
On virtualization

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/28

Abstraction (what is)

 Hiding details of an entity’s implementation to
simplify the view of it as offered to the user
 Example 1: exposing a procedure instead of the stack

required to make it “live”, realizes an abstraction
 Example 2: in UNIX (and then in Linux), everything is

a file, specialized as needed, with a common interface
 Keywords

 Information hiding, well-defined interface
 Weakness

 The public interface of the abstraction is fragile in the
face of changes that break its implementation

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/28

Virtualization (what is)

 Providing a logical view (abstract interface) of an
entity, and preserving it across changes in the
underlying execution environment

 Virtualization adds all of the “adaptation harness”
needed to preserve the base abstraction over
variations in the underlying substrate
 Example: exposing UNIX-like files in an NTFS environment

 Keyword
 Encapsulation

 Strength
 Virtualization sits above abstraction, adding value to it by

always preserving its interface contract

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/28

Example /1

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/28

Abstraction Virtualization

One logical abstraction provides a
simple view of some functionality

while hiding its concrete implementation

One and the same interface is provided
regardless of what the underlying

infrastructure has to offer

Virtualized FileFile File

HD HD

VIRTUALIZERFILE SYSTEM

HD

NTFS Ext3

Example /2

 The UNIX abstraction of “process” lends itself
to virtualize multi-programming

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/28

Abstracting the Operating System /1

 Boot block: procedure to initialize the OS (make it “live”)
 Superblock: descriptor of the whole partition (in the form of a file system)
 I-nodes: list of all file-system-object descriptors (i-node)

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/28

Abstracting the Operating System /2

 Knowing the abstraction of a specific OS (its
implementation at run time) allows treating it
as an entity “from the outside of it”
 Copying it
 Moving it
 Deleting it
 Stopping and resuming its execution at will

 All that this requires is a way to “understand”
its descriptors and their life cycle

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/28

Some history /1

 The ‘60s, the time of the mainframe
 HW resources are scarce and costly
 Virtualization allows transparent sharing of

them across multiple competing processes
 Time sharing virtualizes access to the CPU
 Virtual memory overcomes the size limitations of

the RAM
 Virtualization becomes one of the founding

principles of computing

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/28

Some history /2

 The ’70s, from mainframes to minicomputers
 The scarcity of HW resources is alleviated by

general-purpose multi-programmed Oss
 The arrival of Personal Computers makes

HW plentiful
 Everybody is satisfied and the urge to push

virtualization further fades away
 Good read: “The Game”, A. Baricco, 2018

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/28

Some history /3

 The early ’90s, commercial and scientific interest for
massively parallel computing
 Example: weather prediction 

 This needs specialized HW, made short-lived by
commercial competition
 Example: the Transputer (DOI: 10.1145/255129.255192),

the building block of a highly composable general-purpose
massively parallel processor

 Interest in virtualization resurrects, to ease the
porting of applications across hardware evolutions

 10/02/1998: VMware Inc. is founded
(https://www.vmware.com/timeline.html)

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/28

Some history /4

 Late ‘90s, all industry begins to run on an array of
digital services
 The simultaneous decrease in the unitary cost of computer

HW yields a surge in heterogeneity (classic law of demand)
 The increasing (vertical) needs of industry are met

by an increasing number of dedicated servers
 More independent heterogenous servers means higher

maintenance cost for less average use of HW resources
 Interest in virtualization resurrects, to seek cost-

reducing “consolidation” (aka rationalization)
 Sharing HW across application servers

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/28

Architecture and interfaces /1

CPU and other programmable resources

I/O devices
and

networking

Main
memory

Memory
translationSystem interconnect

(bus)

O/S
ABI

API

SW

HW

Application software

Libraries

ISA





University of Padova, Master Degree - Runtimes for concurrency and distribution 12/28

Application Binary Interface:
call conventions across
heterogeneous object files
(how the execution may use the
processor memory and registers)

Application Programming
Interface: call conventions
within one and the same
implementation language
(how the compiler wants data
to be presented in function calls)

Where does the ABI operate?

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/28

API

ABI

Architecture and interfaces /2

 Changes in the processor HW may cause the
ISA to change too

 Changes in the ISA affect the OS
 And of course all compiler backends that target it

 The extent of the change may also affect the ABI
 And possibly the API as well

 To preserve the value of applications we need to
augment abstraction with virtualization
 At which level should we act?

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/28

A possible ultimate goal

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/28

Focus shifts on isolation

The basics of virtualization /1

 Since the end of the ’60s, processor execution
was associated with levels of privilege
 The ISA was accessible to the executing program in

subsets (aka “protection rings”)
 The inner the ring the greater the privilege

 Any attempt to execute outside of the assigned
level of privilege is trapped by the processor HW
 HW trap, a form of predefined exception

 The raising of the program’s level of privilege
may be requested by specialized instructions
 SW trap (and the associated “return from trap”)

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/28

The basics of virtualization /2

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/28

A taxonomy of virtualization /1

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/28

A taxonomy of virtualization /2

 Another important classification follows the
level of abstraction under which virtualization
is realized Virtualization

Process-level System-level

HostedClassic

Paravirtualization Whole-System

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/28

A taxonomy of virtualization /3

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/28

Process-level Virtualization /1

 The hypervisor runs as a process on the host OS, and
provides its own ABI for virtualized applications to use
 Reminiscent of the multiprogramming model of UNIX

O/S

Process-level Hypervisor

ABI

API
Application SW

Libraries

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/28

Process-level Virtualization /2

 Process-level virtualized applications enjoy
 Virtual memory, which they do not know is virtual
 Virtualized IO, which they do not know is virtual
 Access to CPU, multi-programmed by the host OS
 Exactly like a normal process

 The execution of the application program in
this model may be
 Direct if its binary is ISA-conformant (e.g., Wine)
 Interpreted, otherwise (e.g., Java Virtual Machine)

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/28

Process-level Virtualization: Wine

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/28

This is the hypervisor

User
space

Kernel
space

This implements the Wine DLLs on UNIX

Guest O/S

System-level (classic) Virtualization

 The hypervisor provides guests with a software ISA
 The guest is a full OS, which however is rendered

unable to take control of the processor resources
 Effectively, the guest OS is stripped of its privileges (de-

privileged)

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/28

System-level (classic) Hypervisor

HW machine

ISA
KVM

Xen

http://drsalbertspijkers.blogspot.com/2017/05/kvm-kernel-virtual-machine-or-xen.html

System-level (hosted) Virtualization

 The hypervisor is a normal process on the host OS
 As such, it rents the compute resources that it requires
 The underlying ISA is the same for all executables

 The goal is to preserve the value of (guest) applications,
at the cost of inevitable performance decay

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/28

Physical HW machine
Host O/S

Process Process ProcessHosted
Hypervisor

Guest O/S

Process Process

...

...

ISA

ISA

Para-virtualization /1

 System-level virtualization rests on the ability to
trap trespasses of privilege rings
 This allows the hypervisor to keep full control of the

processor resources against attempts by the guest OS
 HW traps drain performance, which processor

makers dislike
 The support for system-level virtualization ceases

 The Intel architectures begin introducing
machine instructions that cannot be virtualized
 They are “outside” of privilege rings

 This fools traditional hypervisors

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/28

Para-virtualization /2

 The remedy requires extending the ISA with a hypercall-API
interface that allows hypervisors to retain resource control
without the overhead of trapping
 The resulting performance overhead was proven negligible
 Guest OSs had to be modified to use those instructions

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/28

ISA*

Physical HW machine

Guest O/S

Hypercalls (not virtualizable instructions)

System Hypervisor (Xen VMM)

Overview

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/28

P.es.: KVM, Xen

E.g.: VirtualBox This is a full disk partition seen as a file

This includes an OS process that executes
the VM code (how?) and traps to the hypervisor

Operating

