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Distribution requires transparency

 A distributed system is a set of independent
computing nodes capable of appearing as a 
single coherent execution platform to 
applications running on it
 This requires all coordination communications among 

those computing nodes to be transparent to the 
application

 Transparency is given when you get to see the 
intended effects without being exposed to the 
mechanics that produce them
 There exist several dimensions of transparency
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Transparency requires openness
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Transparency of To hide what
Access Differences in data encoding or in the way to operate 

on resource data
Location Where computing resources actually reside (e.g., 

physical vs logical naming)
Migration / Relocation Resources may move without the user needing to 

know in between uses, or even during use
Replication / Transaction That a resource may exist in multiple coherent 

copies, or may result from the aggregation of 
multiple parts

Malfunction Individual computing nodes may locally fail without 
this affecting the availability of the resource

Persistency How writing succeeds regardless of the distance 
between writer and resource

ISO/IEC	10746‐1:1998,	Open	Distributed	Processing	– Reference	model:	Overview



What is openness

 It is a key prerequisite to portability and 
interoperability

 It prescribes all call interfaces to conform to 
public and stable specifications

 Such specs have to be
 Complete, so that no details are hidden that may 

preclude third-party implementations of them
 Neutral, so that they do not impose a single way of 

implementation
 Interface definition languages (IDL) help achieve 

such properties
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Distribution requires scalability

 Any service provided to distributed clients needs 
to scale to demand

 Scalability is more easily understood by its 
negation
 A system is not scalable when it is unable to 

accommodate increased workload
 A useful definition stipulates it as

 The ability to handle increased workload by 
repeatedly applying a cost-effective strategy for 
extending system capacity
 Without intolerable latency or excessive waste
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What is scalability

 Fitness for need with respect to
 Availability of resources

 They should never be scarce
 Physical distance

 The user should have perception of locality
 Independence of global view from local issues

 Issues in handling local, concrete implementation should not 
determine how a resource is presented to the user

 Where unused resources cost dearly, you want 
scalability to be elastic
 Not only expanding but also contracting, with equal 

cost-effectiveness
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The scale cube
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https://www.nginx.com/blog/introduction-to-microservices/

Replication requires statelessnessreplication
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The opposite of distribution

 Centralization of service
 All users must refer to a single entry point

 As in the HOSTS.TXT file that mapped hostnames to IP 
addresses in the ARPANET

 Centralization of resources
 All the data relevant to a service are kept in a single 

copy at a single place
 The opposite of how the DNS (ca. 1985) and Blockchain (ca. 

2008) work 

 Centralization of algorithm
 Requiring to know the system state

 Impossibly burdensome to compute and maintain 
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Prerequisites of distribution – 1

 An algorithm is distributed if
 Every part of it acts satisfactorily on the basis of local 

knowledge
 The DNS is partitioned
 Blockchain is trustworthily replicated

 Its computation does not require knowledge of global status
 Local responses contribute to global result (DNS)
 Local responses have global effect if confirmed by peers 

(Blockchain)
 Local faults do not cause global failure
 Its logic does not require a single source of time
 It allows consistent replication of services, decomposition 

of tasks, partitioning of resources 
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Prerequisites of distribution – 2

 Synchronous communication is an active 
obstacle to distribution
 It blocks the communicating parties delaying the 

progress of computation and causing coupling
 Asynchronous communication enables 

distribution
 It decouples the communicating parties by hiding 

network delays, and allows parties to progress 
independently
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Hardware distribution
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Multi‐processor Multi‐computer



Distributed memory architecture

 Uniform memory access (UMA)
 A single address space

 As in symmetric multiprocessors
 All node access memory in the same way

 Access requests need queuing and arbitration
 Cache coherence is not obvious

 Not-uniform memory access (NUMA)
 Address space is shared but not unified
 Access to memory depends on location
 Cache coherence is unthinkable
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Cache coherence – 1
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Cache coherence – 2

 The problem lies in cores having a private L1
 Parallel R/W ops on same physical location see different values

 No-go remedies
 Doing without caches kills performance

 Nah, unless you want to kill performance
 Sharing L1 across cores requires centralized arbitration
 Write-through caches cause Rs to fail to see Ws from other cores

 Requirements
 Every R must see the effect of every W

 Either write-update or write-invalidate
 Every R must see one and the same order of Ws

 Snooping: order of Ws is determined by propagation on memory bus
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Multiprocessors – 1

 All processors have a single common 
address space
 Bus-based P-M communication requires 

arbitration and becomes a bottleneck
 Switched P-M communication balances load 

better but requires far more complex logic
 Crossbars are efficient but costly
 Omega networks have cheaper units but are more 

complex to operate
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Multiprocessors – 2
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Crossbar	switch Omega	network

n2 connectors
for n elements

{P, M}

Less connectors but higher latency



Multi-computers
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Grid Hypercube

𝟐𝒏 nodes
𝒏𝟐𝒏ି𝟏 links

Every node does local processing and routing

Node position determines 
number of neighbours

(position-dependent routing)

Number of neighbours is location independent
(and so is routing)

2

3

3

2

2

3

3

2

3

3

4

4

3

3

4

4

n = 4



Software distribution – 1
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Local OS

Computer A

Local OS

Computer B

Local OS

Computer C

Distributed OS

Distributed applications

Typically intended for homogeneous systems

Network interconnect

Abstraction of shared 
memory realized via 

message passing



Software distribution – 2

 Programming distributed systems is harder than 
doing so for multiprocessors
 Task scheduling is much harder in the latter
 Resource sharing is complex in the former and may 

prefer spin locks to suspend locks in the latter
 Communicating by shared memory is simpler 

than by message passing
 The former is natural in multiprocessors
 The latter scales nicely but suffers from queuing, 

synchronization, coordination, and network effects
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Software distribution – 3
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Specialized	services
(e.g.,	ssh,	NFS,	FTP)

Local OS

Computer A Computer B Computer C

Network OS

Distributed applications

Typically intended for heterogeneous systems

Local OS Local OS

Network OS Network OS

Network interconnect



Software distribution – 4

 Neither the distributed OS nor the network 
OS paradigm conform with the definition of 
distributed system
 The former may have good transparency but its 

participant nodes are not independent
 The latter may have good openness and 

scalability features but it does not yield a united 
coherence system

 The new means to software distribution is 
called middleware
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Software distribution – 5
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Open,	transparent
and	scalable	services

Local OS

Computer A Computer B Computer C

Network OS

Local OS

Network OS

Local OS

Network OS

Distributed applications

Middleware

A good fit for distributed systems
Network interconnect



Variants of middleware

 Distributed file system
 UNIX-like NFS

 Remote procedure call (RPC)
 Distributed objects (RMI)
 Distributed documents: Web 1.0 

 All TCP based
 Distributed everything: Web 2.0 (all over HTTP)

 Resource-centric: REST
 Data-centric: GraphQL
 Collaboration-centric: gRPC
 Stream-oriented: WebRTC
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Styles of distributed interaction – 1

 The request-reply style of interaction was 
the killer factor in the Web 1.0 world
 Reissuing requests in the absence of replies is 

harmless only for idempotent operations
 Very few operations are so …
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Styles of distributed interaction – 2

 Client-server architectures vary according to 
the distribution of either service or data

 Distribution is vertical when service is 
decomposed across multiple authorities
 Akin to functional pipelining: specialization
 Overall service needs coordination of parts

 Distribution is horizontal when data is 
replicated across multiple identical servers
 Fit for load balancing
 Consistency must be preserved across replicas
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Styles of distributed interaction – 3
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Vertical distribution



Styles of distributed interaction – 4
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Horizontal distribution



Styles of distributed interaction – 5
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Subscribe

Reference decoupling

Time decoupling

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Push Push	o Pull

Beyond client-server



Views of a remote call
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