
Distributed communications

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2020/2021

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/29

A layered view of networked
communication – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/29

TCP/IP

Point‐to‐point	interconnection	among	local	networks

Point‐to‐point	interconnection	between	nodes

Levels	5‐7	in	the	OSI	
reference	model

A layered view of networked
communication – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/29

Payload	(message)

Models of distributed communication

 Remote procedure call (RPC)
 Transparency of all the message passing that

realizes the caller-callee interaction at the
application level

 Remote (object) method invocation (RMI)
 As above, except leveraging interfaces

 Middleware-mediated message passing
 Language-specific (e.g., event-based, reactive)
 Internet-based (over HTTP, pull or push)

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/29

Analogies …

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/29

Primordial	
programming

Structured	
programming

OOP

Explicit	use	of	sockets

RPC

RMI

More	advanced	paradigms

Sockets are essential
for all communications
to reach to the network

But they are so raw and
basic that their use should
be made transparent to
the application …

The negation of abstraction

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/29

Tanenbaum & Van Steen, Distributed	Systems:	Principles and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Socket-based communication has nearly no prescribed syntax or semantics,
which are left to sender and receiver at the application level

Anatomy of RPC – 1

 RPC allows a caller (a process) on one node to
invoke locally a procedure in an address space
owned by a remote process
 Transparent networking kicks in necessarily
 Caller and callee should not know of what happens

under the hood of the call
 As in normal procedure calls, the caller “stays on

the call” until the called procedure returns
 The caller is suspended throughout
 The in parameters travel from caller to callee
 The call executes at the callee side, and returns
 The out parameters travel back to the caller

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/29

(Know thyself)

 That’s how a local procedure call works …

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/29

Free space

Main’s local variables
and nested calls before 𝑇

Stack Pointer

Main’s local variables
and nested calls before 𝑇

Stack of the caller
(at time 𝑇 before the call)

Stack Pointer nbytes
buf
fd

Return address
Read’s locals

Stack of the caller
(during the call)

Read(fd,buf,nbytes)

The C language places
params on the stack
in reverse order …

Every language has its own
call conventions

(e.g., cdecl)

Anatomy of RPC – 2

 The call parameters may be either by-value
 They are copied on the stack of the callee

 Or by-reference
 They are addresses that point back to the caller’s

address space
 Every update to them should be reflected back

immediately at the caller’s end
 Or by-value-result
 Only the latest updates propagate back at the call

return

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/29

Anatomy of RPC – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/29

Tanenbaum & Van Steen, Distributed	Systems:	Principles and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Anatomy of RPC – 4

 At the caller’s side, remote calls appear local
 The call is “posted” on the caller’s stack according to

local conventions
 The client stub creates the corresponding call

descriptor and forwards it across the network, using a
mechanism called parameter marshalling

 At the callee’s side, the arrival of the remote call
activates a local “caller”
 The server stub transforms the call descriptor into a

call on the local stack, awaits the return and sends it
back across the network

 On call arrival, this uses the reverse mechanism,
called parameter unmarshalling

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/29

Anatomy of RPC – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/29

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Anatomy of RPC – 6

 The RPC mechanics involves several important decisions
 On the format of messages between stubs
 On the encoding of the data exchanged by caller and callee
 On the network protocol to use for such messages (TCP, UPD)
 On how the client stub can locate the server stub

 The latter is difficult to address transparently
 The server side must register itself (IP address : port) at a

given registry as a “provider” of the target procedure
 Registering what? The “procedure” is strictly a server-side concept ….

 The client side must retrieve “that” information and establish a
(TCP) connection to the corresponding network location
 But then the server side should listen at all times for incoming calls and

also permanently seize the target port: not very nice …

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/29

Anatomy of RPC – 7

 The RPC is intrinsically synchronous
 It can be asynchronous only for calls without return

parameters
 The caller might proceed as soon as the call has been issued
 Without knowing whether the call actually succeeded …

 The eventuality of network errors requires
adding optional mechanisms to either stubs
1. The client side may retry requests that did not return
2. If it did so, the server side would have to recognize

and filter out call duplicates
3. The server side should also retransmit results in

case the client did not ack them

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/29

Anatomy of RPC – 8

 Such provisions yield diverse request-reply
protocol semantics
 Best effort, with no safeguard mechanism

 No guarantee on call execution and effects
 At least once, with just request-retry at client side

 Retry until success, without knowing how many
executions at server side

 At most once, with all mechanisms in use
 Failure only if server is unreachable

 Exactly once, when all guarantees are in place
 Including hot-redundant server

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/29

Language-neutral RPC

 All “historic” RPC support based on TCP
 Which was rather limiting: HTTP not understood as a

programming interface back then
 And was language-specific

 Short-sighted: the immediate need was for individual
languages to support distributed programming

 Then came interoperability
 CORBA: Common Object Request Broker

Architecture, better in concept than in practice …
 https://corba.org/faq.htm

 Finally, RPC was lifted to HTTP/2.0
 gRPC: check it out at https://grpc.io/

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/29

Differential anatomy of RMI – 1

 The LSP* separation between (service) interface and object
(implementation) is naturally conducive to distribution
 The interface is a lightweight entity that can be exposed remotely

easily and naturally
 Objects live (long) in the heap: their scope is global
 These traits earn RMI more transparency than RPC

 So much so that RMI interaction can be enabled at run time by wrapping
“object-lookalike” over non-object resources (CORBA)

 The client stub becomes the proxy
 Which can be loaded in dynamically when the client binds with

the target implementation
 Binding is generally explicit, hence not transparent

 The server side becomes the skeleton
 Compile-time provision, derived from the remote interface

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/29

*: Liskov Substitution Principle

Differential anatomy of RMI – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/29

Differential anatomy of RMI – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/29

The call parameters (A to C) are by-value:
• Copying L1, which refers to a local

object, yields a deep copy of O1
• Copying R1, which is a remote reference,

yields a shallow copy of O2

Middleware-based message-passing – 1

 Applications can communicate by placing messages in
Middleware-supported queues

 Very easy to realize
 Distinct queues at either side (or along the way), depending on

the desired support for persistency
 With blocking events contingent on synchronization behaviour

 Send maps to a non-blocking Put
 Becomes blocking if MW wants to prevent overwrites on full

queue
 The send queue handler acts as a proxy

 Receive maps to a blocking (guarded) Get
 A callback mechanism should be provided to decouple the

receiver from the queue
 The receive queue handler acts as a skeleton

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/29

Middleware-based message-passing – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/29

Each	queue	appears	as	local	
to	sender	and	receiver

The	Middleware	must	make	
sure	that	the	network	layer	
“sees”	such	queues	to	deposit
in	and	fetch	from	them

Middleware-based message-passing – 3

 The Middleware overlays its own network over the underlying
internet (lowercase ‘I’)
 With its own static or dynamic topology and routing

 A broker acts at all points in which the overlay network traffic
needs to become internet traffic
 Similar in nature to the gateway nodes of the classic Internet

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/29

Middleware-based message-passing – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/29

Middleware

How does it render
communication
transient or persistent?

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Middleware-based message-passing – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/29

Distributed message passing incurs
persistency and synchronization
problems in the transit from sender
to receiver

Middleware-based message-passing – 6

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/29

Asynchronous, persistent (?) Persistent, synchronous (?)

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Middleware-based message-passing – 7

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/29

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Asynchronous, persistent (?) Persistent, synchronous (?)

Middleware-based message-passing – 8

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/29

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Synchronous, persistent (?) Synchronous, persistent

What is happening to the Internet?

 With HTTP/1.1 (textual) when a web browser loads a web page, it can
requests one resource at a time per TCP connection to the server
 The original Web assumed few heavy-weight connections, all pull based
 The Web of today features a zillion of light-weight connections, also in push mode

 WebSocket allows full-duplex communication, making “the HTTP/1.1
layer” a two-way road

 HTTP/2 (binary) multiplexes multiple requests over a single connection
to the same server, to allow receiving multiple responses at once
 TCP does not know about it, which causes needless retransmissions …

 HTTP/2 also allows the server to push contents into the client
proactively, without it requesting so (aka Server-Sent Events)

 QUIC replaces TCP with
 Default authentication and encryption, plus faster handshake
 Direct support for multiplexed transport streams delivered independently (resend

on packet loss becomes specific)
 Use of UDP, in user space, with far less execution overhead

 HTTP/3 is HTTP/2 adapted to QUIC

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/29

Variants of middleware (repeat)

 Distributed file system
 UNIX-like NFS

 Remote procedure call (RPC)
 Distributed objects (RMI)
 Distributed documents: Web 1.0

 All TCP based
 Distributed everything: Web 2.0 (all over HTTP)

 Resource-centric: REST
 Data-centric: GraphQL
 Collaboration-centric: gRPC
 Stream-oriented: WebRTC

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/29

Past
Present & Future

