

Anno accademico 2018/19 Sistemi Concorrenti e Distribuiti

Tullio Vardanega, tullio.vardanega@math.unipd.it

Laurea Magistrale in Informatica, Università di Padova

1/35

Sistemi distribuiti: introduzione

Definizione

- □ Un sistema distribuito è un insieme di nodi di calcolo indipendenti capaci di offrire all'applicazione come un sistema unitario e coerente
 - La comunicazione di coordinamento tra i nodi è trasparente all'applicazione
 - L'interazione tra applicazione e nodi non dipende dal tempo locale e dalla locazione in cui avviene

Laurea Magistrale in Informatica, Università di Padova

2/35

Sistemi distribuiti: introduzione

Le dimensioni della trasparenza

Trasparenza di	Per nascondere
Accesso	Differenze nella - rappresentazione dei dati (per HW eterogeneo) - modalità di accesso a risorse (per organizzazioni logiche diverse)
Collocazione	Il luogo di residenza effettiva delle risorse (distinzione tra nome fisico e nome logico)
Migrazione	Che una risorsa possa cambiare collocazione nel tempo
Spostamento	Che una risorsa possa cambiare collocazione durante l'uso
Replicazione / Transazione	Esistenza di copie multiple di una risorsa Coordinamento di attività per gestire una configurazione di risorse
Malfunzionamento	Guasto ed eventuale ripristino delle risorse
Persistenza	Grado di persistenza della risorsa logica (residente in memoria primaria oppure in memoria secondaria)

ISO/IEC 10746-[1,4]:1996, Open Distributed Processing

Laurea Magistrale in Informatica, Università di Padova

3/35

Sistemi distribuiti: introduzione

Altre caratteristiche desiderabili - 1

□ *Openness*

- O Portabilità e interoperabilità
- Modalità di invocazione definita secondo regole pubbliche e stabili
 - Servizi sintatticamente specificati in termini di interfacce espresse in linguaggio neutro (*Interface Definition Language*, IDL)
 - Completezza: la specifica di interfaccia non nasconde dettagli essenziali alla sua realizzazione da parte di terzi
 - **Neutralità:** la specifica di interfaccia non impone particolare realizzazione

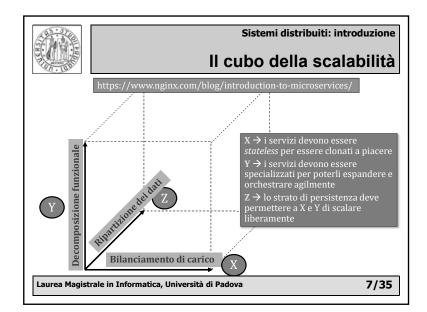
Laurea Magistrale in Informatica, Università di Padova

Altre caratteristiche desiderabili – 2

- □ Separazione tra politiche e meccanismi
 - La politica di servizio deve essere facilmente modificabile, adattabile e configurabile al variare delle necessità
 - Per questo motivo, la politica di servizio deve essere <u>interna al servente</u> e trasparente al cliente
 - I meccanismi realizzativi devono essere abbastanza generali per supportare diverse politiche, e non dover cambiare al variare di esse

Laurea Magistrale in Informatica, Università di Padova

5/35


Sistemi distribuiti: introduzione

Altre caratteristiche desiderabili - 3

- □ *Scalability*: ridimensionamento secondo bisogno
 - O Rispetto alla cardinalità dei componenti del sistema
 - Poter <u>agilmente</u> rimuovere / aggiungere utenti, risorse, nodi partecipanti
 - Rispetto all'estensione spaziale
 - Utenti e risorse non risentono della loro distanza geografica
 - Rispetto alle problematiche locali di gestione
 - L'amministrazione locale non pregiudica quella globale
 - Vogliamo scalabilità <u>senza interruzione di servizio</u> e senza spreco di risorse → elasticità

Laurea Magistrale in Informatica, Università di Padova

6/35

Sistemi distribuiti: introduzione

L'opposto della scalabilità

- □ Centralizzazione dei servizi
 - O Singolo servente per tutti gli utenti del sistema
 - Collo di bottiglia
- □ Centralizzazione dei dati
 - O Tutte le informazioni significative in un unico luogo
 - Dimensioni e complessità gestionale diventano proibitive
 - Esempi opposti: DNS (ca. 1985), Blockchain (ca. 2008)
- □ Centralizzazione degli algoritmi
 - O Conoscere lo stato corrente dell'intero sistema
 - Insostenibile onere di raccolta e ricostruzione

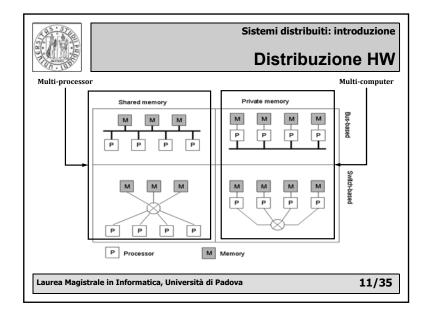
Laurea Magistrale in Informatica, Università di Padova

Prerequisiti di distribuzione - 1

- □ Un algoritmo è distribuito se
 - Ogni sua parte agisce (bene) su base di conoscenza locale
 - Conoscenza partizionata (DNS), replicata con garanzie (Blockchain)
 - O Non richiede informazione sullo stato globale del sistema
 - Risposte locali contribuiscono a risposta globale (DNS), risposte locali hanno effetto se convalidate tra pari (Blockchain)
 - Il dispiegarsi dell'effetto globale non viene pregiudicato da guasti locali
 - O Non necessita di un tempo di sistema unico e globale
 - Consente ripartizione dei compiti e replicazione delle risorse e ne garantisce la consistenza necessaria

Laurea Magistrale in Informatica, Università di Padova

9/35


Sistemi distribuiti: introduzione

Prerequisiti di distribuzione – 2

- □ La comunicazione sincrona è un impedimento alla distribuzione
 - Perché blocca (ritardando attivamente l'avanzamento) e accoppia
- □ La comunicazione asincrona è un abilitatore della distribuzione
 - Perché disaccoppia (nascondendo i ritardi di rete) e favorisce l'avanzamento indipendente

Laurea Magistrale in Informatica, Università di Padova

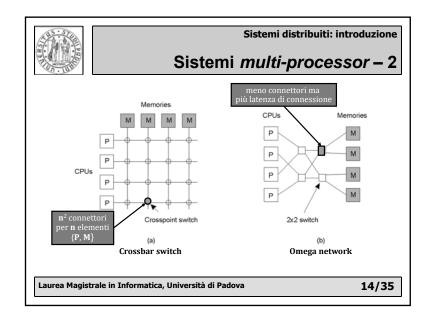
10/35

Sistemi distribuiti: introduzione

Architettura di memoria

- □ Uniforme (UMA) → multi-processor
 - O Lo spazio di indirizzamento è unico e comune
 - Assunzione di base nell'architettura Symmetric Multi-Processor
 - L'accesso alla memoria è uniforme
 - Ma le richieste di accesso vanno arbitrate (coda e blocco)
 - O La cache è (in generale) coerente rispetto ai riferimenti condivisi
- □ Non-uniforme (NUMA) → multi-computer
 - O Lo spazio di indirizzamento è comune ma non unico
 - L'accesso alla memoria non è uniforme
 - Costo di accesso ottimizzabile ma pagando in termini di complessità organizzativa
 - O Tenere la cache coerente è molto più costoso

Laurea Magistrale in Informatica, Università di Padova

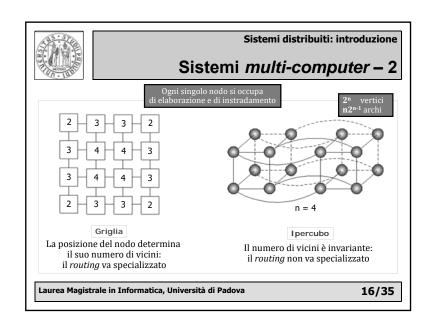


Sistemi *multi-processor* – 1

- □ Unico spazio di indirizzamento tra le CPU
 - La comunicazione P-M su bus richiede arbitraggio e diventa collo di bottiglia
 - La comunicazione P-M punto-a-punto (switched) bilancia meglio il carico, al costo di maggiore complessità realizzativa
 - Connessione completa (crossbar switch) con matrice P × M: maggiore velocità per maggior costo
 - Combinazione di sotto-reti più semplici (p.es. omega network 2 x 2): minor costo strutturale per maggior complessità di collegamento

Laurea Magistrale in Informatica, Università di Padova

13/35



Sistemi distribuiti: introduzione

Sistemi multi-computer - 1

- □ Quelli omogenei
 - Possono condividere (un po' di) spazio di indirizzamento
 - L'accesso ad esso necessita però attraversamenti di interconnessione P-P via router o switch
- □ L'interconnessione punto-a-punto è preferibile
 - Topologia a griglia (*grid*)
 - Oppure a ipercubo
 - ullet Cubi n-dimensionali con 2^n vertici (nodi di calcolo) e $n2^{n-1}$ archi (connessioni)

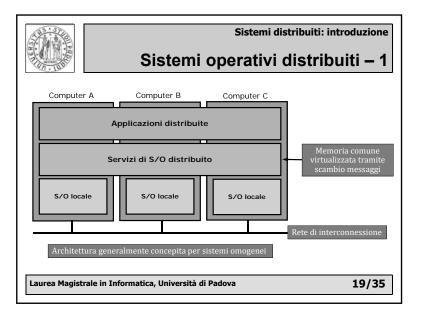
Laurea Magistrale in Informatica, Università di Padova

Sistemi *multi-computer* – 3

- □ Quelli eterogenei
 - Lo sono sia rispetto alla tipologia degli elaboratori che alla topologia di interconnessione
 - O Sono il modello architetturale più generale
 - E quindi vero termine di riferimento dei sistemi distribuiti
- □ Nota storica
 - I sistemi omogenei erano visti come architetture a parallelismo massiccio per applicazioni specializzate
 - L'avvento dei processori multi-core ne ha cambiato la percezione
 - I nuovi processori many-core sono multi-computer eterogenei organizzati come cluster di multi-core

Laurea Magistrale in Informatica, Università di Padova

17/35


Sistemi distribuiti: introduzione

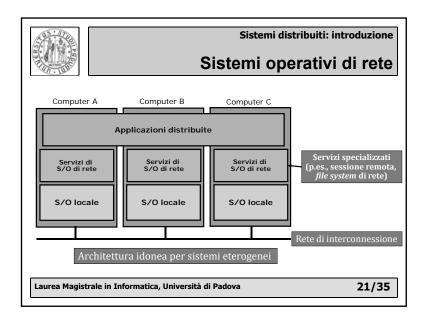
Distribuzione SW

- □ Secondo la struttura del S/O
- □ Accoppiamento stretto → S/O distribuito
 - O Gestione uniforme delle risorse di sistema
 - In analogia con le funzioni di S/O per mono-processor
- □ Accoppiamento lasco → S/O di rete (NOS)
 - Per offrire a utenti remoti l'accesso ad alcune risorse e servizi locali
 - Le funzionalità di gestione della distribuzione possono essere arricchite da un livello SW interposto tra NOS e applicazioni → middleware

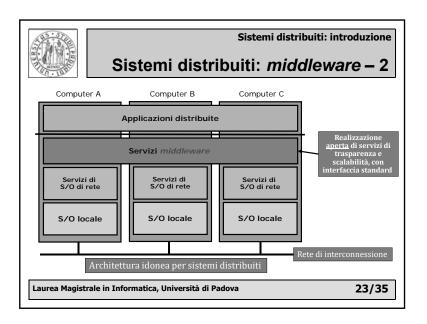
Laurea Magistrale in Informatica, Università di Padova

18/35

Sistemi distribuiti: introduzione


Sistemi operativi distribuiti – 2

- Programmare sistemi distribuiti multi-computer è più complesso che sistemi multi-processor
 - Mentre lo *scheduling* diventa più semplice



- La comunicazione basata su memoria condivisa e primitive di sincronizzazione è più agevole da realizzare di quella basata su scambio messaggi
 - Lo scambio messaggi è potenzialmente scalabile ma complicato dalle problematiche di accodamento, sincronizzazione (coordinamento) e affidabilità della rete di interconnessione
 - Per la sincronizzazione nella condivisione di risorse in presenza di parallelismo non è ovvio scegliere tra suspend lock e spin lock

Laurea Magistrale in Informatica, Università di Padova

Sistemi distribuiti: middleware - 4

- □ Web 1.0
 - Documenti distribuiti → www
- □ Web 2.0
 - \circ Risorse distribuite \rightarrow paradigma REST
 - Servizi distribuiti → paradigma SOA
 - Architetture a micro-servizi → paradigma «a contenitori orchestrati»
- □ Problematiche trasversali
 - Trasparenza, naming, sicurezza

Laurea Magistrale in Informatica, Università di Padova

25/35

Sistemi distribuiti: introduzione

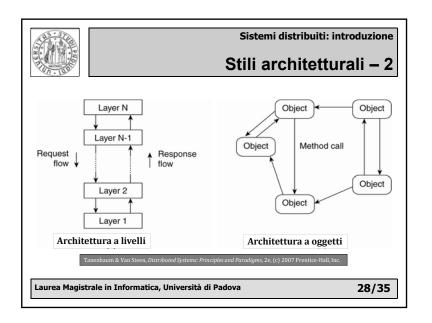
Sistemi distribuiti: middleware - 4

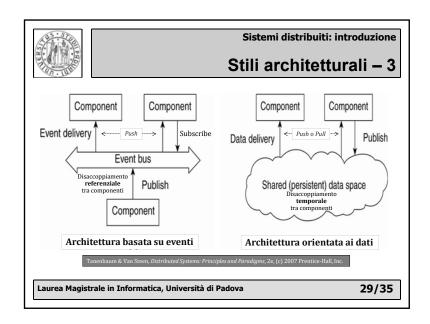
	S/O distribuito		S/O di rete	Sistema distribuito basato su
	Multi-processor	Multi-computer	3/0 til rete	middleware
Grado di trasparenza	Eccellente	Buono	Scarso	Buono
Stesso sistema operativo su ogni nodo	Si	Si	No	No
Istanze di sistema operativo	1	N	N	N
Paradigma di comunicazione	Memoria condivisa	Scambio messaggi	NFS	Svariati
Gestione delle risorse	Centralizzata per risorse globali	Distribuita per risorse globali	Per nodo	Per nodo
Scalability	Nulla	Modesta	Buona	Dipende dal paradigma
Openness	Nulla	Nulla	Buona	Buona

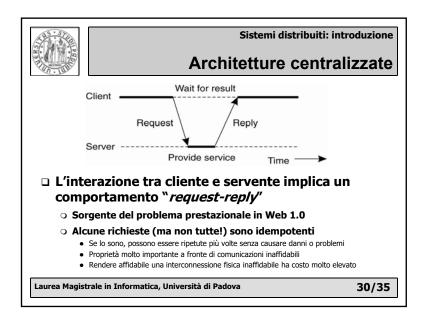
Laurea Magistrale in Informatica, Università di Padova

26/35

Sistemi distribuiti: introduzione


Stili architetturali - 1


- □ Espressi in termini di definizione e uso di
 - O Componenti per la produzione e il consumo di dati
 - Unità modulare coesa dotata di interfacce fornite e richieste ben definite
 - O Connettori per il flusso di dati e l'interazione tra parti
 - Mezzo per comunicazione, coordinamento e cooperazione tra componenti
- □ Alternative comuni
 - A livelli
 - A oggetti
 - Orientate ai dati
 - Basate su eventi


An **architectural style** is a named collection of architectural design decisions that

- are **applicable** in a given development
- constrain architectural design decisions that are specific to a particular system within that context
- elicit **beneficial qualities** in each resulting

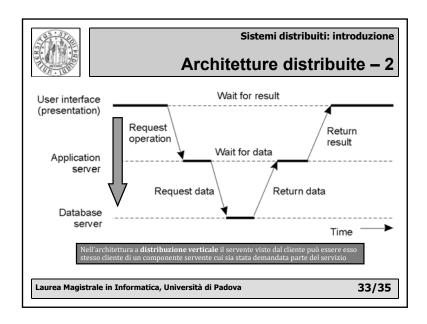
Laurea Magistrale in Informatica, Università di Padova

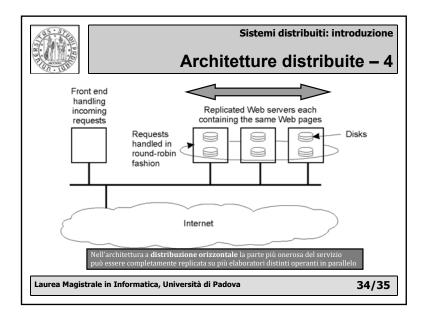
Architetture distribuite - 1

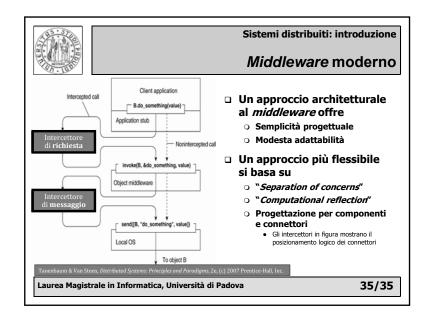
- □ Due le varianti principali di architetture distribute di tipo cliente-servente
 - Distinte in funzione della loro organizzazione del servizio e dei dati
- □ Distribuzione verticale
 - Con ripartizione di autorità
- □ Distribuzione orizzontale
 - O Con ripartizione del carico di lavoro

Laurea Magistrale in Informatica, Università di Padova

31/35




Sistemi distribuiti: introduzione


Architetture distribuite – 2

- □ Distribuzione verticale → specializzazione
 - Componenti diversi dello stesso macro-servizio possono essere assegnati a elaboratori distinti
 - Sia sul lato servente che sul lato cliente (delegazione parziale)
 - Il servizio richiede cooperazione articolata di componenti distribuiti
- □ Distribuzione orizzontale → clonazione
 - Servente e cliente possono essere partizionati ma ogni loro componente può operare da solo
 - Ogni componente sa fornire "il" servizio richiesto

Laurea Magistrale in Informatica, Università di Padova

