
On monitor-like
asynchronous communication

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/21

Defects of the base model

 Dijkstra’s semaphores are a poor abstraction
 They leave it to the user to decide where the critical

sections are on a point basis
 Without assuming or requiring language support …

 They only address exclusion synchronization
 Their implementation without busy wait requires runtime

support whose cost is greater than its benefit
 The monitor is a useful step forward

 Per Brinch Hansen, “Structured Multiprogramming”, CACM
15(7):574-578 (1972)

 Its key advantage is to unite exclusion synchronization and
avoidance synchronization in a single abstraction
 Unfortunately, it still leaves the programming of condition (event)

variables to the user, yielding an evident vulnerability

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/21

Addressing exclusion synchronization – 1

 Requirements
1. Write access is exclusive to any other operation
2. Read access does not conflict with other reads

 It is opportune to distinguish between R/O and
R/W access

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/21

protected type Shared_Integer (Initial_Value : Integer) is
function Read return Integer;
procedure Write (Value : Integer);

private
The_Integer : Integer := Initial_Value;

end Shared_Integer;

protected body Shared_Integer is
function Read return Integer is
begin
return The_Integer;

end Read;
procedure Write (Value : Integer) is
begin
The_Integer := Value;

end Write;
end Shared_Integer;

Parallel	reads

Exclusive	writes

Addressing exclusion synchronization – 2

 Servers are heavy-weight abstractions
 Appropriate when the collaboration logic is

algorithmically complex and its cost pays off
 Wasteful otherwise

 Protected resources are lighter-weight and
have a much simpler termination semantics
 They simply go out of scope …
 But they are unable to express complex

synchronization logic

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/21

Addressing avoidance synchronization

 Requirements
1. The caller shall be able to synchronize with an event

determined by a (logical) state transition in the
shared resource

 Suspending until that event occurs
2. The runtime shall take care of making suspension,

event notification, and resumption happen
 No direct involvement by the programmer

 The resumption semantics is the most delicate
piece of the puzzle
 We have seen Java’s blunder in addressing it …
 The solution is known as the eggshell model

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/21

The eggshell model – 1

 Protected resource services that associate with
state events are syntactically denoted
 An entry prefixed by a Boolean guard

 This signifies it is other than a procedure or a function
 The Boolean guard represents the condition associated with

the expected logical state of the resource
 Orthogonal to be “free” for exclusive

 On a closed guard, the caller’s request is
enqueued within the resource
 Not outside of it
 This saves resumption from the risk of starvation

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/21

The eggshell model – 2

 Guard evaluation requires
exclusion synchronization
 Relinquishing the lock on a

closed guard enqueues the
call inside the locked region

 On the corresponding event
queue

 State events can only occur
on execution with exclusive
access to the state
 Guards shall be re-evaluated

every time a write-access
operation completes

 Hence potentially also during
guard evaluation

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/21

The	three	layers	of	the	egg

G
Inside

the critical section
(exclusive sync)

Inside
enqueued on closed guard

(avoidance sync)

Example: bounded buffer – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/21

Buffer_Size : constant Positive := 5;
type Index is mod Buffer_Size; -- tipo modulare
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Any_Type;

protected type Bounded_Buffer is
entry Get (Item : out Any_Type);
entry Put (Item : in Any_Type);

private
First : Index := Index'First; -- 0
Last : Index := Index'Last; -- 4
In_Buffer : Count := 0;
Buffer : Buffer_T;

end Bounded_Buffer;

Public interface

Private part

Spec

Example: bounded buffer – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/21

protected body Bounded_Buffer is
entry Get (Item : out Any_Type)

when In_Buffer > 0 is
begin -- first read then move pointer

Item := Buffer(First);
First := First + 1; -- free from overflow
In_Buffer := In_Buffer - 1;

end Get;
entry Put (Item : in Any_Type)

when In_Buffer < Buffer_Size is
begin -- first move pointer then write

Last := Last + 1; -- free from overflow
Buffer(Last) := Item;
In_Buffer := In_Buffer + 1;

end Put;
end Bounded_Buffer;

Guards

The eggshell model – 3

 A PR is under a read lock when one or more
calls are executing a function on it

 A PR is under a write lock when a call is
executing a procedure or an entry
(including guard evaluation) on it

 All conflicting calls are enqueued outside of
the protected resource
 Exclusion queue

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/21

The eggshell model – 4

 Calls owning a write lock on a PR can call
other services of the same PR without having
to exit the eggshell
 Such additional calls are serviced immediately

 Calls with targets outside of the PR that
return to the PR compete for the lock on
access to it
 Very bad idea, exposed to the risk of stalling
 A PR service that needs to call outside of itself

shows poor encapsulation

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/21

Eggshell model evaluation rules – 1

1. When the PR is under read lock, a function call to it gets
immediately executed; goto 8

2. When the PR under read lock, procedure or entry calls to
it are held until the lock is relinquished

3. When the PR is under write lock, all calls to it are held
until the lock is relinquished

4. When the PR is free, a function call sets it in read lock
and executes it; goto 8

5. When the PR is free, procedure or entry calls set it to
write lock, then

a. If the call is to a procedure, it gets executed; goto 6
b. If the call is to an entry, its guard is evaluated, then

i. If the guard is open, the entry gets executed; goto 6
ii. If the guard is closed, the call is enqueued (this is when any select

clause on the call side gets evaluated); goto 6

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/21

Eggshell model evaluation rules – 2

6. Any guard with a nonempty queue that may have
changed since last evaluation, gets re-evaluated

a. If any guard were open, one is selected and its entry is
executed and the corresponding call is dequeued; goto 6

b. Else goto 7
7. If no guard has a nonempty queue, goto 8
8. From all calls enqueued outside of the PR, select either

one that requires write lock or all that require read lock;
goto 4 or 5

a. If no calls are enqueued outside of PR, the protocol ends

 Steps 6-7 are the heart of the eggshell model: they serve
the event queues inside in precedence to outside calls

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/21

Further enhancement

 The number of calls enqueued on an entry queue (in
servers and in protected resources) can be queried
 By‘Count, predefined function attribute of entry
 This is a case of “read-only reflection”, whereby the

program inquires information on a runtime abstraction
 This feature requires call enqueuing to need a write

lock on the protected resource
 Or the channel in servers

 Using ‘Count in a guard expression causes its re-
evaluation every time a write-lock call gets executed
 Runtime overhead versus interesting semantics

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/21

Example: group barriers – 1

 The Nth caller will find the
guard closed, but its
enqueuing will change the
value of ‘Count on that
entry

 This will cause the re-
evaluation of the guard,
which now has become
open

 The 1st call in the queue will
be resumed and will change
the guard value so that it
stays open until the Nth gets
resumed, which will close
the guard

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/21

A group-barrier check that lets 𝑁 ൒ 1 calls at once

protected Guardian is
entry Let_In;
private
Open : Boolean := False;
end Guardian;
protected body Guardian is
entry Let_In
when Let_In’Count = N or Open is

begin
if Let_In’Count = 0 then
Open := False;

else
Open := True;

end if;
end Let_In;
end Guardian;

Example: group barriers – 2

 Group barriers do not encapsulate shared
state, but shield access to it
 They can offer powerful semantics (as in the

example) but leave it to the user to place the calls
in the “right” place

 Homework: modify the logic of the group
barrier so that no more than N callers ever be
simultaneously within the protected space
 Currently, there is no such control

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/21

Precautions of use

 Execution within PR should be rapid
 More than with servers, which are used to realize

more complex service logic
 Execution with exclusion-access rights

should not make potentially blocking calls
 Such calls are those that may cause the caller to

relinquish the CPU synchronously
 If the runtime detects this it raises program error

exception

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/21

Semantics of use

 PR are elaborated when their declaration is
encountered in a declarative region being
processed

 PR are finalized when their master terminates
 Not until there are calls enqueued into it

 Otherwise the calling threads should be terminated
anomalously

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/21

Preferential ordering – 1

 Preferential ordering is useful when servicing certain
calls yields more value than servicing others
 The logic of that policy should be server-side, transparent

to the client
 Otherwise the client would have heavy coupling with it

 Exclusion synchronization alone does not suffice
 Guards are very well fit for it

 Interestingly, protected resources allow realizing
preferential ordering also on access to suspensive entities

 However, such suspension should never occur within
protected operations

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/21

Preferential ordering – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/21

protected body Access_Control is
entry Start_Read when not Writers and
Start_Write’Count = 0 is

begin
Readers := Readers + 1;
end Start_Read;
procedure Stop_Read is
begin
Readers := Readers – 1;
end Stop_Read;
entry Start_Write when not Writers and
Readers = 0 is

begin
Writers := True;
end Start_Write;
procedure Stop_Write is
begin
Writers := False;
end Stop_Write;
end Access_Control;

protected Access_Control is
entry Start_Read;
procedure Stop_Read;
entry Start_Write;
procedure Stop_Write;
private
Readers : Natural:= 0;
Writers : Boolean := False;
end Access_Control;

procedure Read (I : out Item) is
begin
Access_Control.Start_Read;
… -- actual read (suspensive)
Access_Control.Stop_Read;
end Read;

procedure Write(I : in Item) is
begin
Access_Control.Start_Write;
… -- actual write (suspensive)
Access_Control.Stop_Write;
end Write;

Preferential ordering – 3

 The guard to entry Start_Write warrants
exclusive access rights to write operations
 As if they were encapsulated in a protected resource

 The guard to entry Start_Read warrants
preference to writes over reads
 Baseline use case for guards in this regard

 Warning: when a critical section not
encapsulated in a protected resource fails
without returning, the program becomes
erroneous and the runtime cannot help

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/21

