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Premise – 1

 What a language is able to “say” fixes its 
expressive power, but also sets its limit
 What the language is unable to say, does not

exist for its speaker
 Cit.: “The limits of my language are the limits of 

my mind. All I know is what I have words for.”
Ludwig Wittgenstein, Tractatus Logico-Phisolophicus, 1922

 Programming languages are no different
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Premise – 2

 Most (historical and current) programming 
languages are sequential
 They reflect the execution model of the underlying 

processor 
Note: for now, we assume single-CPU computers

 All “traditional” processors conform to the von 
Neumann architecture 
 They are stored-program computers

 A single memory for code and data, and one CPU whose duty 
cycle forever revolves around a fetch-decode-read-execute-
write pipeline

 Strictly sequential execution model
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The von Neumann architecture
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Concurrent languages – 1

 Concurrency can be “added” to a sequential 
programming language by tapping into the 
underlying OS
 E.g., the fork() / exec() model of UNIX

 In that manner, the expression and the 
semantic control of the program’s 
concurrency are outside of the language
 The program becomes not portable and its 

semantics weaken
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Concurrent languages – 2

 The alternative is to enable the language to 
express multiple simultaneous “places of 
control”
 The language runtime must virtualize them on the 

single program counter provided by the processor
 This requires realizing the abstraction of “thread”, 

with its own context, within the context of the 
program’s process
Note: we call “process” a program that executes under 
the hosting of a multi-programmed OS
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Concurrent languages – 3

 Designing language-level concurrency ought to 
conform (aspire) to a model of concurrency 
that be coherent and consistent
 For choice of abstractions (what) and of runtime 

semantics (how)
 The alternative  is to provide basic, low-level utensils (DIY)

 Expressive, efficient and verifiable: quite a challenge!
 Concurrent programming simplifies the 

application architecture helping to capture the 
pattern of collaboration inherent in the problem
 Program-level concurrency is collaborative
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Forms of concurrency – 1

 Seen from the outside (the host environment), 
an executing program is a process
 To escape the sequential prison, the process 

abstraction requires an execution context that can be 
saved and restored across pre-emptions

 The process execution model may stipulate that
a) All processes share the same processor
b) Each process has its own processor and all 

processors share memory (these would be today’s 
multicores)

c) Each process has its own processors and 
processors do not share memory
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Forms of concurrency – 2

 Each such solution implies different models of 
execution
 We have parallelism when multiple processes “own” a 

CPU at the same point in time
 We have concurrency when processes might execute in 

parallel, but do not need to 
 The application is able to make progress without parallelism

 When parallel hardware was not a commodity, 
concurrent programming was the privileged way to 
explore parallel solutions to a problem and assess 
their synchronization and communication overhead
 In that regard, concurrency is more powerful than 

parallelism 
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Concurrency vs. Parallelism

 Concurrency
 Concurrent programming 

allows the programmer to 
simplify the application 
architecture by using 
multiple logical threads of 
control to reflect the 
natural patterns of 
collaboration in the 
problem domain
 Heavier-weight constructs 

can be acceptable 
 They used rarely as long-

lived architectural assets
 Key trait: collaboration

 Parallelism
 Parallel programming 

allows the programmer to 
divide-and-conquer the 
problem space, using 
multiple threads to work 
in parallel on 
independent parts of it
 Constructs should be 

light-weight as they are 
used very frequently at 
run time

 They are short-lived
 Key trait: independence
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Observations

 Given processes and processors
 When , a concurrent solution to a 

problem may yield a quality software architecture 
and achieve high utilization of the CPU

 When , any solution has speed-up
, contingent on the extent of effective 

parallelism that it can achieve
 When , concurrency does not help 

anymore: extreme parallelism must be sought to 
make effective use of the processors
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Precursors of concurrency – 1

 Coroutine: a bit of history
 One of the first and most basic ways to express 

concurrency programmatically
 M.E. Conway, Design of a separable transition-diagram compiler, 

Communications of the ACM, 6(7), July 1963
 Explicit (programmed) alternation of execution among 

concurrent routines
 Commands yield[_to] or resume

 Very convenient to program discrete simulation: multiple 
events occurring at discrete points in time after some 
causal chain
 Featured in SIMULA 67
 Then carried over in Modula-2

 More recently incorporated by Ruby (as of v1.9.0) and 
other mainstream languages
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Precursors of concurrency – 2
var q := new queue
coroutine produce 
loop
while (q not full) 
<create item> 
<add item to q> 
yield to consume
<point of resumption>

end while
end loop
coroutine consume 
loop
while (q not empty) 
<remove item from q> 
<use item> 
yield to produce
<point of resumption>

end while
end loop

 The coroutines that 
relinquish the CPU preserve 
their context (their stack)
 Normal procedures lose it on 

return
 For this reasons, the 

coroutines are also terms 
“continuations”

 The coroutines have 
multiple points of entry
 All the points of resumptions
 Procedures only have one

 The execution of a 
coroutine may “return” 
multiple times before ending
 Procedures return once
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Nomenclature

 We call threads the flows of control that may 
exist within one process
 Remember: a process is a “program in execution”

 In a concurrent language, such threads are 
managed by the runtime
 The OS may support threads within processes, but 

there need not be a 1:1 mapping between OS threads 
and runtime threads

 Remember: the runtime’s prime responsibility is to 
realize the language semantics, not to lazily piggyback 
on the OS’s
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Forms of concurrency – 3

 Declaring and activating threads

University of  Padova, Master Degree - Runtimes for concurrency and distribution 15/24

Algol68, CSP, Occam
cobegin

P1; P2; P3;
coend;

Ada
procedure Main is

task A;
task B;
…
task A is … ;
task B is … ;

begin
…

end Main;

Explicit activation
Separate from declaration:
what are P1 , P2 , P3?

Declaration
in Main’s declarative region

Implementation
in Main’s declarative region

Implicit activation
at start of Main’s executive
regionAt this point,

Main, A, B are
concurrent threads



A model of concurrency – 1

 Concurrent entities can be
 Active, able to execute without depending on 

others (if granted the necessary compute 
resources)

 Reactive, only capable of executing in response 
to application-level triggers
 Resources, with an internal state, and pre- and post-

conditions holding on access to it
 How to realize such access control? 

 Passive, with no internal state 
 A plain procedure (not a concurrency abstraction)
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A model of concurrency – 2

 Realizing such model requires three distinct 
concurrency abstractions
 Threads, for active entities
 Active-control resources (servers)

 More expressive: more sophisticated access protocols
 Heavier weight: cost like a thread while often quiescent

 Passive-control resources
 May use semaphores or (better) “monitors”
 Less expressive: more basic and inflexible access 

protocols
 Lighter weight
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Pros and cons

 Language-level concurrency caters for
 More readable, better organized programs
 Portable semantics, warranted by the runtime independent 

of the underlying OS
 Good for embedded applications, which do not use general-

purpose OS
 Predicates on the choice of a suitable model of 

concurrency (expressive, efficient, verifiable)
 Independence from the underlying OS is costly

 At the extreme, doing the same “thing” twice
 A well-defined model of concurrency is antagonistic 

to a “Do-It-Yourself” style
 Loss of generality
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Time matters – 1

 The presence of pre-emption causes the 
progression of time to matter to program execution
 With pre-emption, time advances faster than execution

 The runtime must support an abstraction of time
 We already know how the clock works 

 A HW down-counting register that asserts an interrupt on zero
 A SW up-counting register that advances on every HW zero

 The question is what should “time” mean
 A wall clock (hours, minutes, seconds from a base epoch)
 A source of monotonic time (which makes no back jumps)
 A measure of bounded intervals (as quanta in time sharing)
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Time matters – 2
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declare
Start, Finish : Ada.Calendar.Time;
Interval : Ada.Calendar.Duration := 2.5;

begin
Start := Ada.Calendar.Clock;
… -- actual work
Finish := Ada.Calendar.Clock;
if Finish – Start > Interval then

raise Overrun_Error;
end if;

end;

This programming implicitly
assumes single-threading!

Ada.Real_Time.Time;

Ada.Real_Time.Time_Span := Ada.Real_Time.To_Time_Span(2.5);

Ada.Real_Time.Time_Span := Ada.Real_Time.Milliseconds(2500);

Wall-clock time

Monotonic time



Time matters – 3

 A runtime clock may also be used to program 
time-dependent actions
 Relative suspension

 Counting from when the command is evaluated
 Suspension is guaranteed to be no less than the 

required length (but no upper bound on it)
 Absolute suspension

 The time of expiry is actual, independent of when the 
command is evaluated
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delay 10.0; -- type is Ada.Calendar.Duration

delay until A_Time; -- type is Ada.Real_Time.Time



Time matters – 4

 Fragments A and B do not have the same effect 
because the evaluation of this is pre-emptible
 We cannot know when the call to clock in B will be 

evaluated 
 The  awake time is unknown

 The evaluation of the “delay until” in A call is not effected 
by pre-emption
 The awake time is known
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Start := Clock;
First_Action;
delay until (Start + 10.0);
Second_Action; 

Start := Clock;
First_Action;
delay (Start + 10.0 - Clock);
Second_Action; 

A B



Time matters – 5

 With a monotonic clock and absolute 
suspensions, programming periodic threads
is straightforward
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with Ada.Real_Time; use Ada.Real_Time;
…
task body Periodic_Task is

Interval : constant Time_Span := Millisecond(10_000);
Next_Time : Time := <System_Start_Time>;

begin
loop

delay until Next_Time;
Periodic_Action;
Next_Time := Next_Time + Interval;

end loop;
end Periodic_Task;



Time matters – 6

 Regardless of how the clock abstraction is 
implemented in the runtime, keeping time in 
the program is exposed to two risk factors
 Local drift, the minimum time distance between 

two successive accesses to the clock
 Inevitable: it depends on the complexity of the time 

management implementation
 Cumulative drift, the chain effect caused by the 

accumulation of local drift and program naiveties
 Evitable: using absolute delays links the time seen in the 

program to the actual progress of it
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