
Java’s RMI model

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/16

Model architecture – 1

 An object-oriented rejuvenation of RPC
 Client-server-over-TCP architecture
 At-most-once request-reply semantics

 Nicest traits
 Object as the most natural unit of distributed system
 Its interface as the most natural “distributable” part
 The server object never moves

 It resides where its state (implementation) resides
 It lives as long as the heap where it resides stays alive

 Principal defect
 Full transparency not warranted

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/16

Model architecture – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/16

Remote	object	R
R’s	implementation

(server‐side)
with its own reference

Object state and code

R’s	skeleton
(server‐side)

Derived from R’s interface

Binding information:
• IP address of R’s skeleton,
• endpoint of the object servant,
• R’s reference within servant

R’s	proxy
(client‐side)

Transparency holes

 Remote object not equal to local object
 Remote object cannot be cloned as fully as local one

 Client-side proxy not involved in server-side cloning
 Binding to clone requires new proxy

 Access control to remote object is server-side only
 Does not involve proxies

 Proxy sharing at client side may or may not serialize
 Data race if remote method implementation is not synchronized

 Call parameters treated differently in remote calls
 Parameter type must allow marshalling (serializable)

 Impossible for node-local types (threads, files, sockets, …)
 Unwanted for those intrinsically insecure (FileInputStream)

 Local objects in remote calls passed by deep copy
 Remote objects in remote calls passed by reference

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/16

Shallow copy vs deep copy

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/16

Object1
Primitive-type
member
Object member
(reference)

ShallowCopyObj1
Primitive-type
member
Object member
(reference)

Object in heap

DeepCopyObj1
Primitive-type
member
Object member
(reference)

Object in heap

Model architecture – 3

 R’s proxy turns remote invocation to R into a TCP-level
message for care by the Remote Reference Layer (Java’s
middleware)

 Call destination specified as an augmented TCP endpoint
 R’s node IP address, port number, R’s ID at local RRL, protocol

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/16

Model architecture – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/16

Client
Registry

Servant

Proxy Skeleton

Remote Reference
Layer

Remote Reference
Layer

This is where call‐concurrency issues are treated
(including thread pooling)

Separate process
(needs its own port)

Transport Layer (JRMP)

Unmarshalling by readObject()
Marshalling by writeObject()

Object Stream Object

Model architecture – 5

 Serializable objects transferred as “recipe-and-
ingredients”
 Portability within JVM allows reproducing wanted

object at destination
 Original .class suffices for by-value parameters

 Can be done, such files are fully local to the caller
 By-reference mode needed for objects that cannot be

reproduced outside of local node
 The proxy itself is serializable

 Can be transferred the same as normal parameters
 The very principle used for binding client to server

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/16

Model architecture – 6

 Proxy is actual target of client’s call
 Proxy reifies call and forwards it to client-side RRL using invoke() method of

java.rmi.server.RemoteRef

 Skeleton receives dispatch() call from server-side RRL with reified
call as parameter
 Skeleton unmarshalls reified call and makes invocation on client’s behalf

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/16

What happens under the hood – 1

1. Servant creates instance of remote object, which must
extend UnicastRemoteObject
 Constructor for UnicastRemoteObject enables remote object

(server) to receive incoming RMI calls
 TCP socket bound to arbitrary port is created
 Middleware thread is created to listen on that socket

2. Servant registers remote object with RMI registry,
whose entry contains the corresponding proxy
 RMIRegistry holds proxies and hands them to clients on request
 Proxy contains info to "call back" to the servant on client call

3. Client obtains proxy by calling RMI registry
 If server specified a codebase for clients to obtain proxy’s

.class, registry return will include that
 Client can then use codebase to construct proxy in-place

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/16

What happens under the hood – 2

4. When client issues RMI, proxy creates RemoteCall object
[now deprecated]
 That object opens socket connection to servant on port specified

in proxy, and sends RMI header information to it

5. Proxy calls RemoteCall.executeCall() to cause RMI to
happen [now deprecated]
 Proxy serializes call arguments into Java stream object and

marshals them over the connection

6. When client connects to servant’s socket, new thread is
forked on servant’s side to serve the incoming call
 Original thread keeps listening to original socket for calls from

other clients
 The very same logic as used by the Apache Web Server …

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/16

What happens under the hood – 3

7. Servant reads RMI header information and creates
RemoteCall object to unmarshall incoming RMI
arguments [now deprecated]

8. Servant calls skeleton’s dispatch() method, which
calls target object method and pushes return result
back to socket

9. Return value of RMI is unmarshalled at client side,
and returned from proxy back to client

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/16

Concurrency control

 RMI Spec @ 3.2 Thread Usage in RMI
 A method dispatched by the RMI runtime to a remote

object implementation may or may not execute in a
separate thread

 The RMI runtime makes no guarantees with respect to
mapping invocations to threads

 Since remote method invocation on the same remote
object may execute concurrently, a remote object
implementation needs to make sure its implementation is
thread-safe

 “It’s your problem, baby”
 Calls from the same client are certainly sequential

 Unless the client has shared the proxy
 Calls from parallel clients need server-side handling

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/16

This needs reentrancy

Use example: servant

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/16

package echo;
public interface Echo extends java.rmi.Remote {
String call (String message) throws java.rmi.RemoteException;

}

package echo; import java.rmi.*; import java.rmi.server.*;
public class EchoServer extends UnicastRemoteObject implements Echo {

public EchoServer(String name) throws RemoteException {
try { Naming.rebind (name,this); } catch (Exception e) {

System.out.println (“Exception in EchoServer: " + e.getMessage());
e.printStackTrace();} }

public String call (String message) throws RemoteException {
System.out.println("Echo's method call invoked: [" + message + "]");
return "From EchoServer:- Thanks for your message: [" + message + "]"; }

public static void main (String args[]) throws Exception {
if (System.getSecurityManager() == null)

System.setSecurityManager (new RMISecurityManager());
String url = "rmi://" + args[0] + "/Echo";
EchoServer echo = new EchoServer (url);
System.out.println("EchoServer ready!"); }

}

This goes to Registry at servant’s node
(rebind overwrites previous, if any; bind disallows overwriting)

Use example: client

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/16

package echo; import java.rmi.*; import java.rmi.server.*;
public class EchoClient {

public static void main (String args[]) {
int i;
if (System.getSecurityManager() == null)

System.setSecurityManager (new RMISecurityManager());
try {

System.out.println ("EchoClient ready!");
String url = "rmi://" + args[0] + "/Echo";
System.out.println ("Looking up remote object " + url + " ...");
Echo echo = (Echo) Naming.lookup (url);
String toMsg = (String) args[1];
for (i = 1; i<6; i++) {

toMsg = toMsg + "-" + i;
System.out.println ("Message " + i + " to Echo: [" + toMsg + "]");
String fromMsg = echo.call (toMsg);
Thread.sleep (2000);
System.out.println ("Message from Echo: \n\t" + fromMsg + "\n"); }

} catch (Exception e) {
System.out.println ("Exception in EchoClient: " + e.getMessage());
e.printStackTrace(); } }

}

echo is the proxy and
has the type of the Echo interface!

Use example

 Prior to Java 5, applications using RMI had to be compiled
in two steps
 First step was classic javac
 Second step, rmic, was to generate proxy (stub) and skeleton

based on actual remote object
 Since Java 5, proxy generated on-the-fly, and skeleton is

taken care of by javac

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/16

EchoServer.java EchoServer.class
javac

EchoServer_Skel.class

EchoServer_Stub.class

rmic

