
An introduction to
distributed systems

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2020/2021

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/29

Distribution requires transparency

 A distributed system is a set of independent
computing nodes capable of appearing as a
single coherent execution platform to
applications running on it
 This requires all coordination communications among

those computing nodes to be transparent to the
application

 Transparency is given when you get to see the
intended effects without being exposed to the
mechanics that produce them
 There exist several dimensions of transparency

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/29

Transparency requires openness

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/29

Transparency of To hide what
Access Differences in data encoding or in the way to operate

on resource data
Location Where computing resources actually reside (e.g.,

physical vs logical naming)
Migration / Relocation Resources may move without the user needing to

know in between uses, or even during use
Replication / Transaction That a resource may exist in multiple coherent

copies, or may result from the aggregation of
multiple parts

Malfunction Individual computing nodes may locally fail without
this affecting the availability of the resource

Persistency How writing succeeds regardless of the distance
between writer and resource

ISO/IEC	10746‐1:1998,	Open	Distributed	Processing	– Reference	model:	Overview

What is openness

 It is a key prerequisite to portability and
interoperability

 It prescribes all call interfaces to conform to
public and stable specifications

 Such specs have to be
 Complete, so that no details are hidden that may

preclude third-party implementations of them
 Neutral, so that they do not impose a single way of

implementation
 Interface definition languages (IDL) help achieve

such properties

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/29

Distribution requires scalability

 Any service provided to distributed clients needs
to scale to demand

 Scalability is more easily understood by its
negation
 A system is not scalable when it is unable to

accommodate increased workload
 A useful definition stipulates it as

 The ability to handle increased workload by
repeatedly applying a cost-effective strategy for
extending system capacity
 Without intolerable latency or excessive waste

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/29

What is scalability

 Fitness for need with respect to
 Availability of resources

 They should never be scarce
 Physical distance

 The user should have perception of locality
 Independence of global view from local issues

 Issues in handling local, concrete implementation should not
determine how a resource is presented to the user

 Where unused resources cost dearly, you want
scalability to be elastic
 Not only expanding but also contracting, with equal

cost-effectiveness

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/29

The scale cube

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/29

https://www.nginx.com/blog/introduction-to-microservices/

Replication requires statelessnessreplication

D
ec

om
po

si
tio

n
re

qu
ire

s
or

ch
es

tr
at

io
n

The opposite of distribution

 Centralization of service
 All users must refer to a single entry point

 As in the HOSTS.TXT file that mapped hostnames to IP
addresses in the ARPANET

 Centralization of resources
 All the data relevant to a service are kept in a single

copy at a single place
 The opposite of how the DNS (ca. 1985) and Blockchain (ca.

2008) work

 Centralization of algorithm
 Requiring to know the system state

 Impossibly burdensome to compute and maintain

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/29

Prerequisites of distribution – 1

 An algorithm is distributed if
 Every part of it acts satisfactorily on the basis of local

knowledge
 The DNS is partitioned
 Blockchain is trustworthily replicated

 Its computation does not require knowledge of global status
 Local responses contribute to global result (DNS)
 Local responses have global effect if confirmed by peers

(Blockchain)
 Local faults do not cause global failure
 Its logic does not require a single source of time
 It allows consistent replication of services, decomposition

of tasks, partitioning of resources

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/29

Prerequisites of distribution – 2

 Synchronous communication is an active
obstacle to distribution
 It blocks the communicating parties delaying the

progress of computation and causing coupling
 Asynchronous communication enables

distribution
 It decouples the communicating parties by hiding

network delays, and allows parties to progress
independently

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/29

Hardware distribution

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/29

Multi‐processor Multi‐computer

Distributed memory architecture

 Uniform memory access (UMA)
 A single address space

 As in symmetric multiprocessors
 All node access memory in the same way

 Access requests need queuing and arbitration
 Cache coherence is not obvious

 Not-uniform memory access (NUMA)
 Address space is shared but not unified
 Access to memory depends on location
 Cache coherence is unthinkable

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/29

Cache coherence – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/29

Cache coherence – 2

 The problem lies in cores having a private L1
 Parallel R/W ops on same physical location see different values

 No-go remedies
 Doing without caches kills performance

 Nah, unless you want to kill performance
 Sharing L1 across cores requires centralized arbitration
 Write-through caches cause Rs to fail to see Ws from other cores

 Requirements
 Every R must see the effect of every W

 Either write-update or write-invalidate
 Every R must see one and the same order of Ws

 Snooping: order of Ws is determined by propagation on memory bus

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/29

Multiprocessors – 1

 All processors have a single common
address space
 Bus-based P-M communication requires

arbitration and becomes a bottleneck
 Switched P-M communication balances load

better but requires far more complex logic
 Crossbars are efficient but costly
 Omega networks have cheaper units but are more

complex to operate

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/29

Multiprocessors – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/29

Crossbar	switch Omega	network

n2 connectors
for n elements

{P, M}

Less connectors but higher latency

Multi-computers

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/29

Grid Hypercube

𝟐𝒏 nodes
𝒏𝟐𝒏ି𝟏 links

Every node does local processing and routing

Node position determines
number of neighbours

(position-dependent routing)

Number of neighbours is location independent
(and so is routing)

2

3

3

2

2

3

3

2

3

3

4

4

3

3

4

4

n = 4

Software distribution – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/29

Local OS

Computer A

Local OS

Computer B

Local OS

Computer C

Distributed OS

Distributed applications

Typically intended for homogeneous systems

Network interconnect

Abstraction of shared
memory realized via

message passing

Software distribution – 2

 Programming distributed systems is harder than
doing so for multiprocessors
 Task scheduling is much harder in the latter
 Resource sharing is complex in the former and may

prefer spin locks to suspend locks in the latter
 Communicating by shared memory is simpler

than by message passing
 The former is natural in multiprocessors
 The latter scales nicely but suffers from queuing,

synchronization, coordination, and network effects

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/29

Software distribution – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/29

Specialized	services
(e.g.,	ssh,	NFS,	FTP)

Local OS

Computer A Computer B Computer C

Network OS

Distributed applications

Typically intended for heterogeneous systems

Local OS Local OS

Network OS Network OS

Network interconnect

Software distribution – 4

 Neither the distributed OS nor the network
OS paradigm conform with the definition of
distributed system
 The former may have good transparency but its

participant nodes are not independent
 The latter may have good openness and

scalability features but it does not yield a united
coherence system

 The new means to software distribution is
called middleware

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/29

Software distribution – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/29

Open,	transparent
and	scalable	services

Local OS

Computer A Computer B Computer C

Network OS

Local OS

Network OS

Local OS

Network OS

Distributed applications

Middleware

A good fit for distributed systems
Network interconnect

Variants of middleware

 Distributed file system
 UNIX-like NFS

 Remote procedure call (RPC)
 Distributed objects (RMI)
 Distributed documents: Web 1.0

 All TCP based
 Distributed everything: Web 2.0 (all over HTTP)

 Resource-centric: REST
 Data-centric: GraphQL
 Collaboration-centric: gRPC
 Stream-oriented: WebRTC

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/29

Styles of distributed interaction – 1

 The request-reply style of interaction was
the killer factor in the Web 1.0 world
 Reissuing requests in the absence of replies is

harmless only for idempotent operations
 Very few operations are so …

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/29

Styles of distributed interaction – 2

 Client-server architectures vary according to
the distribution of either service or data

 Distribution is vertical when service is
decomposed across multiple authorities
 Akin to functional pipelining: specialization
 Overall service needs coordination of parts

 Distribution is horizontal when data is
replicated across multiple identical servers
 Fit for load balancing
 Consistency must be preserved across replicas

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/29

Styles of distributed interaction – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/29

Vertical distribution

Styles of distributed interaction – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/29

Horizontal distribution

Styles of distributed interaction – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/29

Subscribe

Reference decoupling

Time decoupling

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Push Push	o Pull

Beyond client-server

Views of a remote call

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/29

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

