
Data parallelism
General Purpose GPU Programming

1



/10

Supercomputer hidden in 
the GPU

• Computer graphics is all about manipulating huge 
amounts of data… 

• …but the actual operations on that data are 
relatively simple vector or matrix operations 

Data Parallelization

2



/10

2 ways of Data parallelism
• Pipelining 

• Multiple ALUs (with wide memory bus)

3



/10

GPU architecture
• GPUs use pipelining, multiple ALUs and other 

techniques 

• Different architecture for every GPU 

• OpenCL targets multiple architectures by defining 
a C-like language that allows us to express a 
parallel algorithm abstractly

4



/10

OpenCL programming

• The task of the programmer is to divide the 
problem into the smallest work-items he can. 
• Kernel: specifies what each work-item has to do

• The OpenCL compiler and runtime then worry 
about how best schedule those work-items on the 
available hardware so that that hardware is utilized 
as efficiently as possible

5



/10

Example: array 
multiplication

6



/10

OpenCL platform model
• Each device has one or more compute units, each of 

which provides some processing elements 

• Work-items execute on processing elements. A 
collection of work-items executing on a single compute 
unit is a work-group

7



/10

Memory model

• Global memory: Memory available to all work-
items executing on a device 

• Local memory: Memory local to a work-group 
• communication between work-items executing in 

a work-group (e.g. barrier)

8



/10

How big is a work-group
• Size of work-groups is variable 

• Solution: Break the problem into sub-problems

9



/10

Conclusions
• Data parallelism is ideal whenever you’re faced 

with a problem where large amounts of numerical 
data needs to be processed 

• The runtime helps to work with different 
architectures 

• The programmer's task is to model the problem in 
order to make it parallelizable

10


