
Synchronous message passing

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/34

Base model – 1

 Client-server interaction style
 The server publishes the interface of the services that it provides

 Typed entry channels (aka entry queues)
 With associated in-out protocols

 The client makes an entry call naming the target server and the
entry channel of interest
 Providing in parameters as required by the service protocol
 This corresponds to making a “send” call

 To deliver a service, the server must accept the entry call
corresponding to the relevant channel
 This corresponds to making a “receive” call

 Service delivery is synchronous
 The server acts on the service and the client wait synchronously for the

corresponding output

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/34

Base model – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/34

task type Operator is
entry Query (A_Person : in Name;

An_Address : in Address;
A_Number : out Number);

end Operator;
Ann : Operator;

task type User;
task body User is
My_Number : Number;

begin
…
Ann.Query(

“…”, “…”,
My_Number);

…
end User;

task body Operator is
begin

…
loop
accept Query(A_Person : in Name;

An_Address : in Address;
A_Number : out Number) do

…;
end loop;
…

end Operator;

Channel entry protocol

Entry call Service implementation

Base model – 3

 Historically called rendez-vous
 The client and the server meet at either side of an entry

 When the synchronization occurs, the in
parameters flow atomically from client to server
 As in a procedure call, except this is not a procedure call

 The server executes the service actions on the call
parameters, atomically to the client

 At the end of the service execution, the out
parameters flow back from the server to the client

 At that point, the synchronization ends and each
party resumes their respective progress

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/34

Base model – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/34

Server Client 1 Client 2

accept Req(…)
Server.Req(…)

To entry queue

end;

accept Req(…)

Server.Req(…)

end;

Progression of time

Out parameters
To entry queue

From entry queue

Out parameters

Base model – 5

 As in any synchronization, the side that arrives
first at the meeting point, waits for the other
 The server would wait on empty entry queues
 The client would deposit its entry call in the

corresponding entry queue and wait for the call to end
 The default ordering in entry queues is FIFO

 Other queuing policies might be defined
 FIFO ordering warrants fairness, any other ordering is

exposed to the risk of starvation

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/34

Tripartite synchronization – 1

 The rendez-vous model is
 Synchronous for communication
 Asymmetric for naming and interface provisions
 Bidirectional for data flow

 During synchronization, the server is fully
active and may therefore engage in
synchronization with a third party
 This opportunity gives rise to rich forms of

composition

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/34

Tripartite synchronization – 2

 A server has two ways to synchronize with a
third party during service execution
 Embedding an entry call to another server’s channel

while serving its own user request
 Thereby orchestrating a composite service delivery

 Accepting an entry call to another of its channels
 It must be another entry because the current one is locked in

execution of the current service

 The latter feature (nesting accepts) requires
extending the communication model
 We shall discuss it next …

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/34

Nesting entry call accepts – 1

 D is a passive entity, accessed without guarantees of atomicity
 Device implements a state machine for commanding D, whose

transitions are triggered by entry calls being accepted by Controller
 Controller encapsulates the service provided to User and realizes it

by orchestrating its composite service protocol

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/34

User

Device D

Service(…)

Read(…)

Start
Finish(…)

1

2

3

4
Controller

Nesting entry call accepts – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/34

task User;
task Device;
task Controller is
entry Service (I : out Integer);
entry Start;
entry Finish (K : out Integer);
end Controller;

task body User is
…
Controller.Service (Val);
…
end User;

task body Device is
Val : Integer;
procedure Read

(I : out Integer);
begin
loop
Controller.Start;
Read(Val); -- from D
Controller.Finish(Val);

end loop;
end Device;

task body Controller is
begin
loop
accept Service (I : out Integer) do
accept Start;
accept Finish (K : out Integer) do
I := K; -- azione sincronizzata

end Finish;
end Service;

end loop;
end Controller;

①

①
②

③
④

②④

Useful model improvement – 1

 In the example, server Controller exposes all
of its entry channels in its public interface
 Hence, all users in the scope of that interface may

have access to all of Controller’s entries
 Yet, only one of them (i.e., Service) belongs in

Controller’s service interface
 The other two (Start, Finish) belong in the internal

service logic, which should be hidden from the user

 This is a general problem
 Service interfaces should be able to tell public

entry channels apart from private ones

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/34

Useful model improvement – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/34

This arrangement makes the private
entry channels visible only within the
internal scope of Controller, hence to
Device, which is now a child task of it.
Nothing changes for User.

task body Controller is
task Device; -- nested (child) task
task body Device is
Val : Integer;
procedure Read (I : out Integer) is … ;
begin
loop
Controller.Start; -- child see private
Read(Val);
Controller.Finish(Val); -- ditto
end loop;
end Device;
-- continues in sidebox …

task User;
task Controller is
entry Service (I : out Integer);
private
entry Start;
entry Finish (K : out Integer);
end Controller;

-- … continued
begin -- Controller
loop
accept Service (I : out Integer) do
accept Start;
accept Finish (K : out Integer) do
I := K;
end Completed;
end Service;
end loop;
end Controller;

Embedding entry calls in accepts – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/34

This solution has the defect that the
service provided by Warehouse is
publicly available while they should
be private to Customer_Service.
This defect can be fixed by normal
scope encapsulation.

task Warehouse is
entry Enquiry

(Item : Part_Number;
Units : out Natural);

end Warehouse;

task Customer_Service is
entry Request_Part

(Part_ID : Part_Number;
Quantity : Positive;
Success : out Boolean);

end Customer_Service;

task body Customer_Service is
In_Stock : array (…) of Boolean;
… -- other variables as required

begin
loop
… -- housekeeping
accept Request_Part

(Part_ID : Part_Number;
Quantity : Positive);
Success : out Boolean) do

if In_Stock(Part_ID) >= Quantity then
Success := True;

else
Warehouse.Enquiry(Part_ID, In_Store);
if In_Store > 0 then
… -- get parts from Warehouse
Success := True;

else
Success := False;

end if;
end if;

end Request_Part;
end loop;

end Customer_Service;

Embedding entry calls in accepts – 2

 The service interface exposed by entry Request_Part(…) hides
the internal organization of the service delivery logic

 For this encapsulation to be correct, however, the Warehouse
server should not be visible to User
 This is an important design requirement

 The downside of a “server becoming client” is that its client risks
a much long synchronization wait

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/34

User Customer
Service Warehouse

Enquiry(…)Request_Part(…)

Provided interface Required interface

What if …

 An exception raised during synchronization
causes the rendez-vous to be abandoned and
the exception to propagate to both sides
 The execution incurring exception is on the server

side, but the client suffers it too
 Exceptions that remain unhandled cause the

master of their scope to terminate
 That would be the case for both server and client

 Directing an entry call to a terminated server is a
run-time error and causes an exception to be
raised at the client side

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/34

Limits of the base model

 With the current provisions, a server can only
access calls from one entry queue at a time
 Synchronizing on an entry ties the server to that

service until completion: other entry queues may
have pending calls but they will be ignored …

 Sequential clients (which is the default
condition of threads) can of course only issue
an entry call at a time
 But they will have to wait for as long as it takes for

the server to attend to their call …

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/34

Desirable extensions – 1

 The prime extension requirements are on the
server side
1. To probe multiple entry queues simultaneously
 Very natural of a true server

2. To limit to a bounded duration the wait time on an
empty entry queue
 Equivalent to setting a time-out

3. To abandon a synchronization immediately if the
target entry queue is empty
 Equivalent to a zero-time time-out

4. To terminate automatically when no clients in the
scope of the server are able to make entry calls
 Very desirable for a true server

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/34

Commentaries

 Server-side requirements 1 and 3 directly match
the implications of Dijkstra’s original model of
guarded commands

 Server-side requirements 2 and 4 have a
pragmatic, implementation-oriented flavour,
more than a purely algebraic one
 However, when something abstract has “nice”

properties, it may lose them altogether when we start
“fixing” them to become fit for implementation

 A synchronous communication model with time-outs
may be less convenient than an asynchronous one
 HTTP, born synchronous, is becoming increasingly

asynchronous …

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/34

Actual extensions – 1

 Server-side extension requirement 1
 Rather natural: the server’s interface may publish multiple entry

channels (as we just saw …)
 The default arrangement is that all such services are equally

public and have no functional nesting
 The receive operation must probe all queues simultaneously

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/34

task Server is
entry S1 (…);
entry S2 (…);
end Server;

task body Server is
…
begin
loop
select
accept S1(…) do … end S1;

or
accept S2(…) do … end S2;

end select;
end loop;
end Server;

Actual extensions – 2

 Semantics of extension requirement 1
 When no entry call is enqueued in any of the

server’s queues at the time of evaluation, the
server is put on hold on the select command

 The evaluation occurs simultaneously for all of
the entry queues in the select construct

 When multiple such entry queues are non-empty,
Dijkstra’s model wants the choice among them to
be non-deterministic

 The default queuing policy for entry calls is FIFO

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/34

Actual extensions – 3

 A little refinement of server-side requirement 1
 The entry channels should have Boolean guards to

convey functional pre-requisite for the order with which
entry calls should be considered for service

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/34

select
Guard_1 => accept …;

or
Guard_2 => accept …;

or
…

or
Guard_N => accept …;

end select;

Guards are Boolean expressions of the type
“when <condition>” il
Their evaluating to True enables the select
construct to consider the corresponding entry
channel for service
All guards within a select construct are
evaluated once, simultaneously at the
beginning of that command execution

Actual extensions – 4

 Server-side extension requirements 2 and 3 aim
at setting an upper bound on how long the
server should wait for synchronization to happen
 Requirement 3 wants the server to abandon the wait

immediately if no entry call is in the queue(s)
 Requirement 2 allows for waiting a non-zero time

 The runtime does different things in the two
cases
 When the wait time is non-zero, it must arm

an alarm clock for that duration
 When the wait time is zero, it need not

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/34

Implementing requirements 2 and 3

 The server may want to only consider entry
queues that hold calls at the time of
evaluation, doing other work if none does
 This feature reduces the wastage of busy wait

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/34

select
accept A;
or
accept B;
else
C;
end select;

select
accept A;
or
accept B;
or
delay T;
C;
end select;

The desired effect can be obtained
in two alternative ways

Explicitly
(preferable for
zero wait)

Implicitly
(with zero wait
for T=0.0)

Example of use

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/34

task type Heartbeat_Watchdog (Minimum_Distance : Duration) is
entry All_is_Well;
end Heartbeat_Watchdog;

task body Heartbeat_Watchdog is
Allowable_Latency : constant Duration := …;
begin
loop
select
accept All_is_Well;
… -- client is alive and well

or
delay Allowable_Latency;
… -- heartbeat may have failed, raise alarm

end select;
end loop;
end Heartbeat_Watchdog;

Dijstra’s model of guarded commands applies
to time-bounded alternatives as well.
Omitted guards evaluate to True.

Actual extensions – 5

 A server whose clients be no longer able to
make calls should terminate (requirement 4)
 As clients and servers are realized as active

threads, they go about their life independently
 However, clients must have visibility of their server if

they want to make entry calls to it
 Hence, the scope that encloses the server must also

enclose its clients
 Having the server poll for its clients is not

desirable: a more general solution is required
 Leveraging the runtime’s ability to check the status of

“wildlife” in the same scope as the server

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/34

Implementing requirement 4

 A terminate alternative can be added to the
select construct to signify that the server
should be considered “complete” when
 Its master has completed its execution
 Any other threads that depend on that same master is

either terminated or suspended on a select
command with an open terminate alternative
 Clause 1 ensures that no new client can come into existence

in the master’s scope
 Clause 2 applies transitively and its closure signifies that the

master’s scope is completely inert

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/34

Ramifications

 The termination implied by the implementation of
requirement 4 should be graceful
 This requires introducing the notion of programmable

scope finalization
 Certain extensible abstract types can be made

“finalizable”
 Their definition has an implicit abstract finalize

method that the runtime must invoke when an object
of that type has to cease to exist

 Scope-based programming languages make “leave-
scope” situations (end) explicit

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/34

Example of use (in exercise mode)

 Eratosthenes' sieve: synchronous version
 A recursive-descent algorithm realized as a

nested concurrency program in which each
master-descendant pair interacts by rendez-vous
 Leveraging the default FIFO queuing of entry calls
 Leveraging the atomicity warranted by synchronization

 We want the runtime to detect when the program
should terminate and have it happen gracefully
 We want to observe such gracefulness programmatically

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/34

Observations

 The recursive-descent nature of the algorithm transposes into
hierarchical nesting of threads
 Odd is the root of the hierarchy, subject to the program’s main, which is

its master
 Sieve threads are all dependent, nested as shown

 The depth of recursion in the algorithm is initially unknown
 This needs using a sentinel or the select-with-terminate construct …

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/34

SieveRelay

Odd

Relay

Sieve

Relay
Sieve

Set_Bound

Desirable extensions – 2

 The client-side extension requirements are
less critical: sequential clients cannot make
multiple calls simultaneously
1. To abandon a synchronization immediately if the

target server were not available instantaneously
 Symmetrical to server-side requirement 3

2. To limit to a bounded duration the wait time on
an unattended entry channel
 Symmetrical to server-side requirement 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 30/34

Client-server model

 A server is a reactive
entity capable of
warranting exclusion
synchronization on
access to its internal
state
 Idle until interrogated: no

autonomous action
 Each accept alternative

is a critical section
 The shared state must be

private to the server

University of Padova, Master Degree - Runtimes for concurrency and distribution 31/34

task body Buffer (…) is
… -- the shared state
begin
…
loop
select
when …
accept Put (…) do … end Put;
… -- local housekeeping
or
when …
accept Get (…) do … end Get;
… -- local housekeeping
or
terminate;
end select;
end loop:
end Buffer;

task type Buffer (…) is
entry Put (…);
entry Get (…);
end Buffer;

Bad practice

 In addition to suffering infinite wait, the use of
rendez-vous is also exposed to the risk of
circular-wait deadlock
 Each entry call is tantamount to a critical section

protected by exclusion synchronization

University of Padova, Master Degree - Runtimes for concurrency and distribution 32/34

task T1 is
entry A;
end T1;
…
task body T1 is
begin
T2.B;
accept A;
end T1;

task T2 is
entry B;
end T2;
…
task body T2 is
begin
T1.A;
accept B;
end T1;

Good practice

 Threads should be either active entities,
capable of autonomous independent
execution, or reactive entities, which expose
entry channels for clients to invoke and
synchronous communication with them
 “Pure” servers should accept entry calls but not

make them
 Shared resources should be strictly encapsulated

University of Padova, Master Degree - Runtimes for concurrency and distribution 33/34

Thread states at run time

University of Padova, Master Degree - Runtimes for concurrency and distribution 34/34

RunningChild activation Termination of
dependants

Ready Terminated

Suspended

Enqueued in entry

(Client)

Synchronized Awaiting entry calls

(Server)

With time-out

With time-out

