
Synchronous message passing

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/34

Base model – 1

 Client-server interaction style
 The server publishes the interface of the services that it provides

 Typed entry channels (aka entry queues)
 With associated in-out protocols

 The client makes an entry call naming the target server and the
entry channel of interest
 Providing in parameters as required by the service protocol
 This corresponds to making a “send” call

 To deliver a service, the server must accept the entry call
corresponding to the relevant channel
 This corresponds to making a “receive” call

 Service delivery is synchronous
 The server acts on the service and the client wait synchronously for the

corresponding output

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/34

Base model – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/34

task type Operator is
entry Query (A_Person : in Name;

An_Address : in Address;
A_Number : out Number);

end Operator;
Ann : Operator;

task type User;
task body User is
My_Number : Number;

begin
…
Ann.Query(

“…”, “…”,
My_Number);

…
end User;

task body Operator is
begin

…
loop
accept Query(A_Person : in Name;

An_Address : in Address;
A_Number : out Number) do

…;
end loop;
…

end Operator;

Channel entry protocol

Entry call Service implementation

Base model – 3

 Historically called rendez-vous
 The client and the server meet at either side of an entry

 When the synchronization occurs, the in
parameters flow atomically from client to server
 As in a procedure call, except this is not a procedure call

 The server executes the service actions on the call
parameters, atomically to the client

 At the end of the service execution, the out
parameters flow back from the server to the client

 At that point, the synchronization ends and each
party resumes their respective progress

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/34

Base model – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/34

Server Client 1 Client 2

accept Req(…)
Server.Req(…)

To entry queue

end;

accept Req(…)

Server.Req(…)

end;

Progression of time

Out parameters
To entry queue

From entry queue

Out parameters

Base model – 5

 As in any synchronization, the side that arrives
first at the meeting point, waits for the other
 The server would wait on empty entry queues
 The client would deposit its entry call in the

corresponding entry queue and wait for the call to end
 The default ordering in entry queues is FIFO

 Other queuing policies might be defined
 FIFO ordering warrants fairness, any other ordering is

exposed to the risk of starvation

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/34

Tripartite synchronization – 1

 The rendez-vous model is
 Synchronous for communication
 Asymmetric for naming and interface provisions
 Bidirectional for data flow

 During synchronization, the server is fully
active and may therefore engage in
synchronization with a third party
 This opportunity gives rise to rich forms of

composition

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/34

Tripartite synchronization – 2

 A server has two ways to synchronize with a
third party during service execution
 Embedding an entry call to another server’s channel

while serving its own user request
 Thereby orchestrating a composite service delivery

 Accepting an entry call to another of its channels
 It must be another entry because the current one is locked in

execution of the current service

 The latter feature (nesting accepts) requires
extending the communication model
 We shall discuss it next …

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/34

Nesting entry call accepts – 1

 D is a passive entity, accessed without guarantees of atomicity
 Device implements a state machine for commanding D, whose

transitions are triggered by entry calls being accepted by Controller
 Controller encapsulates the service provided to User and realizes it

by orchestrating its composite service protocol

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/34

User

Device D

Service(…)

Read(…)

Start
Finish(…)

1

2

3

4
Controller

Nesting entry call accepts – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/34

task User;
task Device;
task Controller is
entry Service (I : out Integer);
entry Start;
entry Finish (K : out Integer);
end Controller;

task body User is
…
Controller.Service (Val);
…
end User;

task body Device is
Val : Integer;
procedure Read

(I : out Integer);
begin
loop
Controller.Start;
Read(Val); -- from D
Controller.Finish(Val);

end loop;
end Device;

task body Controller is
begin
loop
accept Service (I : out Integer) do
accept Start;
accept Finish (K : out Integer) do
I := K; -- azione sincronizzata

end Finish;
end Service;

end loop;
end Controller;

①

①
②

③
④

②④

Useful model improvement – 1

 In the example, server Controller exposes all
of its entry channels in its public interface
 Hence, all users in the scope of that interface may

have access to all of Controller’s entries
 Yet, only one of them (i.e., Service) belongs in

Controller’s service interface
 The other two (Start, Finish) belong in the internal

service logic, which should be hidden from the user

 This is a general problem
 Service interfaces should be able to tell public

entry channels apart from private ones

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/34

Useful model improvement – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/34

This arrangement makes the private
entry channels visible only within the
internal scope of Controller, hence to
Device, which is now a child task of it.
Nothing changes for User.

task body Controller is
task Device; -- nested (child) task
task body Device is
Val : Integer;
procedure Read (I : out Integer) is … ;
begin
loop
Controller.Start; -- child see private
Read(Val);
Controller.Finish(Val); -- ditto
end loop;
end Device;
-- continues in sidebox …

task User;
task Controller is
entry Service (I : out Integer);
private
entry Start;
entry Finish (K : out Integer);
end Controller;

-- … continued
begin -- Controller
loop
accept Service (I : out Integer) do
accept Start;
accept Finish (K : out Integer) do
I := K;
end Completed;
end Service;
end loop;
end Controller;

Embedding entry calls in accepts – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/34

This solution has the defect that the
service provided by Warehouse is
publicly available while they should
be private to Customer_Service.
This defect can be fixed by normal
scope encapsulation.

task Warehouse is
entry Enquiry

(Item : Part_Number;
Units : out Natural);

end Warehouse;

task Customer_Service is
entry Request_Part

(Part_ID : Part_Number;
Quantity : Positive;
Success : out Boolean);

end Customer_Service;

task body Customer_Service is
In_Stock : array (…) of Boolean;
… -- other variables as required

begin
loop
… -- housekeeping
accept Request_Part

(Part_ID : Part_Number;
Quantity : Positive);
Success : out Boolean) do

if In_Stock(Part_ID) >= Quantity then
Success := True;

else
Warehouse.Enquiry(Part_ID, In_Store);
if In_Store > 0 then
… -- get parts from Warehouse
Success := True;

else
Success := False;

end if;
end if;

end Request_Part;
end loop;

end Customer_Service;

Embedding entry calls in accepts – 2

 The service interface exposed by entry Request_Part(…) hides
the internal organization of the service delivery logic

 For this encapsulation to be correct, however, the Warehouse
server should not be visible to User
 This is an important design requirement

 The downside of a “server becoming client” is that its client risks
a much long synchronization wait

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/34

User Customer
Service Warehouse

Enquiry(…)Request_Part(…)

Provided interface Required interface

What if …

 An exception raised during synchronization
causes the rendez-vous to be abandoned and
the exception to propagate to both sides
 The execution incurring exception is on the server

side, but the client suffers it too
 Exceptions that remain unhandled cause the

master of their scope to terminate
 That would be the case for both server and client

 Directing an entry call to a terminated server is a
run-time error and causes an exception to be
raised at the client side

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/34

Limits of the base model

 With the current provisions, a server can only
access calls from one entry queue at a time
 Synchronizing on an entry ties the server to that

service until completion: other entry queues may
have pending calls but they will be ignored …

 Sequential clients (which is the default
condition of threads) can of course only issue
an entry call at a time
 But they will have to wait for as long as it takes for

the server to attend to their call …

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/34

Desirable extensions – 1

 The prime extension requirements are on the
server side
1. To probe multiple entry queues simultaneously
 Very natural of a true server

2. To limit to a bounded duration the wait time on an
empty entry queue
 Equivalent to setting a time-out

3. To abandon a synchronization immediately if the
target entry queue is empty
 Equivalent to a zero-time time-out

4. To terminate automatically when no clients in the
scope of the server are able to make entry calls
 Very desirable for a true server

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/34

Commentaries

 Server-side requirements 1 and 3 directly match
the implications of Dijkstra’s original model of
guarded commands

 Server-side requirements 2 and 4 have a
pragmatic, implementation-oriented flavour,
more than a purely algebraic one
 However, when something abstract has “nice”

properties, it may lose them altogether when we start
“fixing” them to become fit for implementation

 A synchronous communication model with time-outs
may be less convenient than an asynchronous one
 HTTP, born synchronous, is becoming increasingly

asynchronous …

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/34

Actual extensions – 1

 Server-side extension requirement 1
 Rather natural: the server’s interface may publish multiple entry

channels (as we just saw …)
 The default arrangement is that all such services are equally

public and have no functional nesting
 The receive operation must probe all queues simultaneously

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/34

task Server is
entry S1 (…);
entry S2 (…);
end Server;

task body Server is
…
begin
loop
select
accept S1(…) do … end S1;

or
accept S2(…) do … end S2;

end select;
end loop;
end Server;

Actual extensions – 2

 Semantics of extension requirement 1
 When no entry call is enqueued in any of the

server’s queues at the time of evaluation, the
server is put on hold on the select command

 The evaluation occurs simultaneously for all of
the entry queues in the select construct

 When multiple such entry queues are non-empty,
Dijkstra’s model wants the choice among them to
be non-deterministic

 The default queuing policy for entry calls is FIFO

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/34

Actual extensions – 3

 A little refinement of server-side requirement 1
 The entry channels should have Boolean guards to

convey functional pre-requisite for the order with which
entry calls should be considered for service

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/34

select
Guard_1 => accept …;

or
Guard_2 => accept …;

or
…

or
Guard_N => accept …;

end select;

Guards are Boolean expressions of the type
“when <condition>” il
Their evaluating to True enables the select
construct to consider the corresponding entry
channel for service
All guards within a select construct are
evaluated once, simultaneously at the
beginning of that command execution

Actual extensions – 4

 Server-side extension requirements 2 and 3 aim
at setting an upper bound on how long the
server should wait for synchronization to happen
 Requirement 3 wants the server to abandon the wait

immediately if no entry call is in the queue(s)
 Requirement 2 allows for waiting a non-zero time

 The runtime does different things in the two
cases
 When the wait time is non-zero, it must arm

an alarm clock for that duration
 When the wait time is zero, it need not

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/34

Implementing requirements 2 and 3

 The server may want to only consider entry
queues that hold calls at the time of
evaluation, doing other work if none does
 This feature reduces the wastage of busy wait

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/34

select
accept A;
or
accept B;
else
C;
end select;

select
accept A;
or
accept B;
or
delay T;
C;
end select;

The desired effect can be obtained
in two alternative ways

Explicitly
(preferable for
zero wait)

Implicitly
(with zero wait
for T=0.0)

Example of use

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/34

task type Heartbeat_Watchdog (Minimum_Distance : Duration) is
entry All_is_Well;
end Heartbeat_Watchdog;

task body Heartbeat_Watchdog is
Allowable_Latency : constant Duration := …;
begin
loop
select
accept All_is_Well;
… -- client is alive and well

or
delay Allowable_Latency;
… -- heartbeat may have failed, raise alarm

end select;
end loop;
end Heartbeat_Watchdog;

Dijstra’s model of guarded commands applies
to time-bounded alternatives as well.
Omitted guards evaluate to True.

Actual extensions – 5

 A server whose clients be no longer able to
make calls should terminate (requirement 4)
 As clients and servers are realized as active

threads, they go about their life independently
 However, clients must have visibility of their server if

they want to make entry calls to it
 Hence, the scope that encloses the server must also

enclose its clients
 Having the server poll for its clients is not

desirable: a more general solution is required
 Leveraging the runtime’s ability to check the status of

“wildlife” in the same scope as the server

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/34

Implementing requirement 4

 A terminate alternative can be added to the
select construct to signify that the server
should be considered “complete” when
 Its master has completed its execution
 Any other threads that depend on that same master is

either terminated or suspended on a select
command with an open terminate alternative
 Clause 1 ensures that no new client can come into existence

in the master’s scope
 Clause 2 applies transitively and its closure signifies that the

master’s scope is completely inert

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/34

Ramifications

 The termination implied by the implementation of
requirement 4 should be graceful
 This requires introducing the notion of programmable

scope finalization
 Certain extensible abstract types can be made

“finalizable”
 Their definition has an implicit abstract finalize

method that the runtime must invoke when an object
of that type has to cease to exist

 Scope-based programming languages make “leave-
scope” situations (end) explicit

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/34

Example of use (in exercise mode)

 Eratosthenes' sieve: synchronous version
 A recursive-descent algorithm realized as a

nested concurrency program in which each
master-descendant pair interacts by rendez-vous
 Leveraging the default FIFO queuing of entry calls
 Leveraging the atomicity warranted by synchronization

 We want the runtime to detect when the program
should terminate and have it happen gracefully
 We want to observe such gracefulness programmatically

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/34

Observations

 The recursive-descent nature of the algorithm transposes into
hierarchical nesting of threads
 Odd is the root of the hierarchy, subject to the program’s main, which is

its master
 Sieve threads are all dependent, nested as shown

 The depth of recursion in the algorithm is initially unknown
 This needs using a sentinel or the select-with-terminate construct …

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/34

SieveRelay

Odd

Relay

Sieve

Relay
Sieve

Set_Bound

Desirable extensions – 2

 The client-side extension requirements are
less critical: sequential clients cannot make
multiple calls simultaneously
1. To abandon a synchronization immediately if the

target server were not available instantaneously
 Symmetrical to server-side requirement 3

2. To limit to a bounded duration the wait time on
an unattended entry channel
 Symmetrical to server-side requirement 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 30/34

Client-server model

 A server is a reactive
entity capable of
warranting exclusion
synchronization on
access to its internal
state
 Idle until interrogated: no

autonomous action
 Each accept alternative

is a critical section
 The shared state must be

private to the server

University of Padova, Master Degree - Runtimes for concurrency and distribution 31/34

task body Buffer (…) is
… -- the shared state
begin
…
loop
select
when …
accept Put (…) do … end Put;
… -- local housekeeping
or
when …
accept Get (…) do … end Get;
… -- local housekeeping
or
terminate;
end select;
end loop:
end Buffer;

task type Buffer (…) is
entry Put (…);
entry Get (…);
end Buffer;

Bad practice

 In addition to suffering infinite wait, the use of
rendez-vous is also exposed to the risk of
circular-wait deadlock
 Each entry call is tantamount to a critical section

protected by exclusion synchronization

University of Padova, Master Degree - Runtimes for concurrency and distribution 32/34

task T1 is
entry A;
end T1;
…
task body T1 is
begin
T2.B;
accept A;
end T1;

task T2 is
entry B;
end T2;
…
task body T2 is
begin
T1.A;
accept B;
end T1;

Good practice

 Threads should be either active entities,
capable of autonomous independent
execution, or reactive entities, which expose
entry channels for clients to invoke and
synchronous communication with them
 “Pure” servers should accept entry calls but not

make them
 Shared resources should be strictly encapsulated

University of Padova, Master Degree - Runtimes for concurrency and distribution 33/34

Thread states at run time

University of Padova, Master Degree - Runtimes for concurrency and distribution 34/34

RunningChild activation Termination of
dependants

Ready Terminated

Suspended

Enqueued in entry

(Client)

Synchronized Awaiting entry calls

(Server)

With time-out

With time-out

