
Concurrency in Go

1



Where did Go’s concurrency model come from?

• Seminal paper by C.A.R. Hoare (1978)

• Parallel composition of communicating sequential processes

• Communication synchronizes

• No sharing of memory

Communicating Sequential Processes (CSP)

2

Origins Fundamentals Scheduler



CSP

GO

C.A.R. HOARE

ROB PIKE
KEN THOMPSON

ROBERT GRIESEMER

SQUEAK LUCA CARDELLI
ROB PIKE

NEWSQUEAK
ROB PIKE

3

Origins Fundamentals Scheduler



Concurrency fundamentals in Go
GOROUTINE

• Growable stacks

• Goroutines are very lightweight

• Might have millions

• Multiplexed on few threads

• The Go runtime schedules goroutines on OS threads

• No full context switch

• No identity

• Same address space

• Access to shared memory must be synchronized

4

A goroutine is an 
independently executing

function

It is not a thread or a coroutine!

func f(x int) {

// do something

}

go f(4)

Call a goroutine

Origins Fundamentals Scheduler



Concurrency fundamentals in Go
CHANNEL

• First-class object

• “ability to communicate the ability to communicate”

• Senders don’t have to know about receivers, and 
vice versa

• 2nd generation CSP focuses on the channels over which
messages are sent

• Unlike actors

• “Don’t communicate by sharing memory; share 
memory by communicating”

• Pass by value

5

A channel is a typed
communication

mechanism

Sending and receiving

go func() {

c <- 1

}()

go func() {

value <- c

}()

c := make(chan int)

Origins Fundamentals Scheduler



Concurrency fundamentals in Go
CHANNEL BUFFERING

Unbuffered channel

• Default option (2nd generation CSP feature)

• The sending and receiving goroutines
communicates and synchronize in a single 
operation

• A receiving goroutine waits for a value to be 
sent on the channel

• A sending goroutine waits for a receiver to be 
ready

Buffered channel

• Buffering removes synchronization

• Queue of messages, with a maximum size

• As long as there’s space available, writing to a 
buffered channel completes immediately

• If the channel is full, the send operation blocks
its goroutine until space is made available by 
another goroutine’s receive

• Receives block when the buffer is empty

6

Origins Fundamentals Scheduler



The Go scheduler

• Schedules goroutines on available resources

• Picks up a new goroutine when the current one…

• Finishes

• Makes a blocking system call
e.g. reading a file

• Makes a blocking Go runtime call
e.g. reading from a channel

• Invokes a new goroutine

7

Origins Fundamentals Scheduler

M OS thread

P Context

G Goroutine (with stack, instruction pointer…)



Goroutine blocked
on a system call

• The OS thread processing the 
goroutine idles waiting for the 
system call to return

• The context that was
scheduling goroutines on the 
blocked thread is moved to a 
new thread (or a new one is
created if none are available)

8

M OS thread

P Context

G Goroutine (with stack, instruction pointer…)

Origins Fundamentals Scheduler



Stealing work

• If the amount of work on the 
contexts’ runqueues is
unbalanced, a context could
run out of goroutines

• A context can take goroutines
out of the global runqueue or 
from other contexts

• There is always work to do on 
each of the contexts

9

M OS thread

P Context

G Goroutine (with stack, instruction pointer…)

Origins Fundamentals Scheduler


