Distributed concurrency

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/24

Appreciating the cost of abstractions — 1

Processor context
o The processor registers
A few tens (16, 32, 48) in the general case
Thread context
o The processor context
o The stack, their share of heap, the thread descriptor
o Creating and switching threads begins to be costly

Process context

o The context of all threads

o The virtual-memory page frames assigned to the
process, the corresponding descriptors

o Creating and switching processes is very costly

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/24

Appreciating the cost of abstractions — 2

Thread-level context switch may be fairly nimble as long as it
does not involve the OS

o The OS gets involved on blocking 10 calls or when external events
(interrupts, signals, ...) have to be delivered to a thread

o When that happens, the whole process may be blocked
Threads need not be OS entities

Several user-space to kernel-space mappings are possible

o Many:1 (old GNU)
multiple user threads to one kernel thread - no thread-level parallelism

o 1:1 (old Win, old Linux)
one user thread to one kernel thread - the OS does all the scheduling

o Many:Many (Win NT, Solaris Unix)
multiple user threads dynamically to multiple lightweight processes
(LWP), which can be statically allocated - LWPs may run in parallel

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/24

‘ Appreciating the cost of abstractions — 3

(Thread state

User space <

a < ' ' &« Ihread
. , (thread to LWP mapping
\ N / is requested by the user, as
N ! part of thread scheduling)
\\ /
el
S L < Lightweight process
Kernel space
(LWP appears as

_ virtual CPU to a thread)
LWP executing a thread

C.G. Ritson, A.T. Sampson, F.R.M. Barnes, Multicore scheduling for lightweight

communicating processes, Science of Computer Programming 77(6), June 2012,
DOI: 10.1016/j.5€ic0.2011.04.006

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/24

Appreciating the cost ot abstractions — 4

Server realized as kernel process may
underestimate the cost and the limits of dynamic
thread creation

Example: the Apache Web Server used to deploy
one thread per connection

o The service capacity of a WS process is upper bounded by
the maximum number of threads that it can embed ...

o The cost-benefit ratio of a 1:1 thread-to-connection
mapping depends on the data volume being transported

Used to be large data volumes for few connections in Web 1.0
Became tiny data volumes for very many connections in Web 2.0

Using threads for |O-bound computations is wasteful
o Node.js understands this notion very well ...

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/24

Appreciating the cost of abstractions — 5

http://abdelraoof.com/blog/2015/10/28 /understanding-nodejs-event-loop

University of Padova, Master Degree - Runtimes for concurrency and distribution

Client-side concurrency

Helps mitigate network delays

o Very evidently needed in web browsers
Starting a TCP connection is a blocking and slow operation
Requesting data and rendering them are pipelined

o AJAX (Asynchronous JavaScript And XML) came to
be precisely to enable asynchronous page updates

Google Chrome was the first browser to go
multithreaded (2008), Firefox since v54 (2017)

o Recent Chrome used one kernel process per tab

o Recent Firefox used one kernel process for the first
few (4) tabs, then one thread for any further tab

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/24

‘ Chrome vs Firefox

BROWSER ARCHITEGTURE

A [;-I-_ﬂ :_,,[ﬂ :-_-]%
©:©: ©®: @9
EHEHEHER
IS

TEINE I I 1

GONTENT GONTENT GONTENT GONTENT

MULTI-PROCESS « Multiple processes
WEB BROWSER « Many threads per process

LEGEND @ Aowiication &y Process Thiead

www.extremetech.com/internet/250930-firefox-54-finally-supports-multithreading-claims-higher-ram-efficiency-chrome

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/24

Server-side concurrency — 1

= For higher throughput and better modularity
= The obvious base architecture is two-level

Dispatcher

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/24

Server-side concurrency — 2

Logical switch Application/compute servers Distributed
(possibly multiple) file/database
system

I

Dispatched
request /

Client requests

-
F

\

!

/

TCP hand-off relieves

First tier Second tier Third tier 1stlevel receiver

Logically a
single TCP Response Server

connection
Tanenbaum & Van Steen, Distributed Systems:
Principles arlzld Paradigms, 2e, (c) 2007 Request
Prentice-Hall, Inc. Client » Switch | (handed off)

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/24

Client-side features — 1

Client machine Server machine Client machine Server machine
Appl.) Appl. Application |« » Application
| H Application- | L H i Application- i
—A— | independent | —A : specific A
Middleware | protocol | Middleware Middleware | protocol | Middleware
Local 0S Local 0S Local 0S Local 0S

T:. Essmmmnm .T

Network

Thin-client architecture

T:. ssmssmasamas J__

Network

Fat (Thick)-client architecture

University of Padova, Master Degree - Runtimes for concurrency and distribution

11/24

Client-side features — 2

Thin clients are fed by application-neutral
communications

o Server side decides all; client side is unable to
mitigate server lapses

o The choice of X11 (X Window System, xorg)

Fat clients are fed by application-specific
communications

o The client side may have things to do without the
server dictating them

o More responsive for the user, lighter for the server
How can we classify single-page web apps?

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/24

Server-side organization — 1

Vertical distribution

o Service provision is split in synchronous stages
o New inbound requests are held until completion of current service
o Full server replication required to improve throughput

User interface Wait for result
(presentation) LT TTTTTTTTTTTTITTII I

Request
operation

Return

result
Wait for data

Application
server

Return data

Database
server

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/24

Server-side organization — 2

Horizontal distribution

o Very fit for idempotent services ...

——— Disks

Front end

handling

Incoming Replicated Web servers each

requests containing the same Web pages
Requests | e | | &3 | | =
handled in 1 = M =
round-robin “~ S= =

‘ fashion ‘ ‘ ‘
—~

k\—/ﬂxf/

University of Padova, Master Degree - Runtimes for concurrency and distribution

14/24

Server-side organization: microservices

In Pursuit of Architectural Agility: Experimenting with Microservices

Published in: 2018 IEEE International Conference on Services Computing (SCC)

Date of Conference: 2-7 July 2018 INSPEC Accession Number: 18076512

Date Added to IEEE Xplore: 06 September 2018 DOI: 10.1109/SCC.2018.00022

» ISBN Information: Publisher: IEEE
Electronic ISSN: 2474-2473 Conference Location: San Francisco, CA, USA
W . 1 Em I[I. THE MICROSERVICES APPROACH: A SHORT RECAP
- Web technologies — D Web E
- Single-page Application o e . . .
The term “microservices™ designates an architectural style
HTTP . AJAXH HWebSc»cket - WAMP that yields a single application from the coordination of a
AP A [S e suite of unitary services [5]. Such services expose an Appli-
Mediator Gateway Pub/Sub

I

- Containers

- Containers Orchestration
- Web Server

-REST

IdY
183y

croservice 1
n‘de kubernetes
@.

ssfreplication middieware

Database acce:

-NoSQL DBMS ~—
mongoDB =

—
=

openstack

cation Program Interface (API) outside of their codebase (a
central trait of their specific composition style), which the
user invokes using asynchronous (crucial to loose coupling)
web-based service requests (key to reachability).

A microservice is understood as a small self-contained
application that has a single responsibility, a lightweight
stack, and can be deployed, scaled and tested independently

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/24

Microservices in practice

= Key architectural concepts of a Microservice
architecture (WS02)

o https://wso2.com/whitepapers/microservices-in-
practice-key-architectural-concepts-of-an-msa/

= A reference architecture at WSQO2

Q

= An interesting toy example

Q

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/24

Server localization — 1

Server identified by endpoint at its host node
o {IP address : port, object reference}

o A dedicated process must listen on the corresponding
port and then dispatch the call to the associated
server object

Per-node port assignment is a challenge

o The IANA (Internet Assigned Numbers Authority)
statically assigns some to base common servers
o All others have to resort to dynamic assignment

A daemon listens on an assigned port and assigns them
dynamically as needed to the servers it handles

A super-server (e.g, inetd in Linux) listens on a set of “server
ports” and then dynamically hands off to newly-created server

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/24

Server localization — 2

Client machine

Client

/[A

f, Ask for

Server machine
. Rew Register
N Sene >9“d poit
endpoit ||Deemon | [NENEOM
table

Daemon-based solution

Client machine

Server machine

Client

[A

2. Continue

Actual
Server

University of Padova, Master Degree - Runtimes for concurrency and distribution

I~

1. Request

Service

Super-
Server

1

Super-server solution

Create
server for
requested
Service

18/24

Server state — 1

Stateful servers warrant state consistency to clients
o All clients sense the same write history

Transactional DBs are the most prominent exemplar
of that paradigm

o begin (Opq, Op,, ..., Op,) commit
o Atomicity: state change is all-or-nothing

o Consistency: the server state is always the product of
ordered transactions (Op,, Op,, ..., Op,)

o Isolation: concurrent transactions do not overlap
o Durability: the effect of successful transactions persists

Transactions centralize: they cannot scale

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/24

Server state — 2

Stateless servers do not inform clients of any
server-side state change

They also do not retain client-side service state
across connections
o This is what caused cookies to come to use

NFS was the most prominent exemplar of it

o Client operates locally on virtual inode with write-through
local cache (not coherent across clients)

o Server handles each individual request without memory of
client-side state

o Server-side state may change outside of clients’ knowledge
Statelessness is crucial to elastic scalability!

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/24

RMI: object servant — 1

Remote object (server) lives in a scope managed by an
“object servant’ that has authority over it

o Servant holds server state and supports a range of activation
policies for it at run time, which determine server’s life cycle

Create / destroy object (server) reference part of server’s endpoint
Provide / revoke computational resources for the server

The activation policies of multiple servants on the same
host node can be factored in an object adapter (OA)
o OA pattern uses interface delegation

o Single per-node receiver of inbound RMI calls to multiple resident
remote objects

o Single per-node registry of object servants

o Single MW-specific interface on one end, multiple object-specific
interface on the other

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/24

‘ RMI: object servant — 2

Object servant

Remote Remote Remote
Object C Object A Object B

Interface Interface Interface

Skeleton Skeleton

[

=

SkeIeton-specifiE"'in.t,grface

Object Adapter 1 Object Adapter 2

MW-specific interface o

Host node RMI call daemon dispatcher Network

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/24

RMI: object servant — 3

The OA must expose a standard interface to
the part of the program’s middleware that
listens to the service endpoint

o Totally independent of the target RMI interface

The skeleton must expose a standard
interface to the OA that has to deliver
incoming calls to it

o Generic, not specific to the target RMI interface

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/24

CORBA’s Portable Object Adapter

" POA A)

/ SERVANT

default servant [

4 v Active Object Map P SERVANT

N R ObjectId O |

i S ObjectId OFT—F— o,

; TS ObjectId O » SERVANT

; 1 Objectld O+ 1~
’ AN _4

RootPOA }-------- > ™ Adapter
POA B . ¥| Activator

Active Object Map

adapter activator [

- Servant
e /p | servant | _1--"%| Activator
/ activator
SERVANT Active Object Map | __» SERVANT
ObjectId O |
ObjectId O o SERVANT
Legend L Objectild o‘j\... SERVANT
Object reference "' i .
-------- . ' Servant
Pointer ; ‘ Locator
. I
User defined P a----"" POA C .-~
objece POA Manager servant

locator
Pyarali & Schmidt, An Overview of the CORBA Portable Object Adapter

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/24

