
On communication among
threads

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/32

Premise – 1

 Concurrency is eminently collaborative
 The threads in a concurrent program hardly are fully

independent of one another
 If they were, the program would be perfectly parallel
 Recall the distinction between concurrency and parallelism!

 Stipulating the communication interfaces
allowable among threads is a crucial concern in
the design of a concurrent language
 The chosen model of communication has large impact

on the overall quality of the program
 For efficiency, understandability, maintainability

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/32

Premise – 2

 Inter-thread communication can be
 Direct, only involving active entities
 Indirect, mediated by reactive or passive entities

 Classic models
 Message passing, direct

 No sharing: awkward when running on shared memory, but also
very scalable

 Shared variables, indirect
 Natural when running on shared memory, but also very risky and

not scalable
 Before proceeding, make sure you understand how

primary memory is organized
 What can a thread “see”, what it cannot

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/32

Premise – 3

 Having to synchronize (waiting during execution) to
communicate defeats parallelism
 Message passing requires synchronization between sender and

receiver
 Data sharing requires synchronization to serialize data access
 In either case, waiting may require suspension or spinning

 When data sharing cannot be avoided in a parallel system,
wait-free synchronization becomes desirable to contain
performance loss
 Transactional memories can be useful in that case

 They use concurrency control mechanisms similar to those required for
DBs, but realized by HW

 Consistency (writes are serialized) and isolation (no leaks of partial
states) warrant atomicity

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/32

Shared variables – 1

 The code fragments (e.g., procedures) that operate
on shared variables are termed critical sections
 Very general definition that makes no assumption on the

structuredness of the language
 Plain code, normal procedures/methods, “special” features

 Concurrent (hence preemptive) access to a critical
section may give rise to data races
 Situations where the values assigned to and read from

shared variables cannot be predicted
 A source of non-determinism, evil for program verification

 (We shall see later that, in other cases than critical sections,
some degree of non-determinism is desirable)

 The medicine to this risk is atomicity

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/32

Shared variables – 2

 Bernstein’s condition, IEEE TREC 15:15, 1966
 Atomic execution is guaranteed if shared variables

that are read and modified by a critical section are not
modified by any other concurrently executing section
of code

 If that condition does not hold, the risk of data
race arises, which may result in race conditions
 Ascertaining the presence of data races in a program

is inordinately complex (NP-hard) in the general case
 R. Netzer and B. Miller, ACM LoPLAS 1:1, 1992

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/32

Defeating data races

 The problem has two parts
 Ensuring that critical sections execute atomically (P1)

 Errors of this type cause low-level data races
 Encapsulating critical sections correctly (P2)

 Errors of this type cause high-level data races
 P2-type errors have two ramifications

 Non-atomic protection fault: when a thread’s
operation on a shared variable is broken up in multiple
disjoint partial accesses

 Lost-update fault: when a foreign write to a shared
variable occurs between the read and the subsequent
functionally-related write of it by one and the same
thread

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/32

P1-type problem: example – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/32

// thread A needs to access shared
// variable X
// to this end, it checks whether
// X is free
if (lock == 0) {

// X is being used
// try again (busy wait)

}
else {

// X is free
// set it to «in use»
lock = 0;
<critical section S1(X)>;
// free X
lock = 1;

}

// thread B needs to access shared
// variable X
// to this end, it checks whether
// X is free
if (lock == 0) {

// X is being used
// try again (busy wait)

}
else {

// X is free
// set it to «in use»
lock = 0;
<critical section S2(X)>;
// free X
lock = 1;

}

Critical sections S1 and S2 are not atomic: why?

P1-type problem: example – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/32

/* DEPOSIT */

amount = read_amont();
lock(); // this opens

// a critical section

balance = balance + amount;
interest = interest + rate *

balance;

unlock(); // this closes
// a critical sction

/* WITHDRAW */

amount = read_amount();
if (balance < amount) {

// notify caller that
// the operation is denied

}
else {

balance = balance – amount;
interest = interest +

rate * balance;
}

Withdraw exposes Deposit to a low‐level	data	race: why?

P2-type problem: example – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/32

/* Updater Task */

// set status value reading
synchronized (table){

table[N].value = V;
}

… // do work

// set system status for value N
synchronized (table) {

table[N].achieved = true;
}

/* Monitor Daemon */

synchronized (table){
if (table[N].achieved &&

system_state[N] !=
table[N].value){

// inconsistent system state
issueWarning();

}
}

NASA
Remote Agent (1997)

using Java and LISP

A case of non‐atomic	protection	fault: why?

In this time span,
table[N]
is not protected

P2-type problem: example – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/32

/* WITHDRAW */

void withdraw(int amount){
lock(l);
int tmp = balance;
unlock(l);
if tmp > amount){

lock(l);
balance = tmp - amount;
unlock(l);

}
}

/* DEPOSIT */

void deposit(int amount){
lock(l);
balance = balance + amount;
unlock(l);

}

A case of lost‐update	fault: why?

Read access

Write access

Access control fundamentals – 1

 Exclusion synchronization
 When, at any point in time, no more than one

thread may have access to a shared resource
 Access is exclusive

 Avoidance synchronization
 When certain functional preconditions must hold

before access can be granted
 Dependent on the program logic
 Epitomized by the case of the bounded buffer

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/32

Access control fundamentals – 2

 Synchronization is exposed to risks
 Deadlock or starvation (aka lockout)

 Starvation (lockout) occurs when contenders use
CPU time without making progress
 As in an unlucky test-and-set situation …

 Deadlock occurs when the involved participants
relinquish the CPU and wait indefinitely
 Circular-wait deadlock occurs when 4 conditions hold

simultaneously
1. Mutual exclusion is in use
2. Resource access cannot be pre-empted
3. Resource accumulation is allowed with hold-and-wait
4. The wait condition is circular

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/32

Access control fundamentals – 3

 4 types of reaction to deadlock
 Ostrich (don’t look and hope for the best)
 Design-time prevention

 Condition-4 potential can be detected if the participant set is
fully and statically known

 Condition 3 can be defeated forbidding resource accumulation
 Run-time prevention

 To combat condition 4, the runtime must stay current of the
status of all shared variables (who’s holding, who’s waiting)

 Denying access if allowing it risks circular wait
 Or requiring that access is granted only in a fixed order

 Run-time detection
 Oh boy, some threads are not touching the ready queue …

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/32

An example of deadlock prevention

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/32

21
6

3
4 5

… leads to a circular wait

Imagine now that resources
could only be accessed in a
given order (e.g., 𝑅, 𝑆,𝑇).
In that case, C should request
𝑅 before requesting 𝑇 …

The following interleaving …

Access control fundamentals – 4

 Wait time owing to synchronization should be
upper bounded
 Only FIFO queuing ensures that property

 FIFO policy is (bounded) fair and warrants liveness

 Any other policy, no matter
how much common-sense,
is exposed to starvation
 Priority ordering
 LIFO
 Urgency

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/32

Synchronization solutions – 1

 Good synchronization solutions warrant
1. Exclusive access
2. Bounded wait
3. No assumptions on the behaviour of the

execution environment
4. No threads outside of the critical section can

influence the access policy

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/32

Synchronization solutions – 2

 Regulatory control with a shared variable and
strict alternation

 Defects
 Busy wait
 The decision on the alternation is taken outside of the

critical section
 Risk of data race on the control variable (not severe)

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/32

Thread A ::
while (TRUE) 

while (turn != 0); // busy wait
critical_section();
turn = 1; // alternation
…



Thread B ::
while (TRUE) 

while (turn != 1); // busy wait
critical_section();
turn = 0; // alternation
…



Synchronization solutions – 3

 Dekker’s algorithm

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/32

var flag: array [0..1] of boolean;
turn: 0..1; -- i, j are two threads
repeat

flag [i] := true;
while flag [j] do

if turn = j then
begin

flag [i] := false;
while turn /= i do no-op;
flag [i] := true;

end;
end if;

end while;
critical section
turn := j;
flag [i] := false;
remainder of computation

until false;

Conceived by T.J. Dekker (says E.W. Dijkstra)
and later improved (1981).
By setting flag[i]	 true , thread i requests
access. Similarly for thread j.
The value of turn arbitrates access between
the two threads (i and j).
Can be generalized to more than 2 threads

Busy wait!

Synchronization solutions – 4

 Peterson’s algorithm
 For pairs of threads
 Access control logic

similar to Dekker’s
 A private flag
 A shared control variable

 Exposed to data races if
control variable is cached

 Bounded fair
 Booking request gives

priority to the contender

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/32

set (flag.mine);
coin := other;
loop
if (flag.other = clear) continue;
if (coin = mine) continue;
end loop
// CRITICAL SECTION
clear (flag.mine);

Synchronization solutions – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/32

Valore

The initialization value set to count
determines the type of semaphore:

count=1 binary semaphore
count>1 counting semaphore

count=0  barrier

Leaving the use of P(s) and V(s) to the programmer’s discipline is risky

Argh!
Who calls these?

The monitor – 1

 An explicit syntactic structure (known to the
compiler) that encapsulates shared variables and
publishes the operations allowed to access them
 Charles A R Hoare, “Monitors – An Operating System

Structuring Concept”, CACM 17(10):549-557 (1974)
 The shared variable cannot be accessed from

outside of the monitor
 This allows the compiler to assure consistent access

control
 It is the calling of monitor operations that triggers

access control by the runtime
 Not the programmer to place locks!

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/32

The monitor – 2

 Having a protected shared state allows deciding
what to do when that state is not fit for use by a
caller that has gained access to it
 For example, establishing that one cannot write into a

shared buffer that is full, and cannot read from a
shared buffer that is empty

 The monitor provides condition variables that
can be signalled and waited for
 Caller is suspended by waiting on condition C currently

false
 Suspended thread at the top of wait queue is resumed

on lock holder signaling C to have become true

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/32

The monitor – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/32

monitor Container
condition not-empty := false;

not-full := true;
integer content := 0;

procedure Insert(prod : integer);
begin

if content = N then Wait(not-full);
<add prod to container>;
content := content + 1;
if content = 1 then Signal(not-empty);

end;

function Fetch : integer;
begin

if content = 0 then Wait(not-empty);
content := content – 1;
if content = N-1 then Signal(not-full);
return (<fetch from container>);

end;

end monitor;

thread Producer ::
prod : integer;
begin

while true do
begin

Produce(prod);
Container.Insert(prod);

end;
end;

thread Consumer ::
prod : integer;
begin

while true do
begin

prod :=
Container.Fetch;

Consume(prod);
end;

end;

The monitor – 4

 Calling Wait on condition variable Var blocks the
caller when Var is false
 Variable Var should describe the resource state
 The caller (lock holder) relinquishes the CPU and it is

placed in a wait queue
 What happens to the lock at this point?

 Calling Signal on Var releases the thread at the
top of the wait queue for Var
 The program’s logic decides when Signal should be

called
 Which thread gets the lock at this point?

 The compiler makes sure that such calls are atomic
and therefore exempt from data races

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/32

The monitor – 5

 The monitor concept is vastly better than
semaphore-protected critical sections

 But it has defects too
 The monitor does not let the program decide

which the order of calls to it should be at run time
 The thread that gets there first, access it even if it may

have to wait on a false condition variable: big waste!
 The monitor leaves to the programmer the choice

of when to call Wait and Signal
 Yes, this is part of the program’s logic
 But the programmer may get it wrong

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/32

Java’s failed monitor – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/32

class Monitor{
private int cont = 0;
public synchronized void Insert(int prod){

if (cont == N)
Block();

<add prod to container>;
cont = cont + 1;
if (cont == 1)

[this.]notify();
}
public synchronized int Fetch(){

if (cont == 0)
Block();

cont = cont - 1;
if (cont == N-1)

[this.]notify();
return(<fetch from container>);

}
private void Block(){

try{[this.]wait();
} catch(InterruptedException exc) {};}

}

For real?

static final int N = <…>;
static Monitor Container = new Monitor();
// …
Monitor.Insert(prod); // producer
// …
prod = Monitor.Fetch (); // consumer

Java’s failed monitor – 2

 In truth, exclusion synchronization (ES) and
avoidance synchronization (AS) are orthogonal
concerns
 ES pertains to access control
 AS cares that the callers’ operation are consistent with

the resource logic
 Java collapses them into a single wait queue

 What blocked caller does notify() awaken?
 notifyAll() was invented to do damage control, yielding

worse chaos
 Who gets the lock after wait() and notify()?

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/32

Message passing – 1

 Its synchronous variant requires both sender and
receiver to wait for one another
 In this way, both parties know about the progress state of

the other even without exchanging data
 As synchronization’s wait contrasts parallelism,

asynchronous message passing becomes attractive
 Sending is non-blocking

 The sender delivers to a mailbox and proceeds if there is no
receiver yet

 But then the two parties no longer know about each other’s
progress

 Receiving blocks until synchronization ends
 The receiver that gets there first (no message yet), waits until the

sender arrives and delivers

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/32

Message passing – 2

 Both variants can be played with to inverse their
behaviour
 Synchronous becomes Asynchronous

 By placing an intermediary between Sender and Receiver
 Asynchronous becomes (almost) Synchronous

 Having Sender await an ack from Receiver
 How do Sender (S) and Receiver (R) get to

know each other?
 By unique name (of thread, of mailbox)

 CSP’s message passing is synchronous and unidirectional
 Totally unfit for servers !

 By type of message / channel at destination

University of Padova, Master Degree - Runtimes for concurrency and distribution 30/32

Message passing – 3

 Synchronous communications allow for bidirectional
data exchange
 First S to R, then R to S

 Receivers can become servers by exposing multiple
bidirectional channels (entries)
 Entries have by-copy in and out parameters
 A server exposing multiple entries must specify explicitly

which one to service at a given time
 Callers (clients) must name the server and the entry

of interest
 Thanks to synchronization, receivers (servers) do

not need to name their callers
 This makes the naming relation asymmetric

University of Padova, Master Degree - Runtimes for concurrency and distribution 31/32

Message passing – 4

 Prefixing specific preconditions (guards) to
attending to receive calls (entries), allows servers to
establish service logic
 Dijkstra’s model of non-deterministic

guarded select receive command
 E.W. Dijkstra, “Guarded Commands,

Nondeterminacy, and Formal
Derivation of Programs”, CACM, 18(8):453-457 (1975)

 Guards are Boolean expressions
 When they are true (open) the respective receive command

(accept) is enables on the corresponding channel (entry)
 When multiple guards are open and calls are pending on

the corresponding entry, the choice is non-deterministic

University of Padova, Master Degree - Runtimes for concurrency and distribution 32/32

select
Guard_1 => accept Service_1(…);
or
…
or
Guard_K => accept Service_K(…);
end select;

