Synchronous communication

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@ unipd.it
Academic year 2020/2021

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/34

Base model — 1

Client-server interaction style

o The server side publishes the interface of the services
that it provides
Typed entry channels
With associated 1n-out protocols

o The client side makes an entry call naming the target
server and the entry channel of interest

Providing 1n parameters as required by the service protocol

o To deliver a service, the server must accept the entry
call corresponding to the relevant channel

Service delivery Is synchronous

o The server acts on the service and the client wait
synchronously for the corresponding output

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/34

Base model — 2

entry Query (A Person > 1n Name;

An_Address : 1In Address; }r-
A Number - out Number);

end Operator;

Ann : Operator; task body Operator is
begin

task type User; =

task body User is BOOD.... et s s
My Number : Number; :accept Query(A_Person : in Name;

begin 5 An_Address : in Address; :

: A Number : out Number) dog

'Ann Query(: 7 ettt .
. o e e end loop;
: My_Number) ; : "
...... end Operator;

end User;

- B

Service implementation

Channel entry protocol

University of Padova, Master Degree - Runtimes for concurrency and distribution

3/34

Base model — 3

Historically called rendez-vous
o The client and the server meet at either side of an entry

When the synchronization occurs, the In
parameters flow from the client to the server

o As in a procedure call, except this is not a procedure call
The server executes the service actions

o Entirely atomically to the client

At the end of the service execution, the out
parameters flow back from the server to the client

At that point the synchronization ends and each
party resumes their independent progress

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/34

Base model — 4

As In any synchronization, the side that arrives
first at the meeting point, waits for the other

o The server would walit on empty channels (entry
gueues)

o The client would deposit its entry call in the
corresponding entry queue and wait for the call to end

The default entry queue ordering is FIFO
o Other queuing policies might be defined

o FIFO ordering warrants fairness, any other ordering Is
exposed to the risk of starvation

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/34

‘ Base model — 5

Server Client 1 Client 2

accept Req(...
SN A Server.Req(..)|
To entry queue

nd: I To entry queue
: Out parameters
accept Req I I
From entry queue
end; I :
— Out parameters : —I—

Progression of time

Server.Req(...)

D

»
|

«-------

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/34

Tripartite synchronization — 1

The rendez-vous model is

o Synchronous for communication

o Asymmetric for naming and interface provisions
o Bidirectional for data flow

During synchronization, the server is fully
active and may therefore engage in
synchronization with a third party

o This opportunity gives rise to rich forms of
composition

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/34

Tripartite synchronization — 2

A server has two ways to synchronize with a

third party during service execution

o Making an entry call to another servers’ channel
Thereby orchestrating a composite service delivery

o Accepting an entry call to another of its channels

It must be another entry because the current one is
atomically engaged in the current service execution

The latter feature requires extending the
communication model

o We shall discuss it next ...

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/34

Nesting entry call accepts — 1

Service(..)

User

D Is a passive entity, accessed without guarantees of atomicity

Device implements a state machine for commanding D, whose
transitions are triggered by entry calls being accepted by Controller

Controller encapsulates the service provided to User and realizes it
orchestrating its composite service protocol

9/34

University of Padova, Master Degree - Runtimes for concurrency and distribution

Nesting entry call accepts — 2

task User;

task Device;

task Controller 1s
entry Service (I
entry Start;
entry Finish (K :
end Controller;

- out Integer);

out Integer);

task body User 1s
Controller.Service (Val);

end User;

task body Controller 1s
begin
cceE SeTVIGE CIT i TREsgery do
i accept Start;
accept Finish (K : out Integer) do
e L
end Service;
end loop;
end Controller;

- out Integer) doé

-— azione sincronizzata :

task body Device is
Val : Integer;
procedure Read
(1 : out Integer);
begin
loop
Controller.Start;
Read(Val); -- from D
Controller._Finish(Vval);
end loop;

University of Padova, Master Degree - Runtimes for concurrency and distribution

end Device;

10/34

Usetul model improvement — 1

In the example, server Controller exposes all
of its entry channels in its public interface

o In that manner, all users in the scope of it have
access to all of Controller’s entries

0 Yet, only one of them belongs in Controller’s
service interface

This is a general problem

0 Service interfaces should be able to tell public
entry channels apart from private ones

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/34

‘ Usetul model improvement — 2

task User;
task Controller 1i1s
entry Service (I

: out Integer);

end Controller;

This arrangement makes the private
entry channels visible only within the

internal scope of Controller, hence to
Device, which is now a child task of it.
Nothing changes for User.

task body Controller is

SR DAV eSS CEN T Ty EasR ;

i task body Device is :

: Val Integer;

: procedure Read (I

i begin

: loop :

Controller.Start; -- child see private

Read(Val); 5
Controller._Finish(Val); -- ditto

: end loop;

: end Device;

—-— continues 1In sidebox ..

- out Integer) 1is .. é

. continued
begin -- Controller
loop
accept Service (I :
accept Start;
accept Finish (K :
I = K;
end Completed;
end Service;
end loop;
end Controller;

out Integer) do

out Integer) do

University of Padova, Master Degree - Runtimes for concurrency and distribution

12/34

Embedding entry calls in accepts — 1

task Warehouse is
entry Enquiry
(ltem : Part_Number;
Units : out Natural);
end Warehouse;

task Customer_Service 1Is
entry Request Part
(Part_ID : Part_Number;
Quantity : Positive;
Success :© out Boolean);
end Customer_Service;

This solution has the defect that the
service provided by Warehouse is
publicly available while they should

be private to Customer_Service.
This defect can be fixed by normal
scope encapsulation.

University of Padova, Master Degree - Runtimes for concurrency and distribution

task body Customer_Service is

In_Stock : array (..) of Boolean;

.. —— other variables as required
begin

loop

periinen T JIOUSEKEEDENG, e,
i accept Request_Part :
: (Part_ID : Part_Number;

Quantity : Positive);

Success : out Boolean) do :
if In_Stock(Part_ID) >= Quantity then
Success := True; :
else

Warehouse.Enquiry(Part_ID, In_Store)i
ifT In_Store > 0 then g
. —— get parts from Warehouse

Success := True;
else
Success := False;
end 1f;
: end if;
: end Request_Part;
‘end loop;

end Customer_Service;

13/34

Embedding entry calls in accepts — 2

Provided interface s St Required interface

..

Customer \Enauiry(...)
Service

Request_Part(...)
—>

User Warehouse

The service interface exposed by entry Request_Part(..) hides
the internal organization of the service delivery logic

For this encapsulation to be correct, however, the Warehouse
server should not be visible to User

o This is an important design requirement

The downside of a “server becoming client” is that its client risks
a much long synchronization wait

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/34

What if ...

An exception raised during synchronization

causes the rendez-vous to be abandoned and

the exception to propagate to both sides

o The execution incurring exception is on the server
side, but the client is bound to suffer for it too

Unhandled exceptions cause the master of their
scope to terminate

o That would be the case for both server and client

Directing an entry call to a terminated server Is a
run-time error and causes an exception to be
raised at the client side

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/34

Limits of the base model

With the current provisions a server can only
access calls from one entry channel at a time

0 Synchronizing on an entry latches the server to its
service until completion: other entry channels may
have pending calls but they will be ignored ...

Sequential clients (which is the default

condition of threads) can of course only issue

an entry call at a time

o But they will have to wait for as long as it takes for
the server to attend to their call ...

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/34

Desirable extensions — 1

The critical requirements are on the server side

To probe multiple entry channels simultaneously
Very natural of a true server

To limit to a bounded duration the wait time on an
empty entry channel

Equivalent to setting a time-out

To abandon a synchronization immediately if the
target entry channel is empty

Equivalent to a zero-time time-out

To terminate automatically when no clients in the
scope of the server are able to make entry calls
Very desirable for a true server

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/34

Commentaries

Server-side requirements 1 and 3 directly match
the implications of Dijkstra’s original model of
guarded commands

Server-side requirements 2 and 4 have a
pragmatic, implementation-oriented flavour,

more than a purely algebraic one
o However, when something abstract has “nice”

properties, it may lose them altogether when we start
“fixing” them to become fit for implementation

o A synchronous communication model with time-outs
may be less convenient than an asynchronous one

HTTP, born synchronous, is becoming increasingly
asynchronous ...

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/34

Actual extens

Server-side rec
o Rather natural:

ions — 1

uirement 1
the server’s interface may publish

multiple entry c

nannels (as we just saw ...)

o The default arrangement is that all such services are
equally public and have no functional nesting

task Server 1is
entry S1 (.);
entry S2 (.);

task body Server 1is

begin

é accept S1(.) do .. end Sl;é

end Server;

ior

. accept S2(.) do .. end 82;§
:end select; :

end Server;

University of Padova, Master Degree - Runtimes for concurrency and distribution

19/34

Actual extensions — 2

Semantics of extension 1

o When no entry call is enqueued in any of the
server’s channels at the time of evaluation, the
server Is put on hold on the select command

o The evaluation occurs simultaneously for all of
the entry channels referenced in the select

construct

o When multiple such entry channels have non-
empty queues, the choice among them should be
non-deterministic (as per Dijkstra’s model)

o The default queuing policy for entry calls is FIFO

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/34

‘ Actual extensions — 3

= A little refinement of server-side requirement 1

o The entry channels should have Boolean guards to
help express functional pre-requisite for entry calls to
be considered for service

select
Guard 1 => accept ..;
or

Guards are Boolean expressions of the type
“when <condition>" il

Guard_2 => accept ..; Their evaluating to True enables the select

or - construct to consider the corresponding entry
channel for service

or All guards within a select construct are
Guard_N => accept ..; evaluated once, simultaneously at the

end select: beginning of that command execution

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/34

Actual extensions — 4

Server-side requirements 2 and 3 aim at putting
an upper bound on how long the server should
wait for synchronization to happen

o Requirement 3 wants the server to abandon the walit
Immediately if no entry call is in the queue(s)

o Requirement 2 allows for waiting a non-zero time

The runtime does different things in the two
cases

o When the wait time 1S non-zero, It must arm
an alarm clock for that duration

o When the wait time Is zero, It need not

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/34

‘ Implementing requirements 2 and 3

= The server may want to only consider entry
channels that engueue entry calls at the time
of evaluation, doing other work otherwise

a This feature reduces the wastage of busy wait

The desired effect can be obtained select
select in two alternative ways]
accept A; accept A;
or , o
accept B; v | a cceptB,
;.é..l..S...e........................; » gor -
L C- Explicitly Implicitly delay T;
.................................... . - E C - §
end select: (preferable for (with zero wait Ot T .
zero wait) for T=0.0) end select;

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/34

‘ Example of use

task type Heartbeat Watchdog (Minimum Distance : Duration) 1s
entry All _i1s Well;
end Heartbeat Watchdog;

task body Heartbeat Watchdog is
Allowable Latency : constant Duration

begin
loop Dijstra’s model of guarded commands applies
select to time-bounded alternatives as well.

Omitted guards evaluate to True.

accept All i1s Wwell;
. —— client 1s alive and well

or
delay Allowable Latency;
. —— heartbeat may have failed, raise alarm

end select;

end loop;
end Heartbeat Watchdog;

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/34

Actual extensions — 5

A server whose clients be no longer able to
make calls should terminate (requirement 4)

o As clients and servers are realized as active
threads they go about their life independently

However, clients must have visibility of their server if
they want to make entry calls to it

Hence, the scope that encloses the server must also
enclose its clients

o Having the server poll for its clients is not
desirable: a more general solution Is required

Leveraging the runtime’s ability to check the status of
“wildlife” in the scope of the server

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/34

Implementing requirement 4

A terminate alternative can be added to the
select construct to signify that the server
should be considered “complete” when

o Ilts master has completed its execution

o Any other threads that depend on that same master is
either terminated or suspended on a select

command with an open terminate alternative

Clause 1 ensures that no new client can come into existence
In the master’s scope

Clause 2 applies transitively and its closure signifies that the
master’s scope is completely inert

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/34

Ramifications

The termination implied by the implementation of
requirement 4 should be graceful

o This requires introducing the notion of programmable
scope finalization

Certain extensible abstract types can be made

“finalizable”

o Their definition has an implicit abstract finalize
method that the runtime must invoke when an object
of that type has to cease to exist

o Scope-based programming languages make “leave-
scope” situations (end) explicit

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/34

Example of use (1n exercise mode)

Eratosthenes' sieve: synchronous version

o A recursive-descent algorithm realized as a
nested concurrency program in which each
master-descendant pair interacts by rendez-vous

Leveraging the default FIFO queuing of entry calls
Leveraging the atomicity warranted by synchronization

o We want the runtime to detect when the program
should terminate and have it happen gracefully

We want to observe such gracefulness programmatically

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/34

Observations

Odd —

Set_Bound —| Relay | Sieve

Sieve —

Relay Sleve |
. —>] Relay [0 I'm}a&-;l»l@ =]

The recursive-descent nature of the algorithm transposes into
hierarchical nesting of threads

o Odd is the root of the hierarchy, subject to the program’s main, which is
its master

o Sieve threads are all dependent, nested as shown

The depth of recursion in the algorithm is initially unknown
o This needs using a sentinel or the select-with-terminate construct ...

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/34

Desirable extensions — 2

The client-side requirements are less critical,
as a sequential client cannot make multiple
calls simultaneously

To abandon a synchronization immediately if the

target server were not available instantaneously
Symmetrical to server-side requirement 3

To limit to a bounded duration the wait time on
an unattended entry channel

Symmetrical to server-side requirement 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 30/34

Client-server model

A server Is a reactive
entity capable of
warranting exclusion
synchronization on
access to its internal
state

o ldle until interrogated: no
autonomous action

o Each accept alternative
IS a critical section

o The shared state must be

task body Buffer (.) 1is
.. —— the shared state

begin task type Buffer (.) is
o entry Put (.);
loop entry Get (.);
select end Buffer;
when ..

accept Put (.) do .. end Put;

.. —— local housekeeping
or
when ..

accept Get (..) do .. end Get;

.. —— local housekeeping
or
terminate;
end select;
end loop:
end Buffer;

private to the server

University of Padova, Master Degree - Runtimes for concurrency and distribution

31/34

Bad practice

In addition to suffering infinite wait, the use of

rendez-vous Is also exposed to the risk of

deadlock

o Each entry call is tantamount to a critical section
protected by exclusion synchronization

task T1

end T1;

begin
T2.B;

end T1;

entry A;

task body T1 1is

task T2 1s
entry B;
end T2;

task body T2 is
begin
T1.A;

accept A; «—

accept B;
end T1;

University of Padova, Master Degree - Runtimes for concurrency and distribution

32 of 18

Good practice

Threads should be either active entities,
capable of autonomous independent
execution, or reactive entities, which expose
entry channels for clients to invoke and
synchronous communication with them

o “Pure” servers should accept entry calls but not
make them

o Shared resources should be strictly encapsulated

University of Padova, Master Degree - Runtimes for concurrency and distribution 33 of 18

Thread states at run time

Ready Terminated

. ‘ Termination of
Running >H<dependanD

With time-out
With time-out |
Enqueued in entry Awaiting entr@

(Server)

Child activation

Suspended

Synchronized

(Client)

University of Padova, Master Degree - Runtimes for concurrency and distribution 34/34

