
CS5412:
ANATOMY OF A CLOUD
Ken Birman

CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture VII

How are cloud structured?

CS5412 Spring 2012 (Cloud Computing: Birman)

 Clients talk to clouds using web browsers
 But this access only gets as far as the outer “skin” of the

cloud data center, not the interior
 Consider Amazon: it can host entire company web sites

(like Target.com or Netflix.com), data (AC3), servers
(EC2) and even user-provided virtual machines!

Big picture overview

CS5412 Spring 2012 (Cloud Computing: Birman)

 Client requests are
handled in the “first
tier”
 By JS, PHP, ASP pages
 And associated logic

 These lightweight
services are fast
and very nimble

 Much use of caching in
the second tier

1
11

1
1

1

1

1

1 Index
DB

2
2

Shards

2
2

2

2
2

2

Many styles of system

CS5412 Spring 2012 (Cloud Computing: Birman)

 Near the edge of the Cloud, focus is on
 Vast numbers of clients
 Rapid response

 Inside, high-volume services that operate in a pipelined
manner, asynchronously

 Deep inside the cloud, a world of virtual computer
clusters scheduled to share computing resources, on
which massively-parallel applications like MapReduce
(Apache Hadoop) are very popular

Replication is key in the outer tiers

CS5412 Spring 2012 (Cloud Computing: Birman)

 We need to replicate
 Processing: each client has what seems to be a private,

dedicated server (for a little while)
 Data: as much as possible, that server has copies of the

data it needs to respond to client requests without any
delay at all

 Control information: the entire structure is managed in
an agreed-upon way by a decentralized cloud
management infrastructure

What about the “shards”?

CS5412 Spring 2012 (Cloud Computing: Birman)

 The caching components running in tier two are
central to the responsiveness of tier-one services
 Basic idea: to always use cached data if possible, so

that the inner services (here, a DB and a search index
stored in a set of files) are shielded from “online” load

 We need to replicate data within our cache to balance
load and provide fault tolerance

 Not everything needs to be fully replicated: we often
use shards with just a few replicas

Sharding used in many ways

CS5412 Spring 2012 (Cloud Computing: Birman)

 Tier two could be any of a variety of caching services
 Memcached: a sharable in-memory key-value store
 Distributed Hash Tables that use key-value APIs
 Dynamo: a service created by Amazon as a scalable way

to represent the shopping cart and similar data
 BigTable: a very elaborate key-value store created by

Google and used not just in tier-two but throughout their
“GooglePlex” for sharing information

 The notion of sharding is cross-cutting
 Most of these systems replicate data to some degree

Do we always need to shard data?

CS5412 Spring 2012 (Cloud Computing: Birman)

 Imagine a tier-one service running on 100K nodes
 Can it ever make sense to replicate data on the entire set?

 Yes, if some kinds of information might be so valuable
that almost every external request touches it

 Must think hard about patterns of data access and use
 Some information needs to be heavily replicated to offer

blindingly fast access on vast numbers of nodes

 We want the level of replication to match the level of
load and the degree to which the data is needed on
the critical path

And it isn’t just about updates

CS5412 Spring 2012 (Cloud Computing: Birman)

 Should also be thinking about patterns that arise
when doing reads (“queries”)
 Some can just be performed by a single representative

of a service
 Others might need that several (perhaps a huge

number of) machines undertake parts of the work in
parallel

 The term sharding is used for data, but here we
might talk about “parallel computation on a shard”

What does “critical path” mean? 1/2

CS5412 Spring 2012 (Cloud Computing: Birman)

 Focus on the latency of the reply to the client
 Critical path is formed by actions that contribute to

this latency Update the monitoring and alarms criteria for Mrs. Marsh
as follows…

Confirmed

Response latency seen
by end-user would

include Internet delay Service response
latency

Service instance

What if a request triggers updates?

CS5412 Spring 2012 (Cloud Computing: Birman)

 If the updates are done asynchronously, we might not
experience much delay on the critical path
 Cloud systems often work this way
 Avoids waiting for slow services to process the updates but

may force the tier-one service to “guess” the outcome
 For example, could optimistically apply update to value

from a cache and just hope this was the right answer

 Many cloud systems use these sorts of “tricks” to speed
up response time

Tier-one parallelism

CS5412 Spring 2012 (Cloud Computing: Birman)

 Vital to speeding up tier-one services
 Key question

 Request has reached some service instance X
 Will it be faster…
 … For X to just compute the response
 … Or for X to subdivide the work by asking subservices to do

parts of the job?

 Glimpse of an answer
 Werner Vogels, CTO at Amazon, noted in a talk that many

Amazon pages have content from 50 or more parallel
subservices that run, in real-time, on your request!

What does “critical path” mean? 2/2

CS5412 Spring 2012 (Cloud Computing: Birman)

 In this example of a parallel read-only request, the
critical path centers on the middle “subservice”

Update the monitoring and alarms criteria for Mrs. Marsh
as follows…

Confirmed

Response latency seen
by end-user would

include Internet delays Service response
latency

Service instance

Critical path

Critical path

Critical path

With replicas we just load balance

CS5412 Spring 2012 (Cloud Computing: Birman)

Update the monitoring and alarms criteria for Mrs. Marsh
as follows…

Confirmed

Response latency end-
user would include

Internet delays Service response
latency

Service instance

But when we add updates….

CS5412 Spring 2012 (Cloud Computing: Birman)

Update the monitoring and alarms criteria for Mrs. Marsh
as follows…

Confirmed

Response latency seen by
end-user would also include

Internet delays The delay associated with
waiting for the multicasts to finish

could impact the critical path
even in a single service

Send

Soft-state tier-one service

A B C D

Execution timeline for an
individual tier-one replica

Send

Send

What about updating w/o waiting?

CS5412 Spring 2012 (Cloud Computing: Birman)

 Several issues now arise
 Are all the replicas applying updates in the same order?
 Might not matter unless the same data item is being changed
 When it matters, we do need some “agreement” on order

 What if the leader replies to the end user but then crashes
and it turns out that the updates were lost in the network?
 Data center networks are surprisingly lossy at times
 Also, bursts of updates can queue up

 Such issues result in inconsistency

Eric Brewer’s CAP theorem

CS5412 Spring 2012 (Cloud Computing: Birman)

 In a famous 2000 keynote talk at ACM PODC, Eric
Brewer proposed that “you can have just two out of
three, from Consistency, Availability, and Partition
Tolerance”
 Data centers need very snappy response, hence

availability is paramount
 They should be responsive even if a transient fault

makes it hard to reach some service
 They should use cached data to respond faster even if the

cached entry can’t be validated and might be stale!

 Conclusion: weaken consistency for faster response

Clarification intermission /1

SCD course @ UNIPD (Tullio Vardanega)

 Consistency (C)
 There must be a total order on all operations
 Equivalent to centralization with run-to-completion semantics

 Each operation looks as if it were completed at a single
instant

 Each update is applied to all relevant replicas at the
same logical time

 Consistency that is both instantaneous and global is
simply impossible

Credits
to Coda

Hale

Clarification intermission /2

 Availability (A)
 Every request received by a non-failing node must yield a

response
 Every request processing must terminate even under severe

network failures
 Partition Tolerance (P)

 The network may lose arbitrarily many messages sent from
one node to another
 When a network is partitioned, all messages sent from nodes in

one component of the partition to nodes in another component are
lost

 Any node failure can be seen as a network partition

SCD course @ UNIPD (Tullio Vardanega)

Credits
to Coda

Hale

Clarification intermission /3

 The probability of a network partition rises
exponentially with the number of nodes
𝑃 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ൌ 1െ 𝑃 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑜𝑑𝑒_𝑛𝑜𝑡_𝑓𝑎𝑖𝑙𝑖𝑛𝑔 ௡௨௠௕௘௥_௢௙_௡௢ௗ௘௦

 Choosing C over A in the presence of partitions
 The system will preserve the guarantees of atomic reads

and writes, and reject some requests
 Choosing A over C

 The system will respond to all requests, potentially returning
stale reads and accepting conflicting writes

 Some of the conflicts may be resolved by Lamport’s like
algorithms

Credits
to Coda

Hale

SCD course @ UNIPD (Tullio Vardanega)

Clarification intermission /4

 Brewer proposed the notions of Yield and Harvest
 Yield

 The probability of completing a request
 More interesting than uptime: being down at peak or off-peak times

generates the same uptime but vastly different yields
 Harvest

 The fraction of data reflected in the response
 Which reflects the completeness of the answer to the query

𝑑𝑎𝑡𝑎_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
𝑡𝑜𝑡𝑎𝑙_𝑑𝑎𝑡𝑎

 System design choices can influence whether faults impact Yield,
Harvest, or both
 With replication, faults cause reduced Yield at peak times
 With partitioning, faults incur reduced Harvest for the same Yield

SCD course @ UNIPD (Tullio Vardanega)

Credits
to Coda

Hale

Is inconsistency a bad thing?

CS5412 Spring 2012 (Cloud Computing: Birman)

 How much consistency does tier one need?
 YouTube videos: would consistency be an issue here?
 Amazon’s “number of units available” counters: will people notice

if those are a bit off?
 AWS Marvin Theimer’s advice

 Avoid costly guarantees that aren’t even needed
 But sometimes you just need to guarantee something
 Then, be clever and engineer it to scale
 And expect to revisit it each time you scale out 10x

 Performance-intensive scalability scenarios require looking
closely at this tradeoff
 Cost of stronger guarantee, versus cost of being faster but

offering weaker guarantee

Properties we might want

CS5412 Spring 2012 (Cloud Computing: Birman)

 Consistency: updates in an agreed order
 Durability: once accepted, won’t be forgotten
 Responsiveness: replies with bounded delay
 Security: only permit authorized actions by

authenticated parties
 Privacy: won’t disclose personal data
 Resilience: failures can’t prevent the system from

providing desired services
 Coordination: actions won’t interfere with one another

Cloud services and their properties

CS5412 Spring 2012 (Cloud Computing: Birman)

Service Properties it guarantees

Memcached No special guarantees

Google’s GFS File is current if locking is used

BigTable Shared key-value store with many consistency properties

Dynamo Amazon’s shopping cart: eventual consistency

Databases Snapshot isolation with log-based mirroring (a fancy form of the
ACID guarantees)

MapReduce Uses a “functional” computing model within which offers very
strong guarantees

Zookeeper Yahoo! file system with sophisticated properties

PNUTS Yahoo! database system, sharded data, spectrum of consistency
options

Chubby Locking service… very strong guarantees

THE WISDOM OF
THE SAGES

CS5412 Spring 2012 (Cloud Computing: Birman)

eBay’s Five Commandments

 As described by Randy Shoup at LADIS 2008

��������	
�
�
����
�
���������
����

�
��������������������������

�
���
���
�������
����

�
������ ��!������
�����"��	�

#
��� �����$�������
����

CS5412 Spring 2012 (Cloud Computing: Birman)

Vogels at the Helm

 Werner Vogels, CTO at Amazon.com …
 Involved in building a new shopping cart service …

 The old one used strong consistency for replicated data
 New version was built over a DHT, like Chord, and has

weak consistency with eventual convergence
 Chord: a scalable P2P lookup service

 This weakens guarantees … but
 Speed matters more than correctness

CS5412 Spring 2012 (Cloud Computing: Birman)

James Hamilton’s advice

 Key to scalability is decoupling, loosest possible
synchronization

 Any synchronized mechanism is a risk
 His approach: create a committee
 Anyone who wants to deploy a highly consistent

mechanism needs committee approval (cf. Lamport’s
Paxos)

…. They don’t meet very often

CS5412 Spring 2012 (Cloud Computing: Birman)

