
Java’s RMI model

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2020/2021

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/16

Model architecture – 1

 Essentially a rejuvenation of RPC
 Client-server over TCP
 At-most-once semantics

 Nicest traits
 The object as the unit of distribution
 The interface as the “distributable” part
 The server-side state of implementation in the object’s

node of residence
 Potentially long-lived (in the heap)

 Principal defect
 Full transparency not warranted

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/16

Model architecture – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/16

Remote	object	R
R’s	implementation

(server‐side)
with its own reference

Object state and code

R’s	skeleton
(server‐side)

Derived from R’s interface

Binding information:
• IP address of R’s skeleton,
• endpoint of the object servant,
• R’s reference within servant

R’s	proxy
(client‐side)

Transparency holes

 Remote object not equal to local object
 Remote object cannot be cloned fully

 Client-side proxy not involved in server-side cloning
 Binding to clone requires new proxy

 Access control to remote object is server-side only
 Does not involve proxies

 Proxy sharing at client side may or may not serialize
 Data race if remote method implementation is not synchronized

 Remote call parameters treated differently
 Parameter type must allow marshalling (serializable)

 Impossible for node-local types (threads, files, sockets, …)
 Unwanted for those intrinsically insecure (FileInputStream)

 Local objects passed by deep copy
 Remote objects passed by reference

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/16

Shallow copy vs deep copy

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/16

Object1
Primitive-type
member
Object member
(reference)

ShallowCopyObj1
Primitive-type
member
Object member
(reference)

Object in heap

DeepCopyObj1
Primitive-type
member
Object member
(reference)

Object in heap

Model architecture – 3

 R’s proxy turns remote invocation to R into a Transport-
level message for care by the Remote Reference Layer
(Java’s middleware)

 Call destination specified as endpoint
 R’s node IP address, port number, R’s ID at local RRL, protocol

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/16

Model architecture – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/16

Client
Registry

Servant

Proxy Skeleton

Remote Reference
Layer

Remote Reference
Layer

This is where call‐concurrency issues are treated
(including thread pooling)

Separate process
(needs its own port)

Transport Layer (JRMP)

Unmarshalling by readObject()
Marshalling by writeObject()

Object  Stream  Object

Model architecture – 5

 Serializable objects transferred as “recipe-and-
ingredients”
 Portability within JVM allows reproducing wanted

object at destination
 Original .class suffices for by-value parameters

 Can be done, such files are fully local to the caller
 By-reference mode needed for objects that cannot be

reproduced outside of local node
 The proxy itself is serializable

 Can be transferred the same as normal parameters
 The very principle used for binding client to server

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/16

Model architecture – 6

 Proxy is actual target of client’s call
 Proxy reifies call and forwards it to client-side RRL using invoke() method of

java.rmi.server.RemoteRef

 Skeleton receives dispatch() call from server-side RRL with reified
call as parameter
 Skeleton unmarshalls reified call and makes invocation on client’s behalf

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/16

What happens under the hood – 1

1. Servant creates instance of remote object, which must
extend UnicastRemoteObject
 Constructor for UnicastRemoteObject enables remote object

to service incoming RMI calls
 TCP socket bound to arbitrary port is created
 Thread is created to listen for connections on that socket

2. Servant registers remote object with RMI registry,
whose entry contains the corresponding proxy
 RMIRegistry holds proxies and hands them to clients on request
 Proxy contains info to "call back" to the servant on client call

3. Client obtains proxy by calling RMI registry
 If server specified a codebase for clients to obtain proxy’s .class,

registry return will include that
 Client can then use codebase to construct proxy in-place

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/16

What happens under the hood – 2

4. When client issues RMI, proxy creates RemoteCall object
[now deprecated]
 That object opens socket to servant on port specified in proxy,

and sends RMI header information to it

5. Proxy calls RemoteCall.executeCall() to cause RMI to
happen [now deprecated]
 Proxy serializes call arguments into Java stream object and

marshals them over the connection

6. When client connects to servant’s socket, new thread is
forked on servant’s side to serve call
 Original thread keeps listening to original socket for calls from

other clients

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/16

What happens under the hood – 3

7. Servant reads RMI header information and creates
RemoteCall object to unmarshall incoming RMI
arguments [now deprecated]

8. Servant calls skeleton’s dispatch() method, which
calls target object method and pushes return result
back to socket

9. Return value of RMI is unmarshalled at client side,
and returned from proxy back to client

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/16

Concurrency control

 RMI Spec @ 3.2 Thread Usage in RMI
 A method dispatched by the RMI runtime to a remote

object implementation may or may not execute in a
separate thread

 The RMI runtime makes no guarantees with respect to
mapping invocations to threads

 Since remote method invocation on the same remote
object may execute concurrently, a remote object
implementation needs to make sure its implementation is
thread-safe

 “It’s your problem, baby”
 Calls from the same client are certainly sequential

 Unless the client has shared the proxy
 Calls from parallel clients need server-side handling

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/16

This needs reentrancy

Use example: servant

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/16

package echo;
public interface Echo extends java.rmi.Remote {
String call (String message) throws java.rmi.RemoteException;

}

package echo; import java.rmi.*; import java.rmi.server.*;
public class EchoServer extends UnicastRemoteObject implements Echo {

public EchoServer(String name) throws RemoteException {
try { Naming.rebind (name,this); } catch (Exception e) {

System.out.println (“Exception in EchoServer: " + e.getMessage());
e.printStackTrace();} }

public String call (String message) throws RemoteException {
System.out.println("Echo's method call invoked: [" + message + "]");
return "From EchoServer:- Thanks for your message: [" + message + "]"; }

public static void main (String args[]) throws Exception {
if (System.getSecurityManager() == null)

System.setSecurityManager (new RMISecurityManager());
String url = "rmi://" + args[0] + "/Echo";
EchoServer echo = new EchoServer (url);
System.out.println("EchoServer ready!"); }

}

This goes to Registry at servant’s node
(rebind overwrites previous, if any; bind disallows overwriting)

Use example: client

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/16

package echo; import java.rmi.*; import java.rmi.server.*;
public class EchoClient {

public static void main (String args[]) {
int i;
if (System.getSecurityManager() == null)

System.setSecurityManager (new RMISecurityManager());
try {

System.out.println ("EchoClient ready!");
String url = "rmi://" + args[0] + "/Echo";
System.out.println ("Looking up remote object " + url + " ...");
Echo echo = (Echo) Naming.lookup (url);
String toMsg = (String) args[1];
for (i = 1; i<6; i++) {

toMsg = toMsg + "-" + i;
System.out.println ("Message " + i + " to Echo: [" + toMsg + "]");
String fromMsg = echo.call (toMsg);
Thread.sleep (2000);
System.out.println ("Message from Echo: \n\t" + fromMsg + "\n"); }

} catch (Exception e) {
System.out.println ("Exception in EchoClient: " + e.getMessage());
e.printStackTrace(); } }

}

echo is the proxy and
has the type of the Echo interface!

Use example

 Prior to Java 5, applications using RMI had to be compiled
in two steps
 First step was classic javac
 Second step, rmic, was to generate proxy (stub) and skeleton

based on actual remote object
 Since Java 5, proxy generated on-the-fly, and skeleton is

taken care of by javac

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/16

EchoServer.java EchoServer.class
javac

EchoServer_Skel.class

EchoServer_Stub.class

rmic

