
Distributed synchronization

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of  Padova, Master Degree - Runtimes for concurrency and distribution 1/20



Understanding system state – 1

 The global state of a distributed system is 
comprised of two distinct parts
 Selected elements of local states
 All inter-node messages currently in flight

 Knowing the global state helps coordinator 
agents
 To detect the presence vs absence of activity

 No in-flight messages suggest lack of global activity 
 To diagnose the causes of absence of activity

 Normal termination vs abnormal stall

University of  Padova, Master Degree - Runtimes for concurrency and distribution 2/20



Understanding system state – 2

 Global state is captured with a distributed snapshot (pun 
intended ) that provides a consistent representation of a
“true” global state
 Capable of causing progress that conforms with system spec

 It is a causal notion, not an instantaneous-time concept
 Which is cannot be without shared memory !
 A local state in node B that includes the reception of a message 

not sent in the sender’s local state in node A is not consistent
 It is realised as a “cut” in the temporal succession of all 

individual local states
 It tells what falls in the global state and what does not
 It does not require the use of a global-time line

 Because in general it cannot assume there can be one …

University of  Padova, Master Degree - Runtimes for concurrency and distribution 3/20



Understanding system state – 3

University of  Padova, Master Degree - Runtimes for concurrency and distribution 4/20

Within the state Outside of it

K.	Chandy,	L.	Lamport
Distributed	Snapshots:	Determining	Global	States	of	Distributed	Systems
ACM	Transactions	on	Computer	Systems,	3(1):63‐75,	1985



Understanding system state – 4

 Building a consistent cut requires telling apart
 Inconsistent messages

 Sent by node S after the latest local checkpoint, but received by 
node R before the latest local checkpoint
 A distortion of causality consequent to lack of instantaneity
 “Relevant“ local checkpoint belongs in the distributed snapshot of interest

 Restoring the system from that inconsistent-cut state would 
cause S to re-send that message, outside of specification
 Harmful unless R’s action on reception was idempotent …

 In-flight messages
 Those sent by S before the latest local checkpoint, whose arrival 

is not recorded in the latest local checkpoint at R

 A distributed snapshot contains no inconsistent messages

University of  Padova, Master Degree - Runtimes for concurrency and distribution 5/20



Taking a distributed snapshot – 1

 System is comprised of nodes connected by 
point-to-point channels in an overlay network
 All nodes reachable in a finite number of hops
 Every node is a multi-threaded process

 Any node may initiate a distributed snapshot
 No coordination required 

 Snapshots are permissionless and may run in parallel
 Initiator saves local state and sends a marker 

down all of its outbound channels
 The marker identifies initiator and current snapshot

University of  Padova, Master Degree - Runtimes for concurrency and distribution 6/20



Taking a distributed snapshot – 2

 A node that receives a start-of-snapshot marker 
 Stores local state (if not saved already), suspends 

local work, forwards marker down all of its outbound 
channels
 Remember: multiple snapshots may run in parallel

 Saves locally all in-flight messages that are hopping to 
their destination
 Not forwarding them helps create quiescence

 Until it receives relevant end-of-snapshot marker
 Which it forwards to its successor nodes 
 And posts its complete local state onto a designated global 

place, with “finished” notification to initiator 

University of  Padova, Master Degree - Runtimes for concurrency and distribution 7/20



Taking a distributed snapshot – 3

University of  Padova, Master Degree - Runtimes for concurrency and distribution 8/20

Why does this algorithm always produce a consistent cut?

Start-of-snapshot marker

End-of-snapshot marker



Use case: synchronized termination

 The system topology yields directed reachable 
graphs rooted in all “initiator” nodes
 Minimum baseline is a single directed graph for one initiator 

 Node Q that receives “start-termination” marker 
from node M
 Forwards 𝜇 down all of its outbound channels
 Makes its own logical local shutdown
 Awaits “finished” messages from all of its successor nodes
 Sends M a “finished” message when that happens as long 

as Q has not seen further in-flight messages meanwhile
 Otherwise Q sends M a “continued” message and M may retry

 The global effect of M’s quest occurs when receiving 
“finished” messages from all of its successor nodes

University of  Padova, Master Degree - Runtimes for concurrency and distribution 9/20



Demo implementation in Ada

 Whole system simulated as a single concurrent program
 Each node is pair of nested tasks

 Parent handles inbound messages
 Child sends work messages down outbound channels

 Communication channels are unidirectional
 Implemented with entries

 Topology is a directed reachable graph rooted in node 1
 At a given point, node 1 sends termination marker out

 Nodes that receive marker start recording their local state and 
then instigate local termination 

 Graceful termination happens across nodes as
 Node’s child task ends when local state has been recorded
 Node’s parent task “accepts termination” when no sender is left 

University of  Padova, Master Degree - Runtimes for concurrency and distribution 10/20



Leader election

 Having a leader simplifies distributed algorithms
 But leader must be there when needed
 It needs to be elected anew if lost or unreachable …

 Leader election requires distributed consensus
 Election algorithm must assure termination with 

majoritarian agreement
 Prerequisites

 A unique fully-ordered ID per node
 Every node knows the ID of all other nodes

 Dynamically arriving or leaving participants complicate the 
problem a lot

University of  Padova, Master Degree - Runtimes for concurrency and distribution 11/20



Leader election: the bully algorithm – 1

 A node P that does not know the leader calls an 
election
 Resuming after halt or skipping leader’s heartbeats

 P sends an “Election” message to all nodes with 
higher ID
 On receiving “Election” message from sender with lower

ID, node Q responds “My job”, and initiates new election
 On receiving “My job” reply, sender quiets itself

 If no node replies, the sender becomes the leader
 The new leader node begins to notify the other nodes

 Leader is always the node with ID greater than all 
currently alive and reachable nodes

University of  Padova, Master Degree - Runtimes for concurrency and distribution 12/20



Leader election: the bully algorithm – 2

University of  Padova, Master Degree - Runtimes for concurrency and distribution 13/20



The consensus problem – 1

 Partitioning responsibilities and data helps scale on 
the Y and Z axes of the scalability cube
 Exam theme #1: explore scalability challenges and 

solutions in a chosen distributed application or service
 But also makes assuring state consistency a much 

harder problem …
 Erroneous views may start circulating: how can they be 

prevented and rectified
 Solutions are needed that assure consistency of 

system status (and output)
 Singling out one value strictly among those that participants 

actually proposed
 No self-generated proposals, no pretended notifications

University of  Padova, Master Degree - Runtimes for concurrency and distribution 14/20



The consensus problem – 2

 A most famous and influential solution to this 
problem, nicked “Paxos”, can be traced to
 L. Lamport, The part-time parliament, ACM TOCS 

16(2), 1998, doi: 10.1145/279227.279229
 Exam theme #2: apply Paxos or its variant Raft1

to a real-world PoC problem of your choice

University of  Padova, Master Degree - Runtimes for concurrency and distribution 15/20

1: https://raft.github.io/



Distributed access control – 1

 Centralized solution: easy but fragile
 A leader is assumed, which receives all access requests 

for any shared resource anywhere
 Node P requesting access to resource R sends “May I?” 

message to leader
 If resource is free, leader responds “Granted”

 Else it responds “Denied” and stores request in FIFO queue
 Receiver node holds

 On relinquishing R, node Q sends “Released” message to 
leader
 Leader sends “Granted” to node whose request is head of queue

 Coordinator is single point of failure and 
bottleneck

University of  Padova, Master Degree - Runtimes for concurrency and distribution 16/20



Distributed access control – 2

 Distributed solution
 Node P seeking access to resource R sends message 𝜇௉ ൌ 𝜌,𝑃,𝑅, 𝑐௉

to all other nodes, with 𝑐௉ timestamp at P
 Node Q receiving 𝜇

 If not interested in R, replies “OK”
 If holding R, it does not reply, adding 𝜇௉ to local wait queue for R

 On relinquishing R, it sends “OK” to all nodes with requests in queue
 If it requested access to R with 𝜇ொ ൌ 𝜌,𝑄,𝑅, 𝑐ொ without being granted it yet, it 

checks 𝑐௉ against 𝑐ொ
 It replies “OK” if 𝐶௉ ൑ 𝐶ொ

 Node P grabs R only after receiving “OK” from all other nodes
 Every node is one single point of failure

 Protocol traffic increases considerably
 Decision on timestamps requires some degree of ordering

 L. Lamport, Time, clocks, and the ordering of events in a distributed 
system, CACM 21(7), 1978, doi: 10.1145/359545.359563

University of  Padova, Master Degree - Runtimes for concurrency and distribution 17/20



Distributed access control – 3

 Another distributed solution
 Nodes are ordered in a ring topology

 A circulating token grants exclusive access to single shared 
resource

 Node 0 generates token and starts circulating it
 Node receiving token may grab resource, then it must pass 

token along to successor on ring
 Node receiving token acknowledges to predecessor

 Ring bypasses node that fails to acknowledge
 Worst-case wait time is one full round of the ring

 Token is single point of failure
 Lost token must be generated anew

 When a node does not “see” it within bounded time

University of  Padova, Master Degree - Runtimes for concurrency and distribution 18/20



Distributed access control: comparison

University of  Padova, Master Degree - Runtimes for concurrency and distribution 19/20

Variant #	Messages	between	
request	and	release	

Worst‐case	overhead	for	
message	sending SPoFs

Centralized
3	

(ENTER, GRANTED, 
RELEASED)

2
(ENTER, GRANTED) Coordinator

Distributed 2	(	n	– 1	)
(GRANT?, RELEASED) 2	(	n	– 1	) Any	node	

Token	ring
1	.. 

(worst case when 
no node wants access)

0	..	n	– 1
(worst case when token 
must make a full round)

Token



Excluded topic of particular interest

 Distributed transactions (two-phase commit) are costly
 They may cause heavy bottlenecks and massive decrease of throughout, hence 

scarce availability
 Their model is known as strict consistency
 Exam theme #4: explore the rationale of the saga pattern for microservice 

architectures, and the challenges of adopting it for real
 Interesting initial reads

 https://microservices.io/patterns/data/saga.html 
 https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

 Eventual consistency is a an attractive alternative
 Much better availability, when users can afford uncertainty
 The paradigm of choice for NoSQL databases
 Exam theme #3: study where and how eventual consistency is used, and make a 

critique of it
 Interesting initial reads

 https://www.oracle.com/technetwork/consistency-explained-1659908.pdf
 https://medium.com/swlh/handling-eventual-consistency-11324324aec4

University of  Padova, Master Degree - Runtimes for concurrency and distribution 20/20


