
On communication among 
threads

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2020/2021

University of  Padova, Master Degree - Runtimes for concurrency and distribution 1/32



Premise – 1

 Concurrency is eminently collaborative
 The threads in a concurrent program hardly are 

fully independent of one another
 If they were, they would be perfectly parallel

 Stipulating the communication interfaces 
allowable among them is a crucial aspect of 
the design of a concurrent language
 The chosen model of communication has large 

influence on the quality of the program

University of  Padova, Master Degree - Runtimes for concurrency and distribution 2/32



Premise – 2

 Communication can be
 Direct, only involving active entities
 Indirect, mediated by reactive entities

 Classic models
 Message passing, direct

 No sharing: awkward when running on a single 
processor, but also very scalable

 Shared variables, indirect
 Natural when running on shared memory
 But also very risky and not scalable

University of  Padova, Master Degree - Runtimes for concurrency and distribution 3/32



Premise – 3

 Synchronizing (waiting for one another) to 
communicate defeats parallelism

 When data sharing cannot be avoided in a 
parallel system, wait-free synchronization
solutions become desirable
 Spin locking can be afforded sometimes
 Transactional memories can be useful

 They use concurrency control mechanisms similar to 
those required for DBs, except they are in HW

 Consistency (writes are serialized) and isolation (no 
partial state leaks) warrant atomicity

University of  Padova, Master Degree - Runtimes for concurrency and distribution 4/32



Shared variables – 1

 Bernstein’s condition
 Atomic execution is guaranteed if shared variables 

that are read and modified by a critical section are 
not modified by any other concurrently executing 
section of code
 IEEE TREC 15(15), 1966

 If that condition does not hold, the risk of data 
race arises
 R. Netzer and B. Miller have shown that ascertaining 

the presence of data races in a program is inordinately 
complex (NP-hard) in the general case
 ACM LoPLAS 1(1), 1992

University of  Padova, Master Degree - Runtimes for concurrency and distribution 5/32



Shared variables – 2

 The code fragments that operate on shared 
variables are termed critical sections
 A very general definition that does not make 

assumption on the structuredness of the language
 The possibility that program execution may give 

rise to uncontrolled accesses to a shared 
variable is termed race condition
 Race conditions cause non-determinism, which is 

antagonistic to program verification
 Interestingly, educated forms of non-determinism may 

be desirable for concurrent programs !

University of  Padova, Master Degree - Runtimes for concurrency and distribution 6/32



Defeating data races

 The problem has two parts
 How to ensure that critical sections execute atomically (P1)

 Errors of this type cause low-level data races
 How to single out critical sections correctly (P2)

 Errors of this type cause high-level data races

 Two types of P2-type errors exist
 Non-atomic protection fault, when a thread’s operation 

on a shared variable is fragmented in multiple disjoint 
partial accesses

 Lost-update fault, when a concurrent write of a shared 
variable occurs between the read and the subsequent 
functionally-related write of it by one and the same thread

University of  Padova, Master Degree - Runtimes for concurrency and distribution 7/32



P1-type problem: example – 1

University of  Padova, Master Degree - Runtimes for concurrency and distribution 8/32

// thread A needs to access shared
// variable X 
// to this end, it checks whether 
// X is free
if (lock == 0) {

// X is being used
// try again (busy wait)

}
else {

// X is free
// set it to «in use»
lock = 0; 
<critical section S1(X)>;
// free X
lock = 1;

}

// thread B needs to access shared
// variable X 
// to this end, it checks whether 
// X is free
if (lock == 0) {

// X is being used
// try again (busy wait)

}
else {

// X is free
// set it to «in use»
lock = 0;
<critical section S2(X)>;
// free X
lock = 1;

}

Critical sections S1 and S2 are not atomic: why?



P1-type problem: example – 2

University of  Padova, Master Degree - Runtimes for concurrency and distribution 9/32

/* DEPOSIT */

amount = read_amont();
lock(); // this opens 

// a critical section

balance = balance + amount;
interest = interest + rate *

balance;

unlock(); // this closes
// a critical sction

/* WITHDRAW */

amount = read_amount();
if (balance < amount) {

// notify caller that 
// the operation is denied

}
else {

balance = balance – amount;
interest = interest + 

rate * balance;
}

Withdraw exposes Deposit‘s critical section 
to a low‐level	data	race



P2-type problem: example – 1

University of  Padova, Master Degree - Runtimes for concurrency and distribution 10/32

/* Updater Task */

// set status value reading
synchronized (table){

table[N].value = V;
}

… // do work

// set system status for value N 
synchronized (table) {

table[N].achieved = true;
}

/* Monitor Daemon */

synchronized (table){
if (table[N].achieved &&

system_state[N] !=
table[N].value){

// inconsistent system state
issueWarning();

}
}

NASA
Remote Agent (1997)

using Java and LISP

A case of non‐atomic	protection	fault

In this time span, 
table[N]
is not protected



P2-type problem: example – 2

University of  Padova, Master Degree - Runtimes for concurrency and distribution 11/32

/* WITHDRAW */

void withdraw(int amount){
lock(l);
int tmp = balance;
unlock(l);
if tmp > amount){

lock(l);
balance = tmp - amount;
unlock(l);

}
}

/* DEPOSIT */

void deposit(int amount){
lock(l);
balance = balance + amount;
unlock(l);

}

A case of lost‐update	fault

Read access

Write access



Access control fundamentals – 1

 Exclusion synchronization
 At any point in time, no more than one thread may 

have access to a shared resource 
 Access is exclusive

 Avoidance synchronization
 Certain preconditions must hold before access 

can be granted
 Dependent on the program logic
 Epitomized on the case of the bounded buffer

University of  Padova, Master Degree - Runtimes for concurrency and distribution 12/32



Access control fundamentals – 2

 Synchronization is exposed to risks
 Deadlock or starvation (aka lockout)

 Deadlock causes all participants to wait 
indefinitely
 When 4 conditions hold simultaneously

1. Mutual exclusion is in use
2. Resource access cannot be pre-empted
3. Resource accumulation is allowed with hold-and-wait 
4. The wait condition is circular

University of  Padova, Master Degree - Runtimes for concurrency and distribution 13/32



Access control fundamentals – 3

 4 types of reaction to deadlock
 Ostrich (don’t look and hope for the best)
 Design-time prevention

 Condition-4 potential can be detected if the participant set is 
fully and statically known

 Condition 3 can be defeated forbidding resource accumulation 
 Run-time prevention

 To combat condition 4, the runtime must keep current of the 
status of all shared variables (holding, waiting) 

 Denying access if allowing it may lead to circular wait
 Or requiring that access is granted only in a fixed order

 Run-time detection
 Oh boy, some threads are not touching the ready queue …

University of  Padova, Master Degree - Runtimes for concurrency and distribution 14/32



An example of deadlock prevention

University of  Padova, Master Degree - Runtimes for concurrency and distribution 15/32

21
6

3
4 5

This request causes circular wait

Imagine now that resources
could only be accessed in a 
given order (e.g., 𝑅, 𝑆,𝑇).
In that case, C should request
𝑅 before requesting 𝑇 …



Access control fundamentals – 4

 Wait time should be bounded
 Only FIFO queuing ensures it

 This policy is (bounded) fair and warrants liveness
 Any other policy, no matter how common-sense, 

is exposed to starvation
 Priority ordering
 LIFO
 Urgency

University of  Padova, Master Degree - Runtimes for concurrency and distribution 16/32



Synchronization solutions – 1

 Good solutions satisfy 4 conditions
1. Exclusive access
2. Bounded wait
3. No assumptions on the behaviour of the 

execution environment
4. No threads outside of the critical section can 

influence … 

University of  Padova, Master Degree - Runtimes for concurrency and distribution 17/32



Synchronization solutions – 2

 Regulatory control with a shared variable and 
strict alternation

 Defects
 Busy wait
 The decision on the alternation is taken outside of the 

critical section
 Risk of data race on the control variable (not severe)

University of  Padova, Master Degree - Runtimes for concurrency and distribution 18/32

Thread A ::
while (TRUE) 

while (turn != 0); // busy wait
critical_section();
turn = 1; // alternation
…



Thread B ::
while (TRUE) 

while (turn != 1); // busy wait 
critical_section();
turn = 0; // alternation
…





Synchronization solutions – 3

 Dekker’s algorithm

University of  Padova, Master Degree - Runtimes for concurrency and distribution 19/32

var flag: array [0..1] of boolean;
turn: 0..1; -- i, j are two threads
repeat

flag [i] := true;
while flag [j] do

if turn = j then
begin

flag [i] := false;
while turn /= i  do no-op;
flag [i] := true;

end;
end if;

end while;
critical section
turn := j;
flag [i] := false;
remainder of computation

until false;

Conceived by T.J. Dekker (says E.W. Dijkstra) 
and later improved (1981).
By setting flag[i]	 true , thread i requests 
access. Similarly for thread j.
The value of turn arbitrates access between 
the two threads (i and j).
Can be generalized to more than 2 threads

Busy wait!



Synchronization solutions – 4

 Peterson’s algorithm
 For pairs of threads
 Access control logic 

similar to Dekker’s
 A private flag
 A shared control variable

 Exposed to data races if 
control variable is cached

 Bounded fair
 Booking request gives 

priority to the contender

University of  Padova, Master Degree - Runtimes for concurrency and distribution 20/32

set (flag.mine);
coin := other;
loop
if (flag.other = clear) continue;
if (coin = mine) continue;
end loop
// CRITICAL SECTION 
clear (flag.mine); 



Synchronization solutions – 5

University of  Padova, Master Degree - Runtimes for concurrency and distribution 21/32

Valore 

The initialization value set to count
determines the type of semaphore:

count=1 binary semaphore
count>1 counting semaphore

count=0  barrier

Leaving the use of P(s) and V(s) to the programmer’s discipline is risky

Argh!
Who calls these?



Synchronization solutions – 6

 The monitor
 An explicit syntactic structure that encapsulates 

the shared variable and publishes the operations 
that are allowed to access it
 Charles A R Hoare, “Monitors – An Operating System 

Structuring Concept”, CACM 17(10):549-557 (1974)
 The shared variable is not visible outside of the 

monitor
 Calling monitor operations triggers access control 

by the runtime
 Not the programmer!

University of  Padova, Master Degree - Runtimes for concurrency and distribution 22/32



Monitor details – 1

 What if the shared variable’s state is not fit for 
use by a caller that has gained access to it?
 Cannot write into a shared buffer that is full
 Cannot read from a shared buffer that is empty

 The monitor provides condition variables that 
can be signalled and waited for
 If Var is false, Wait(Var) places the caller in a 

wait queue until Var turns true
 The lock holder calls Signal(Var) to set Var to 

true

University of  Padova, Master Degree - Runtimes for concurrency and distribution 23/32



Monitor details – 2

University of  Padova, Master Degree - Runtimes for concurrency and distribution 24/32

monitor Container
condition not-empty := false;  

not-full := true;
integer content := 0;

procedure Insert(prod : integer);
begin

if content = N then Wait(not-full);
<add prod to container>;
content := content + 1;
if content = 1 then Signal(not-empty);

end;

function Fetch : integer;
begin

if content = 0 then Wait(not-empty);
content :=  content – 1;
if content = N-1 then Signal(not-full);
return (<fetch from container>);

end;

end monitor;

thread Producer ::
prod : integer;
begin

while true do
begin

Produce(prod);
Container.Insert(prod);

end;
end;

thread Consumer ::
prod : integer;
begin

while true do
begin

prod := 
Container.Fetch;

Consume(prod);
end;

end;



Monitor details – 3

 Calling Wait on Var blocks the caller when Var
is false
 Variable Var should describe the resource state 
 The caller is placed in a wait queue
 What happens to the lock at this point?

 Calling Signal on Var releases the thread at 
the top of the wait queue for Var
 The program’s logic decides when Signal should be 

called
 Who gets the lock at this point?

 The compiler makes sure that such calls are 
atomic and therefore exempt from data races

University of  Padova, Master Degree - Runtimes for concurrency and distribution 25/32



Monitor details – 4

 The monitor concept is vastly better than 
semaphore-protected critical sections

 But has defects too
 The monitor does not let the program decide the 

order of calls to it dynamically
 The thread that gets there first calls it and then perhaps 

has to wait on a false condition variable: big waste!
 The monitor leaves to the programmer the choice 

of when to call Wait and Signal
 Yes, this is part of the program’s logic 
 But the programmer may get it wrong

University of  Padova, Master Degree - Runtimes for concurrency and distribution 26/32



Java’s failed monitor – 1

University of  Padova, Master Degree - Runtimes for concurrency and distribution 27/32

class Monitor{
private int cont = 0;
public synchronized void Insert(int prod){

if (cont == N)
Block();

<add prod to container>;
cont = cont + 1;
if (cont == 1) 

[this.]notify();
}
public synchronized int Fetch(){

if (cont == 0) 
Block();

cont = cont - 1;
if (cont == N-1) 

[this.]notify();
return(<fetch from container>);

}
private void Block(){

try{[this.]wait();
} catch(InterruptedException exc) {};}

}

For real?

static final int N = <…>; 
static Monitor Container = new Monitor();
// …
Monitor.Insert(prod); // producer
// …
prod = Monitor.Fetch (); // consumer



Java’s failed monitor – 2

 In truth, exclusion synchronization and 
avoidance synchronization are orthogonal 
problems
 ES minds access control
 AS minds that the callers’ operation are consistent 

with the resource logic
 Java collapses them into a single wait queue

 What blocked caller does notify() awaken?
 notifyAll() was invented to do damage control, yielding 

worse chaos
 Who gets the lock after wait() and notify()?

University of  Padova, Master Degree - Runtimes for concurrency and distribution 28/32



Message passing – 1

 Its synchronous variant requires both parties to 
wait for one another
 In this way, both parties know about the progress state 

of the other even without exchanging data
 As synchronization does not scale, the 

asynchronous variant becomes attractive
 Sending is non-blocking

 The sender proceeds if there is no receiver
 The two parties no longer know about each other’s progress

 Receiving blocks until synchronization ends
 The receiver waits until the sender arrives

University of  Padova, Master Degree - Runtimes for concurrency and distribution 29/32



Message passing – 2

 Both variants can be played with to inverse their 
behaviour
 Synchronous to Asynchronous

 Placing an intermediary between Sender and Receiver
 Asynchronous to (almost) Synchronous

 Having Sender await an ack from Receiver
 How do Sender and Receiver get to know each 

other?
 By unique name (of thread, of mailbox)

 CSP’s message passing is synchronous and unidirectional
 Totally unfit for servers !

 By type of message / channel at destination

University of  Padova, Master Degree - Runtimes for concurrency and distribution 30/32



Message passing – 3

 Synchronous communications allow for bidirectional
data exchange 
 First S to R, then R to S

 Receivers can become servers by exposing multiple 
bidirectional channels (entries)
 Entries have by-copy in and out parameters
 A server exposing multiple entries must specify explicitly 

which one to service at a given time
 Callers (clients) must name the server and the entry 

of interest
 Thanks to synchronization, receivers (servers) do 

not need to name their callers
 This makes the naming relation asymmetric

University of  Padova, Master Degree - Runtimes for concurrency and distribution 31/32



Message passing – 4

 Prefixing specific preconditions (guards) to 
attending to entries, allows servers to implement 
their service logic
 Dijkstra’s model of non-deterministic

guarded select receive
 E.W. Dijkstra, “Guarded Commands, 

Nondeterminacy, and Formal 
Derivation of Programs”, CACM, 18(8):453-457 (1975)

 Guards are Boolean expressions
 When they are true (open) the respective receive command 

(accept) is enables on the corresponding channel (entry)
 When multiple guards are open and calls are pending on 

the corresponding entry, the choice is non-deterministic

University of  Padova, Master Degree - Runtimes for concurrency and distribution 32/32

select
Guard_1 => accept Service_1(…);
or
…
or
Guard_K => accept Service_K(…);
end select;


