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Appreciating the cost of abstractions — 1

Processor context
o The processor registers
A few tens (16, 32, 48) in the general case
Thread context
o The processor context
o The stack, their share of heap, the thread descriptor
o Creating and switching threads begins to be costly

Process context

o The context of all threads

o The virtual-memory page frames assigned to the
process, the corresponding descriptors

o Creating and switching processes is very costly
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Appreciating the cost of abstractions — 2

Thread-level context switch may be fairly nimble as long as it
does not involve the OS

o The OS gets involved on blocking 10 calls or when external events
(interrupts, signals, ...) have to be delivered to a thread

o When that happens, the whole process may be blocked
Threads need not be OS entities

Several user-space to kernel-space mappings are possible

o Many:1 (old GNU)
multiple user threads to one kernel thread - no thread-level parallelism

o 1:1 (old Win, old Linux)
one user thread to one kernel thread - the OS does all the scheduling

o Many:Many (Win NT, Solaris Unix)
multiple user threads dynamically to multiple lightweight processes
(LWP), which can be statically allocated - LWPs may run in parallel
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‘ Appreciating the cost of abstractions — 3
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C.G. Ritson, A.T. Sampson, F.R.M. Barnes, Multicore scheduling for lightweight

communicating processes, Science of Computer Programming 77(6), June 2012,
DOI: 10.1016/j.5€ic0.2011.04.006
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Appreciating the cost ot abstractions — 4

Server realized as kernel process may
underestimate the cost and the limits of dynamic
thread creation

Example: the Apache Web Server used to deploy
one thread per connection

o The service capacity of a WS process is upper bounded by
the maximum number of threads that it can embed ...

o The cost-benefit ratio of a 1:1 thread-to-connection
mapping depends on the data volume being transported

Used to be large data volumes for few connections in Web 1.0
Became tiny data volumes for very many connections in Web 2.0

Using threads for |O-bound computations is wasteful
o Node.js understands this notion very well ...
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Appreciating the cost of abstractions — 5

http://abdelraoof.com/blog/2015/10/28 /understanding-nodejs-event-loop
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Client-side concurrency

Helps mitigate network delays

o Very evidently needed in web browsers
Starting a TCP connection is a blocking and slow operation
Requesting data and rendering them are pipelined

o AJAX (Asynchronous JavaScript And XML) came to
be precisely to enable asynchronous page updates

Google Chrome was the first browser to go
multithreaded (2008), Firefox since v54 (2017)

o Recent Chrome used one kernel process per tab

o Recent Firefox used one kernel process for the first
few (4) tabs, then one thread for any further tab
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‘ Chrome vs Firefox
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www.extremetech.com/internet/250930-firefox-54-finally-supports-multithreading-claims-higher-ram-efficiency-chrome
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Server-side concurrency — 1

= For higher throughput and better modularity
= The obvious base architecture is two-level

Dispatcher
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Server-side concurrency — 2
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Client-side features — 1
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Client-side features — 2

Thin clients are fed by application-neutral
communications

o Server side decides all; client side is unable to
mitigate server lapses

o The choice of X11 (X Window System, xorg)

Fat clients are fed by application-specific
communications

o The client side may have things to do without the
server dictating them

o More responsive for the user, lighter for the server
How can we classify single-page web apps?
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Server-side organization — 1

Vertical distribution

o Service provision is split in synchronous stages
o New inbound requests are held until completion of current service
o Full server replication required to improve throughput
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Server-side organization — 2

Horizontal distribution

o Very fit for idempotent services ...
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Server-side organization: microservices

In Pursuit of Architectural Agility: Experimenting with Microservices

Published in: 2018 IEEE International Conference on Services Computing (SCC)

Date of Conference: 2-7 July 2018 INSPEC Accession Number: 18076512

Date Added to IEEE Xplore: 06 September 2018  DOI: 10.1109/SCC.2018.00022

» ISBN Information: Publisher: IEEE
Electronic ISSN: 2474-2473 Conference Location: San Francisco, CA, USA
W . 1 Em I[I. THE MICROSERVICES APPROACH: A SHORT RECAP
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cation Program Interface (API) outside of their codebase (a
central trait of their specific composition style), which the
user invokes using asynchronous (crucial to loose coupling)
web-based service requests (key to reachability).

A microservice is understood as a small self-contained
application that has a single responsibility, a lightweight
stack, and can be deployed, scaled and tested independently
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Microservices in practice

= Key architectural concepts of a Microservice
architecture (WS02)

o https://wso2.com/whitepapers/microservices-in-
practice-key-architectural-concepts-of-an-msa/

= A reference architecture at WSQO2

Q

= An interesting toy example

Q
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Server localization — 1

Server identified by endpoint at its host node
o {IP address : port, object reference}

o A dedicated process must listen on the corresponding
port and then dispatch the call to the associated
server object

Per-node port assignment is a challenge

o The IANA (Internet Assigned Numbers Authority)
statically assigns some to base common servers
o All others have to resort to dynamic assignment

A daemon listens on an assigned port and assigns them
dynamically as needed to the servers it handles

A super-server (e.g, inetd in Linux) listens on a set of “server
ports” and then dynamically hands off to newly-created server
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Server localization — 2
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Server state — 1

Stateful servers warrant state consistency to clients
o All clients sense the same write history

Transactional DBs are the most prominent exemplar
of that paradigm

o begin (Opq, Op,, ..., Op,) commit
o Atomicity: state change is all-or-nothing

o Consistency: the server state is always the product of
ordered transactions (Op,, Op,, ..., Op,)

o Isolation: concurrent transactions do not overlap
o Durability: the effect of successful transactions persists

Transactions centralize: they cannot scale
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Server state — 2

Stateless servers do not inform clients of any
server-side state change

They also do not retain client-side service state
across connections
o This is what caused cookies to come to use

NFS was the most prominent exemplar of it

o Client operates locally on virtual inode with write-through
local cache (not coherent across clients)

o Server handles each individual request without memory of
client-side state

o Server-side state may change outside of clients’ knowledge
Statelessness is crucial to elastic scalability!
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RMI: object servant — 1

Remote object (server) lives in a scope managed by an
“object servant’ that has authority over it

o Servant holds server state and supports a range of activation
policies for it at run time, which determine server’s life cycle

Create / destroy object (server) reference part of server’s endpoint
Provide / revoke computational resources for the server

The activation policies of multiple servants on the same
host node can be factored in an object adapter (OA)
o OA pattern uses interface delegation

o Single per-node receiver of inbound RMI calls to multiple resident
remote objects

o Single per-node registry of object servants

o Single MW-specific interface on one end, multiple object-specific
interface on the other
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‘ RMI: object servant — 2
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RMI: object servant — 3

The OA must expose a standard interface to
the part of the program’s middleware that
listens to the service endpoint

o Totally independent of the target RMI interface

The skeleton must expose a standard
interface to the OA that has to deliver
incoming calls to it

o Generic, not specific to the target RMI interface
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CORBA’s Portable Object Adapter
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Pyarali & Schmidt, An Overview of the CORBA Portable Object Adapter
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