
On concurrent programming

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2020/2021

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/24

Premise – 1

 What a language is able to “say” fixes its
expressive power, but also sets its limit
 What the language is unable to say, does not

exist for its speaker
 Cit.: “The limits of my language are the limits of

my mind. All I know is what I have words for.”
Ludwig Wittgenstein, Tractatus Logico-Phisolophicus, 1922

 Programming languages are no different

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/24

Premise – 2

 Most (historical and current) programming
languages are sequential
 They reflect the execution model of the underlying

processor
Note: for now, we assume single-CPU computers

 All “traditional” processors conform to the von
Neumann architecture
 They are stored-program computers

 A single memory for code and data, and one CPU whose duty
cycle forever revolves around a fetch-decode-read-execute-
write pipeline

 Strictly sequential execution model

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/24

The von Neumann architecture

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/24

Concurrent languages – 1

 Concurrency can be “added” to a sequential
programming language by tapping into the
underlying OS
 E.g., the fork() / exec() model of UNIX

 In that manner, the expression and the
semantic control of the program’s
concurrency are outside of the language
 The program becomes not portable and its

semantics weaken

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/24

Concurrent languages – 2

 The alternative is to enable the language to
express multiple simultaneous “places of
control”
 The language runtime must virtualize them on the

single program counter provided by the processor
 This requires realizing the abstraction of “thread”,

with its own context, within the context of the
program’s process
Note: we call “process” a program that executes under
the hosting of a multi-programmed OS

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/24

Concurrent languages – 3

 Designing language-level concurrency ought to
conform (aspire) to a model of concurrency
that be coherent and consistent
 For choice of abstractions (what) and of runtime

semantics (how)
 The alternative  is to provide basic, low-level utensils (DIY)

 Expressive, efficient and verifiable: quite a challenge!
 Concurrent programming simplifies the

application architecture helping to capture the
pattern of collaboration inherent in the problem
 Program-level concurrency is collaborative

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/24

Forms of concurrency – 1

 Seen from the outside (the host environment),
an executing program is a process
 To escape the sequential prison, the process

abstraction requires an execution context that can be
saved and restored across pre-emptions

 The process execution model may stipulate that
a) All processes share the same processor
b) Each process has its own processor and all

processors share memory (these would be today’s
multicores)

c) Each process has its own processors and
processors do not share memory

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/24

Forms of concurrency – 2

 Each such solution implies different models of
execution
 We have parallelism when multiple processes “own” a

CPU at the same point in time
 We have concurrency when processes might execute in

parallel, but do not need to
 The application is able to make progress without parallelism

 When parallel hardware was not a commodity,
concurrent programming was the privileged way to
explore parallel solutions to a problem and assess
their synchronization and communication overhead
 In that regard, concurrency is more powerful than

parallelism

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/24

Concurrency vs. Parallelism

 Concurrency
 Concurrent programming

allows the programmer to
simplify the application
architecture by using
multiple logical threads of
control to reflect the
natural patterns of
collaboration in the
problem domain
 Heavier-weight constructs

can be acceptable
 They used rarely as long-

lived architectural assets
 Key trait: collaboration

 Parallelism
 Parallel programming

allows the programmer to
divide-and-conquer the
problem space, using
multiple threads to work
in parallel on
independent parts of it
 Constructs should be

light-weight as they are
used very frequently at
run time

 They are short-lived
 Key trait: independence

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/24

Observations

 Given processes and processors
 When , a concurrent solution to a

problem may yield a quality software architecture
and achieve high utilization of the CPU

 When , any solution has speed-up
, contingent on the extent of effective

parallelism that it can achieve
 When , concurrency does not help

anymore: extreme parallelism must be sought to
make effective use of the processors

University of Padova, Master Degree - Runtimes for concurrency and distribution 11 of 18

Precursors of concurrency – 1

 Coroutine: a bit of history
 One of the first and most basic ways to express

concurrency programmatically
 M.E. Conway, Design of a separable transition-diagram compiler,

Communications of the ACM, 6(7), July 1963
 Explicit (programmed) alternation of execution among

concurrent routines
 Commands yield[_to] or resume

 Very convenient to program discrete simulation: multiple
events occurring at discrete points in time after some
causal chain
 Featured in SIMULA 67
 Then carried over in Modula-2

 More recently incorporated by Ruby (as of v1.9.0) and
other mainstream languages

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/24

Precursors of concurrency – 2
var q := new queue
coroutine produce
loop
while (q not full)
<create item>
<add item to q>
yield to consume
<point of resumption>

end while
end loop
coroutine consume
loop
while (q not empty)
<remove item from q>
<use item>
yield to produce
<point of resumption>

end while
end loop

 The coroutines that
relinquish the CPU preserve
their context (their stack)
 Normal procedures lose it on

return
 For this reasons, the

coroutines are also terms
“continuations”

 The coroutines have
multiple points of entry
 All the points of resumptions
 Procedures only have one

 The execution of a
coroutine may “return”
multiple times before ending
 Procedures return once

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/24

Nomenclature

 We call threads the flows of control that may
exist within one process
 Remember: a process is a “program in execution”

 In a concurrent language, such threads are
managed by the runtime
 The OS may support threads within processes, but

there need not be a 1:1 mapping between OS threads
and runtime threads

 Remember: the runtime’s prime responsibility is to
realize the language semantics, not to lazily piggyback
on the OS’s

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/24

Forms of concurrency – 3

 Declaring and activating threads

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/24

Algol68, CSP, Occam
cobegin

P1; P2; P3;
coend;

Ada
procedure Main is

task A;
task B;
…
task A is … ;
task B is … ;

begin
…

end Main;

Explicit activation
Separate from declaration:
what are P1 , P2 , P3?

Declaration
in Main’s declarative region

Implementation
in Main’s declarative region

Implicit activation
at start of Main’s executive
regionAt this point,

Main, A, B are
concurrent threads

A model of concurrency – 1

 Concurrent entities can be
 Active, able to execute without depending on

others (if granted the necessary compute
resources)

 Reactive, only capable of executing in response
to application-level triggers
 Resources, with an internal state, and pre- and post-

conditions holding on access to it
 How to realize such access control?

 Passive, with no internal state
 A plain procedure (not a concurrency abstraction)

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/24

A model of concurrency – 2

 Realizing such model requires three distinct
concurrency abstractions
 Threads, for active entities
 Active-control resources (servers)

 More expressive: more sophisticated access protocols
 Heavier weight: cost like a thread while often quiescent

 Passive-control resources
 May use semaphores or (better) “monitors”
 Less expressive: more basic and inflexible access

protocols
 Lighter weight

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/24

Pros and cons

 Language-level concurrency caters for
 More readable, better organized programs
 Portable semantics, warranted by the runtime independent

of the underlying OS
 Good for embedded applications, which do not use general-

purpose OS
 Predicates on the choice of a suitable model of

concurrency (expressive, efficient, verifiable)
 Independence from the underlying OS is costly

 At the extreme, doing the same “thing” twice
 A well-defined model of concurrency is antagonistic

to a “Do-It-Yourself” style
 Loss of generality

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/24

Time matters – 1

 The presence of pre-emption causes the
progression of time to matter to program execution
 With pre-emption, time advances faster than execution

 The runtime must support an abstraction of time
 We already know how the clock works

 A HW down-counting register that asserts an interrupt on zero
 A SW up-counting register that advances on every HW zero

 The question is what should “time” mean
 A wall clock (hours, minutes, seconds from a base epoch)
 A source of monotonic time (which makes no back jumps)
 A measure of bounded intervals (as quanta in time sharing)

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/24

Time matters – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/24

declare
Start, Finish : Ada.Calendar.Time;
Interval : Ada.Calendar.Duration := 2.5;

begin
Start := Ada.Calendar.Clock;
… -- actual work
Finish := Ada.Calendar.Clock;
if Finish – Start > Interval then

raise Overrun_Error;
end if;

end;

This programming implicitly
assumes single-threading!

Ada.Real_Time.Time;

Ada.Real_Time.Time_Span := Ada.Real_Time.To_Time_Span(2.5);

Ada.Real_Time.Time_Span := Ada.Real_Time.Milliseconds(2500);

Wall-clock time

Monotonic time

Time matters – 3

 A runtime clock may also be used to program
time-dependent actions
 Relative suspension

 Counting from when the command is evaluated
 Suspension is guaranteed to be no less than the

required length (but no upper bound on it)
 Absolute suspension

 The time of expiry is actual, independent of when the
command is evaluated

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/24

delay 10.0; -- type is Ada.Calendar.Duration

delay until A_Time; -- type is Ada.Real_Time.Time

Time matters – 4

 Fragments A and B do not have the same effect
because the evaluation of this is pre-emptible
 We cannot know when the call to clock in B will be

evaluated
 The awake time is unknown

 The evaluation of the “delay until” in A call is not effected
by pre-emption
 The awake time is known

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/24

Start := Clock;
First_Action;
delay until (Start + 10.0);
Second_Action;

Start := Clock;
First_Action;
delay (Start + 10.0 - Clock);
Second_Action;

A B

Time matters – 5

 With a monotonic clock and absolute
suspensions, programming periodic threads
is straightforward

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/24

with Ada.Real_Time; use Ada.Real_Time;
…
task body Periodic_Task is

Interval : constant Time_Span := Millisecond(10_000);
Next_Time : Time := <System_Start_Time>;

begin
loop

delay until Next_Time;
Periodic_Action;
Next_Time := Next_Time + Interval;

end loop;
end Periodic_Task;

Time matters – 6

 Regardless of how the clock abstraction is
implemented in the runtime, keeping time in
the program is exposed to two risk factors
 Local drift, the minimum time distance between

two successive accesses to the clock
 Inevitable: it depends on the complexity of the time

management implementation
 Cumulative drift, the chain effect caused by the

accumulation of local drift and program naiveties
 Evitable: using absolute delays links the time seen in the

program to the actual progress of it

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/24

