
On the multiple facets of
synchronization

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/17

Evaluating language features – 1

 The features of a programming language
may be evaluated from two angles

 Expressive power
 How close they get to addressing the user needs

 Usability
 How well they do on their own (efficacy) versus

how well they interact with each other (coherence)

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/17

Evaluating language features – 2

 The synchronization constructs are an
important ambit of such evaluation
 Toby Bloom, “Evaluating synchronisation

mechanisms”, 7th ACM Symposium on Operating
System Principles (1979)
https://doi.org/10.1145/800175.806566

 The cited work singles out 6 types of
conditions that may control synchronization
 Over and above exclusion synchronization

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/17

Conditions on synchronization – 1

1. Contingent on the synchronization state
of the resource 
 Number of current users or number of enqueued

calls (‘Count) in relation to the resource multiplicity
2. Contingent on the logical state of the

resource 
 No-write-on-full, no-read-from-empty

3. Contingent on the history of service 
 For fairness, load balance, energy efficiency, …

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/17

Conditions on synchronization – 2

4. Contingent on the type of request
 Preferential treatment for some requests (e.g.,

writes over reads)
5. Contingent on the time of the request 
 Reflected in queuing policies for calls and callers

6. Contingent on the request parameters
 Where serviceability depends on whether the

server can dispense as much as requested
 E.g., as in paging or heap management

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/17

The resource allocation problem – 1

 Recurrent problem in any concurrent system
 It involves all of Toby Bloom’s 6 dimensions

 Our current model is unable to handle it properly

 Example
a) A resource manager dispenses a statically fixed

number of resources 𝑅௝ୀଵ,…,ே

b) A number of concurrent clients ௜ୀଵ,…,ெ may
request any subset of such resources

c) Accepted requests shall be satisfied fully
 (That is: requests cannot return until satisfied)

d) Clients return resources after use

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/17

The resource allocation problem – 2

 Let us analyse the problem specification
 Client interaction with resource manager must be

synchronous
 Wait-until-satisfied (Requirement c)

 Volume of request specified as a parameter
 This is the only plausible interface of the server

 What happens when the server finds itself
unable to satisfy the request being examined
 It cannot return to the caller prematurely

 Hence it must keep that request on hold
 How can it do that while continuing to serve others?

 Serving others allows releases (Requirement d)

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/17

The resource allocation problem – 3

 Do guards help?
 They prevent synchronization when the requested service

cannot be executed
 But guards operate before synchronization takes effect,

hence before the request parameters can be examined
 Hence, guards as we know them, do not help!

 Two alternatives are possible, which both need
enhanced capabilities
1. To allow guards expressions to access request

parameters without engaging synchronization
2. To transfer to another queue the request that presently

cannot be satisfied
 Beginning service but then holding it up until further notice
 Becoming able to serve other pending requests

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/17

Alternative 1

1 resource per request is the
trivial case

𝟏 ൏ 𝒏 ൑ 𝑵 resources per request
is a much harder problem

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/17

protected Controller is
entry Allocate (R : out Resource);
procedure Release (R : Resource);

private
Free : Natural := Full_Capacity;
…

end Controller;
protected body Controller is
entry Allocate (R : out Resource)
when Free > 0 is

begin
Free := Free – 1;
…

end Allocate;
procedure Release (R : Resource) is
begin
Free := Free + 1;

end Release;
end Controller;

type Request is range 1..Max_Requests;
protected Controller is
entry Allocate
(R : out Resource;
Amount : in Request);

procedure Release
(R : Resource;
Amount : Request);

private
Free : Request := Request’Last; …

end Controller;
protected body Controller is
entry Allocate
(R : out Resource;
Amount : in Request)

when Amount <= Free is
begin
Free := Free – Amount;

end Allocate;
procedure Release (…) is …

end Controller;

Critique of alternative 1

 Requests that fail the guard are enqueued in the
corresponding event queue (aka entry queue)

 Applying the eggshell model here would cause
traversing the entire event queue every time a
R/W access to the server state completes
 Seeking any enqueued request that passes the guard
 Untenably costly in the general case

 This solution causes each request to have its
own “state-change event”
 But the entry queue model that we know caters for a

single-condition queue only

University of Padova, Master Degree - Runtimes for concurrency and distribution 10 of 17

Alternative 2 – 1

 Transferring the call to another queue
(requeue) is not a normal procedure call

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/17

C Q

Procedure	call

X.E2
entry body

RequeueC
Entry call

Call	transfer

NO

Call

Return Return

Q.E1
entry body

When Q.E1 calls requeue to X.E2, the call to E1
gets finalized and left; the return to C happens
only after X.E2 completes

Alternative 2 – 2

 A sophisticated feature, with challenging
requirements on the runtime …
 Transferring the call to another queue should not

suspend the server on a closed guard
 Nor it should awake the client during the transfer
 Hence, transfer should occur atomically, without

undergoing guard evaluation at the target queue
 This raises two “feature-interaction” issues

1. Which entry queues can be allowable targets
2. What happens to a time-out set on the call

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/17

Alternative 2 – 3

 Issue 1: allowable targets
 Any entry with a compatible interface, anywhere, even

outside of the server
 The entry interface shall be either identical or with additional

parameters all with default values, or with no parameters

 Implications
 Transferring to a queue in the same server fits the

eggshell model semantics nicely
 In addition to yielding good functional cohesion

 Transferring to an entry queue outside of the server
requires releasing the R/W lock held on it
 Without the eggshell model knowing exactly what to do

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/17

Alternative 2 – 4

Issue 2: handling of time-out

 Two possible outcomes
1) Call B.E1 not accepted

within T1 gets aborted
2) Call B.E1 accepted and

then transferred to B.E2, is
aborted if not accepted
there within T1

 Outcome 2) incurs an
ugly temporal distortion

Example

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/17

-- client A
select
B.E1;
or
delay T1;
end select;

-- server B
select
accept E1 do
… -- T2 time units

requeue E2 with abort;
end E1;
or
…
end select;

The with abort clause preserves
the time-out effect upon call transfer

Use cases – 1

 Appropriate use of the requeue feature helps
realize resource managers quite neatly
 Check the implementation linked to today’s lecture

 Homework
1. Try and improve the given solution in a manner

that avoids useless call transfers
2. Try the same solution with a programming

language of your choice

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/17

Use cases – 2

 A network router may forward inbound packets on to
outbound links

 Link 𝐿ଵ is the preferred choice, but the other links (first 𝐿ଶ
and then 𝐿ଷ) are used when 𝐿ଵ risks overloading

 Likening packets to calls, and router and links to
servers maps packet forwarding to a requeue

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/17

Router
send

entry

𝑳𝟏

𝑳𝟐

𝑳𝟑

send
entry

send

entry

send
entry

Link	1

Link	2

Link	3

Flipped-class exercise

 Realize a circular-line metro service simulator
 train stations along a circular line
 commuters who forever revolve around

one and the same duty cycle
1. Go from home to the nearest train station
2. Board the first possible train
3. Get off the train and go to work (and work as due)
4. Go from work to the nearest train station
5. Board the first possible train
6. Get off the train and go home (and rest as allowed)

 commuter train with capacity (no prebooking)

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/17

