT GRIESEMER

Concurrency fundamentals in Go
GOROUTINE

Growable stacks

® Goroutines are very lightweight A goroutine is an
* Might have millions independently executing

Multiplexed on few threads function

® The Go runtime schedules goroutines on OS threads Itis not a thread or a coroutine!

® No full context switch

_ _ — Call a goroutine
No identity func f(x int) {

// do something

Same address space }
go £(4)

® Access to shared memory must be synchronized

CHANNEL

® First-class object
® ‘ability to communicate the ability to communicate”

® Senders don't have to know about receivers, and
vice versa

® 2ndgeneration CSP focuses on the channels over which
messages are sent

® Unlike actors

® "Don’t communicate by sharing memory; share
memory by communicating”

® Pass by value

Concurrency fundamentals in Go

A channel is a typed
communication
mechanism

— Sending and receiving

c := make (chan int)
go func () { go func() A
c <-1 value <- c

} () } ()

Unbuffered channel

® Default option (2" generation CSP feature)

® The sending and receiving goroutines
communicates and synchronize in a single
operation

® Areceiving goroutine waits for a value to be
sent on the channel

® Asending goroutine waits for a receiver to be
ready

Concurrency fundamentals in Go
CHANNEL BUFFERING

Buffered channel

® Buffering removes synchronization

® Queue of messages, with a maximum size

As long as there’s space available, writing to a
buffered channel completes immediately

If the channel is full, the send operation blocks
its goroutine until space is made available by
another goroutine’s receive

Receives block when the buffer is empty

The Go scheduler

® Schedules goroutines on available resources

® Finishes

Makes a blocking system call
e.g. reading a file

Makes a blocking Go runtime call

e.g. reading from a channel

Invokes a new goroutine

® Picks up a new goroutine when the current one...

o

M M
P — G | P N
I N N T
¢ G G v. G .1
| i
| | G | G
OS thread

Context
Goroutine (with stack, instruction pointer...)

7

Goroutine blocked o

M1 MO b
MO

on a system call P B @
® The OS thread processing the G0 e
goroutine idles waiting for the g
system call to return c

® The context that was
scheduling goroutines on the
blocked thread is moved to a M OS thread
new thread (or a new one is P Context
created if none are available) G

Goroutine (with stack, instruction pointer...)

Stealing work

® If the amount of work on the
contexts’ runqueues is
unbalanced, a context could
run out of goroutines

® A context can take goroutines
out of the global runqueue or
from other contexts

M
® There is always work to do on P
each of the contexts G

Gm

OS thread

Context

Goroutine (with stack, instruction pointer...)

Gm

