
Distributed synchronization

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/20

Understanding system state – 1

 The global state of a distributed system is
comprised of two distinct parts
 Selected elements of local states
 All inter-node messages currently in flight

 Knowing the global state helps coordinator
agents
 To detect the presence vs absence of activity

 No in-flight messages suggest lack of global activity
 To diagnose the causes of absence of activity

 Normal termination vs abnormal stall

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/20

Understanding system state – 2

 Global state is captured with a distributed snapshot (pun
intended) that provides a consistent representation of a
“true” global state
 Capable of causing progress that conforms with system spec

 It is a causal notion, not an instantaneous-time concept
 Which is cannot be without shared memory !
 A local state in node B that includes the reception of a message

not sent in the sender’s local state in node A is not consistent
 It is realised as a “cut” in the temporal succession of all

individual local states
 It tells what falls in the global state and what does not
 It does not require the use of a global-time line

 Because in general it cannot assume there can be one …

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/20

Understanding system state – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/20

Within the state Outside of it

K.	Chandy,	L.	Lamport
Distributed	Snapshots:	Determining	Global	States	of	Distributed	Systems
ACM	Transactions	on	Computer	Systems,	3(1):63‐75,	1985

Understanding system state – 4

 Building a consistent cut requires telling apart
 Inconsistent messages

 Sent by node S after the latest local checkpoint, but received by
node R before the latest local checkpoint
 A distortion of causality consequent to lack of instantaneity
 “Relevant“ local checkpoint belongs in the distributed snapshot of interest

 Restoring the system from that inconsistent-cut state would
cause S to re-send that message, outside of specification
 Harmful unless R’s action on reception was idempotent …

 In-flight messages
 Those sent by S before the latest local checkpoint, whose arrival

is not recorded in the latest local checkpoint at R

 A distributed snapshot contains no inconsistent messages

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/20

Taking a distributed snapshot – 1

 System is comprised of nodes connected by
point-to-point channels in an overlay network
 All nodes reachable in a finite number of hops
 Every node is a multi-threaded process

 Any node may initiate a distributed snapshot
 No coordination required

 Snapshots are permissionless and may run in parallel
 Initiator saves local state and sends a marker

down all of its outbound channels
 The marker identifies initiator and current snapshot

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/20

Taking a distributed snapshot – 2

 A node that receives a start-of-snapshot marker
 Stores local state (if not saved already), suspends

local work, forwards marker down all of its outbound
channels
 Remember: multiple snapshots may run in parallel

 Saves locally all in-flight messages that are hopping to
their destination
 Not forwarding them helps create quiescence

 Until it receives relevant end-of-snapshot marker
 Which it forwards to its successor nodes
 And posts its complete local state onto a designated global

place, with “finished” notification to initiator

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/20

Taking a distributed snapshot – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/20

Why does this algorithm always produce a consistent cut?

Start-of-snapshot marker

End-of-snapshot marker

Use case: synchronized termination

 The system topology yields directed reachable
graphs rooted in all “initiator” nodes
 Minimum baseline is a single directed graph for one initiator

 Node Q that receives “start-termination” marker
from node M
 Forwards 𝜇 down all of its outbound channels
 Makes its own logical local shutdown
 Awaits “finished” messages from all of its successor nodes
 Sends M a “finished” message when that happens as long

as Q has not seen further in-flight messages meanwhile
 Otherwise Q sends M a “continued” message and M may retry

 The global effect of M’s quest occurs when receiving
“finished” messages from all of its successor nodes

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/20

Demo implementation in Ada

 Whole system simulated as a single concurrent program
 Each node is pair of nested tasks

 Parent handles inbound messages
 Child sends work messages down outbound channels

 Communication channels are unidirectional
 Implemented with entries

 Topology is a directed reachable graph rooted in node 1
 At a given point, node 1 sends termination marker out

 Nodes that receive marker start recording their local state and
then instigate local termination

 Graceful termination happens across nodes as
 Node’s child task ends when local state has been recorded
 Node’s parent task “accepts termination” when no sender is left

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/20

Leader election

 Having a leader simplifies distributed algorithms
 But leader must be there when needed
 It needs to be elected anew if lost or unreachable …

 Leader election requires distributed consensus
 Election algorithm must assure termination with

majoritarian agreement
 Prerequisites

 A unique fully-ordered ID per node
 Every node knows the ID of all other nodes

 Dynamically arriving or leaving participants complicate the
problem a lot

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/20

Leader election: the bully algorithm – 1

 A node P that does not know the leader calls an
election
 Resuming after halt or skipping leader’s heartbeats

 P sends an “Election” message to all nodes with
higher ID
 On receiving “Election” message from sender with lower

ID, node Q responds “My job”, and initiates new election
 On receiving “My job” reply, sender quiets itself

 If no node replies, the sender becomes the leader
 The new leader node begins to notify the other nodes

 Leader is always the node with ID greater than all
currently alive and reachable nodes

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/20

Leader election: the bully algorithm – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/20

The consensus problem – 1

 Partitioning responsibilities and data helps scale on
the Y and Z axes of the scalability cube
 Exam theme #1: explore scalability challenges and

solutions in a chosen distributed application or service
 But also makes assuring state consistency a much

harder problem …
 Erroneous views may start circulating: how can they be

prevented and rectified
 Solutions are needed that assure consistency of

system status (and output)
 Singling out one value strictly among those that participants

actually proposed
 No self-generated proposals, no pretended notifications

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/20

The consensus problem – 2

 A most famous and influential solution to this
problem, nicked “Paxos”, can be traced to
 L. Lamport, The part-time parliament, ACM TOCS

16(2), 1998, doi: 10.1145/279227.279229
 Exam theme #2: apply Paxos or its variant Raft1

to a real-world PoC problem of your choice

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/20

1: https://raft.github.io/

Distributed access control – 1

 Centralized solution: easy but fragile
 A leader is assumed, which receives all access requests

for any shared resource anywhere
 Node P requesting access to resource R sends “May I?”

message to leader
 If resource is free, leader responds “Granted”

 Else it responds “Denied” and stores request in FIFO queue
 Receiver node holds

 On relinquishing R, node Q sends “Released” message to
leader
 Leader sends “Granted” to node whose request is head of queue

 Coordinator is single point of failure and
bottleneck

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/20

Distributed access control – 2

 Distributed solution
 Node P seeking access to resource R sends message 𝜇 𝜌,𝑃,𝑅, 𝑐

to all other nodes, with 𝑐 timestamp at P
 Node Q receiving 𝜇

 If not interested in R, replies “OK”
 If holding R, it does not reply, adding 𝜇 to local wait queue for R

 On relinquishing R, it sends “OK” to all nodes with requests in queue
 If it requested access to R with 𝜇 𝜌,𝑄,𝑅, 𝑐 without being granted it yet, it

checks 𝑐 against 𝑐
 It replies “OK” if 𝐶 𝐶

 Node P grabs R only after receiving “OK” from all other nodes
 Every node is one single point of failure

 Protocol traffic increases considerably
 Decision on timestamps requires some degree of ordering

 L. Lamport, Time, clocks, and the ordering of events in a distributed
system, CACM 21(7), 1978, doi: 10.1145/359545.359563

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/20

Distributed access control – 3

 Another distributed solution
 Nodes are ordered in a ring topology

 A circulating token grants exclusive access to single shared
resource

 Node 0 generates token and starts circulating it
 Node receiving token may grab resource, then it must pass

token along to successor on ring
 Node receiving token acknowledges to predecessor

 Ring bypasses node that fails to acknowledge
 Worst-case wait time is one full round of the ring

 Token is single point of failure
 Lost token must be generated anew

 When a node does not “see” it within bounded time

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/20

Distributed access control: comparison

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/20

Variant #	Messages	between	
request	and	release	

Worst‐case	overhead	for	
message	sending SPoFs

Centralized
3	

(ENTER, GRANTED,
RELEASED)

2
(ENTER, GRANTED) Coordinator

Distributed 2	(n	– 1)
(GRANT?, RELEASED) 2	(n	– 1) Any	node	

Token	ring
1	..

(worst case when
no node wants access)

0	..	n	– 1
(worst case when token
must make a full round)

Token

Excluded topic of particular interest

 Distributed transactions (two-phase commit) are costly
 They may cause heavy bottlenecks and massive decrease of throughout, hence

scarce availability
 Their model is known as strict consistency
 Exam theme #4: explore the rationale of the saga pattern for microservice

architectures, and the challenges of adopting it for real
 Interesting initial reads

 https://microservices.io/patterns/data/saga.html
 https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

 Eventual consistency is a an attractive alternative
 Much better availability, when users can afford uncertainty
 The paradigm of choice for NoSQL databases
 Exam theme #3: study where and how eventual consistency is used, and make a

critique of it
 Interesting initial reads

 https://www.oracle.com/technetwork/consistency-explained-1659908.pdf
 https://medium.com/swlh/handling-eventual-consistency-11324324aec4

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/20

