
Distributed concurrency

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/24

Appreciating the cost of abstractions – 1

 Processor context
 The processor registers

 A few tens (16, 32, 48) in the general case
 Thread context

 The processor context
 The stack, their share of heap, the thread descriptor
 Creating and switching threads begins to be costly

 Process context
 The context of all threads
 The virtual-memory page frames assigned to the

process, the corresponding descriptors
 Creating and switching processes is very costly

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/24

Appreciating the cost of abstractions – 2

 Thread-level context switch may be fairly nimble as long as it
does not involve the OS
 The OS gets involved on blocking IO calls or when external events

(interrupts, signals, …) have to be delivered to a thread
 When that happens, the whole process may be blocked

 Threads need not be OS entities
 Several user-space to kernel-space mappings are possible

 Many:1 (old GNU)
multiple user threads to one kernel thread  no thread-level parallelism

 1:1 (old Win, old Linux)
one user thread to one kernel thread  the OS does all the scheduling

 Many:Many (Win NT, Solaris Unix)
multiple user threads dynamically to multiple lightweight processes
(LWP), which can be statically allocated  LWPs may run in parallel

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/24

Appreciating the cost of abstractions – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/24

C.G. Ritson, A.T. Sampson, F.R.M. Barnes, Multicore scheduling for lightweight
communicating processes, Science of Computer Programming 77(6), June 2012,
DOI: 10.1016/j.scico.2011.04.006

(LWP appears as
virtual CPU to a thread)

(thread to LWP mapping
is requested by the user, as
part of thread scheduling)

Appreciating the cost of abstractions – 4

 Server realized as kernel process may
underestimate the cost and the limits of dynamic
thread creation

 Example: the Apache Web Server used to deploy
one thread per connection
 The service capacity of a WS process is upper bounded by

the maximum number of threads that it can embed …
 The cost-benefit ratio of a 1:1 thread-to-connection

mapping depends on the data volume being transported
 Used to be large data volumes for few connections in Web 1.0
 Became tiny data volumes for very many connections in Web 2.0

 Using threads for IO-bound computations is wasteful
 Node.js understands this notion very well …

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/24

Appreciating the cost of abstractions – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/24

http://abdelraoof.com/blog/2015/10/28/understanding-nodejs-event-loop

Client-side concurrency

 Helps mitigate network delays
 Very evidently needed in web browsers

 Starting a TCP connection is a blocking and slow operation
 Requesting data and rendering them are pipelined

 AJAX (Asynchronous JavaScript And XML) came to
be precisely to enable asynchronous page updates

 Google Chrome was the first browser to go
multithreaded (2008), Firefox since v54 (2017)
 Recent Chrome used one kernel process per tab
 Recent Firefox used one kernel process for the first

few (4) tabs, then one thread for any further tab

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/24

Chrome vs Firefox

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/24

www.extremetech.com/internet/250930-firefox-54-finally-supports-multithreading-claims-higher-ram-efficiency-chrome

Server-side concurrency – 1

 For higher throughput and better modularity
 The obvious base architecture is two-level

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/24

Dispatcher

Worker 𝟏

Worker𝑵

Server

Server-side concurrency – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/24

Tanenbaum & Van Steen, Distributed	Systems:	
Principles	and	Paradigms, 2e, (c) 2007
Prentice-Hall, Inc.

TCP hand-off relieves
1st level receiver

Client-side features – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/24

Fat (Thick)-client architectureThin-client architecture

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Client-side features – 2

 Thin clients are fed by application-neutral
communications
 Server side decides all; client side is unable to

mitigate server lapses
 The choice of X11 (X Window System, xorg)

 Fat clients are fed by application-specific
communications
 The client side may have things to do without the

server dictating them
 More responsive for the user, lighter for the server

 How can we classify single-page web apps?

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/24

Server-side organization – 1

 Vertical distribution
 Service provision is split in synchronous stages
 New inbound requests are held until completion of current service
 Full server replication required to improve throughput

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/24

Server-side organization – 2

 Horizontal distribution
 Very fit for idempotent services …

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/24

Server-side organization: microservices

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/24

Microservices in practice

 Key architectural concepts of a Microservice
architecture (WSO2)
 https://wso2.com/whitepapers/microservices-in-

practice-key-architectural-concepts-of-an-msa/
 A reference architecture at WSO2
 https://github.com/wso2/reference-

architecture/blob/master/api-driven-microservice-
architecture.md

 An interesting toy example
 https://github.com/FudanSELab/train-ticket

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/24

Server localization – 1

 Server identified by endpoint at its host node
 IP address : port, object reference}
 A dedicated process must listen on the corresponding

port and then dispatch the call to the associated
server object

 Per-node port assignment is a challenge
 The IANA (Internet Assigned Numbers Authority)

statically assigns some to base common servers
 All others have to resort to dynamic assignment

 A daemon listens on an assigned port and assigns them
dynamically as needed to the servers it handles

 A super-server (e.g, inetd in Linux) listens on a set of “server
ports” and then dynamically hands off to newly-created server

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/24

Server localization – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/24

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Daemon‐based	solution Super‐server	solution

Server state – 1

 Stateful servers warrant state consistency to clients
 All clients sense the same write history

 Transactional DBs are the most prominent exemplar
of that paradigm
 𝒃𝒆𝒈𝒊𝒏 𝑂𝑝ଵ,𝑂𝑝ଶ, … ,𝑂𝑝௡ 𝒄𝒐𝒎𝒎𝒊𝒕
 Atomicity: state change is all-or-nothing
 Consistency: the server state is always the product of

ordered transactions 𝑂𝑝ଵ,𝑂𝑝ଶ, … ,𝑂𝑝௡
 Isolation: concurrent transactions do not overlap
 Durability: the effect of successful transactions persists

 Transactions centralize: they cannot scale

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/24

Server state – 2

 Stateless servers do not inform clients of any
server-side state change

 They also do not retain client-side service state
across connections
 This is what caused cookies to come to use

 NFS was the most prominent exemplar of it
 Client operates locally on virtual inode with write-through

local cache (not coherent across clients)
 Server handles each individual request without memory of

client-side state
 Server-side state may change outside of clients’ knowledge

 Statelessness is crucial to elastic scalability!

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/24

RMI: object servant – 1

 Remote object (server) lives in a scope managed by an
“object servant” that has authority over it
 Servant holds server state and supports a range of activation

policies for it at run time, which determine server’s life cycle
 Create / destroy object (server) reference part of server’s endpoint
 Provide / revoke computational resources for the server

 The activation policies of multiple servants on the same
host node can be factored in an object adapter (OA)
 OA pattern uses interface delegation
 Single per-node receiver of inbound RMI calls to multiple resident

remote objects
 Single per-node registry of object servants
 Single MW-specific interface on one end, multiple object-specific

interface on the other

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/24

RMI: object servant – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/24

Skeleton

Object Adapter 1

Skeleton

Remote
Object C

Remote
Object A

Remote
Object B

Interface

Skeleton

Object Adapter 2

RMI call daemon dispatcherHost node

Object servant

MW-specific interface

Skeleton-specific interface

Network

Interface Interface

RMI: object servant – 3

 The OA must expose a standard interface to
the part of the program’s middleware that
listens to the service endpoint
 Totally independent of the target RMI interface

 The skeleton must expose a standard
interface to the OA that has to deliver
incoming calls to it
 Generic, not specific to the target RMI interface

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/24

CORBA’s Portable Object Adapter

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/24

Pyarali & Schmidt, An Overview of the CORBA Portable Object Adapter

